
ARTIFICIAL
INTELLIGENCE

A Systems Approach

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

The CD-ROM that accompanies this book may only be used on a single PC. This license does
not permit its use on the Internet or on a network (of any kind). By purchasing or using this
book/CD-ROM package(the “Work”), you agree that this license grants permission to use the
products contained herein, but does not give you the right of ownership to any of the textual
content in the book or ownership to any of the information or products contained on the
CD-ROM. Use of third party software contained herein is limited to and subject to licensing
terms for the respective products, and permission must be obtained from the publisher or the
owner of the software in order to reproduce or network any portion of the textual material
or software (in any media) that is contained in the Work.

INFINITY SCIENCE PRESS LLC (“ISP” or “the Publisher”) and anyone involved in the
creation, writing or production of the accompanying algorithms, code, or computer programs
(“the software”) or any of the third party software contained on the CD-ROM or any of the
textual material in the book, cannot and do not warrant the performance or results that might
be obtained by using the software or contents of the book. The authors, developers, and the
publisher have used their best efforts to insure the accuracy and functionality of the textual
material and programs contained in this package; we, however, make no warranty of any kind,
express or implied, regarding the performance of these contents or programs. The Work is
sold “as is” without warranty (except for defective materials used in manufacturing the disc
or due to faulty workmanship);

The authors, developers, and the publisher of any third party software, and anyone involved
in the composition, production, and manufacturing of this work will not be liable for damages
of any kind arising out of the use of (or the inability to use) the algorithms, source code,
computer programs, or textual material contained in this publication. This includes, but is not
limited to, loss of revenue or profit, or other incidental, physical, or consequential damages
arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement of
the book and/or the CD-ROM, and only at the discretion of the Publisher.

The use of “implied warranty” and certain “exclusions” vary from state to state, and might
not apply to the purchaser of this product.

ARTIFICIAL
INTELLIGENCE

A Systems Approach

M. TIM JONES

INFINITY SCIENCE PRESS LLC
Hingham, Massachusetts

New Delhi

Copyright 2008 by INFINITY SCIENCE PRESS LLC
All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any way, stored in a retrieval
system of any type, or transmitted by any means or media, electronic or mechanical, including, but not limited to,
photocopy, recording, Internet postings or scanning, without prior permission in writing from the publisher.

Publisher: DAVID PALLAI

INFINITY SCIENCE PRESS LLC
11 Leavitt Street
Hingham, MA 02043
Tel. 877-266-5796 (toll free)
Fax 781-740-1677
info@infinitysciencepress.com
www.infinitysciencepress.com

This book is printed on acid-free paper.

M. Tim Jones. Artificial Intelligence: A Systems Approach
ISBN: 978-0-9778582-3-1

The publisher recognizes and respects all marks used by companies, manufacturers, and developers
as a means to distinguish their products. All brand names and product names mentioned in this
book are trademarks or service marks of their respective companies. Any omission or misuse (of any
kind) of service marks or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Cataloging-in-Publication Data

JONES, M. TIM.
 Artificial intelligence : a systems approach / M. Tim Jones.
 p. cm.
 Includes index.
 ISBN-13: 978-0-9778582-3-1 (hardcover with cd-rom : alk. paper)
 1. Artificial intelligence--Data processing. 2. Artificial intelligence--Mathematical models. I. Title.
 Q336.J68 2008
 006.3--dc22

2007045869

7 8 9 0 4 3 2 1

Our titles are available for adoption, license or bulk purchase by institutions, corporations, etc. For
additional information, please contact the Customer Service Dept. at 877-266-5796 (toll free).

Requests for replacement of a defective CD-ROM must be accompanied by the original disc, your
mailing address, telephone number, date of purchase and purchase price. Please state the nature of the
problem, and send the information to INFINITY SCIENCE PRESS, 11 Leavitt Street, Hingham, MA 02043.

The sole obligation of INFINITY SCIENCE PRESS to the purchaser is to replace the disc, based on defective
materials or faulty workmanship, but not based on the operation or functionality of the product.

DEDICATION

This book is dedicated to my wonderful wife, Jill, without whom this book would not be
possible. I’m also indebted to my parents Maury and Celeta, who instilled in me a desire to
learn and wonder.

ACKNOWLEDGMENTS

At the time of this writing, AI is celebrating its 50th anniversary. It was August of 1956 when
researchers met at the Dartmouth Summer Research Project on Artificial Intelligence with
the agenda of creating intelligent machines. In the 50 years that followed, AI has become a
genuine field of study, but the road has not been without its bumps.

Acknowledging all those who’ve contributed to AI would fill a book much larger than
this. But I’d like to personally recognize John McCarthy for introducing AI in 1955 (at the
Dartmouth Summer Project) and for having created the wonderful Lisp programming
language.

TABLE OF CONTENTS

Chapter 1 The History of AI 1-19
 What is Intelligence? 1
 The Search for Mechanical Intelligence 2
 The Very Early Days (the early 1950’s) 3
 Alan Turing 3
 AI, Problem Solving and Games 4
 Artificial Intelligence Emerges as a Field 5
 The Dartmouth AI Summer Research Project 5
 Building Tools for AI 6
 The Focus on Strong AI 6
 Constrained Applications 7
 Bottom-Up Approaches Emerge 7
 AI’s Winter 8
 Results-Oriented Applications 8
 Additional AI Tools Emerge 9
 Neat vs. Scruffy Approaches 9
 AI Remerges 10
 The Silent Return 10
 Messy and Scruffy Approaches Take Hold 10
 Agent Systems 12
 AI Inter-disciplinary R&D 12
 Systems Approach 13
 Overview of this Book 15
 Uninformed Search 15
 Informed Search 15
 AI and Games 15
 Knowledge Representation 16

 Machine Learning 16
 Evolutionary Computation 16
 Neural Networks Part 1 16
 Neural Networks Part 2 17
 Intelligent Agents 17
 Biologically Inspired and Hybrid Models 17
 Languages of AI 17
 Chapter Summary 18
 References 18
 Resources 18
 Exercises 19

Chapter 2 Uninformed Search 21-48
Search and AI 21
Classes of Search 22
General State Space Search 22
 Search in a Physical Space 22
 Search in a Puzzle Space 23
 Search in an Adversarial Game Space 25
Trees, Graphs and Representation 27
Uninformed Search 29
 Helper APIs 30
 General Search Paradigms 31
 Depth-First Search 31
 Depth-Limited Search 34
 Iterative Deepening Search 36
 Breadth-First Search 39
 Bidirectional Search 42
 Uniform-Cost Search 42
Improvements 45
Algorithm Advantages 46
Chapter Summary 46
Algorithms Summary 46
References 47
Exercises 47

Chapter 3 Informed Search 49-88
Search and AI 49
Best-First Search 50
 Best-First Search and the N-Queens Problem 50

 Best-First Search Implementation 52
 Variants of Best-First Search 56
A* Search 57
 A* Search and the Eight Puzzle 59
 Eight Puzzle Representation 59
 A* Search Implementation 61
 Eight Puzzle Demonstration with A* 64
 A* Variants 65
 Applications of A* Search 65
Hill Climbing Search 65
Simulated Annealing 66
 The Traveling Salesman Problem (TSP) 68
 TSP Tour Representation 68
 Simulated Annealing Implementation 70
 Simulated Annealing Demonstration 73
Tabu Search 75
 Tabu Search Implementation 77
 Tabu Search Demonstration 79
 Tabu Search Variants 80
Constraint Satisfaction 81
 Graph Coloring as a CSP 81
 Scheduling as CSP 83
Constraint Satisfaction Problems 84
 Generate and Test 84
 Backtracking 84
 Forward Checking and Look Ahead 84
 Min-Conflicts Search 86
Chapter Summary 86
Algorithms Summary 86
References 86
Resources 87
Exercises 87

Chapter 4 AI and Games 89-142
Two Player Games 89
The Minimax Algorithm 92
 Minimax and Tic-Tac-Toe 95
 Minimax Implementation for Tic-Tac-Toe 98
 Minimax with Alpha-Beta Pruning 101
Classical Game AI 106

 Checkers 106
 Checker Board Representation 107
 Techniques used in Checkers Programs 107
 Opening Books 108
 Static Evaluation Function 108
 Search Algorithm 108
 Move History 108
 Endgame Database 109
 Chess 109
 Chess Board Representation 110
 Techniques used in Chess Programs 110
 Opening Book Database 110
 Minimax Search with Alpha Beta Pruning 111
 Static Board Evaluation 111
 Othello 112
 Techniques used in Othello Programs 112
 Opening Knowledge 112
 Static Evaluation Function 112
 Search Algorithm 113
 Endgames 113
 Other Algorithms 113
 Go 114
 Go Board Representation 114
 Techniques used in Go Programs 114
 Opening Moves 115
 Move Generation 115
 Evaluation 115
 Endgame 116
 Backgammon 116
 Techniques used in Backgammon Programs 116
 Neurogammon 116
 TD-Gammon 117
 Poker 118
 Loki – A learning Poker Player 119
 Scrabble 120
Video Game AI 121
 Applications of AI Algorithms in Video Games 122
 Movement and Pathfinding 123
 Table Lookup with Offensive and Defensive Strategy 123
 NPC Behavior 129

 Static State Machines 130
 Layered Behavior Architectures 131
 Other Action-Selection Mechanisms 132
 Team AI 132
 Goals and Plans 134
 Real-Time Strategy AI 136
 Rules-Based Programming 136
Chapter Summary 139
References 139
Resources 140
Exercises 141

Chapter 5 Knowledge Representation 143-170
 Introduction 143
 Types of Knowledge 144
 The Role of Knowledge 144
 Semantic Nets 145
 Frames 146
 Proposi tional Logic 149
 Deductive Reasoning with Propositional Logic 151
 Limitations of Propositional Logic 152
 First Order Logic (Predicate Logic) 152
 Atomic Sentences 153
 Compound Sentences 154
 Variables 154
 Quantifiers 155
 First-Order Logic and Prolog 155
 Simple Example 155
 Information Retrieval and KR 157
 Representing and Reasoning about an Environment 159
 Semantic Web 163
 Computational Knowledge Discovery 165
 The BACON System 165
 Automatic Mathematician 166
 Ontology 167
 Communication of Knowledge 167
 Common Sense 168
 Summary 169
 References 169
 Resources 169

 Exercises 170

Chapter 6 Machine Learning 171-193
 Machine Learning Algorithms 171
 Supervised Learning 172
 Learning with Decision Trees 172
 Creating a Decision Tree 174
 Characteristics of Decision Tree Learning 176
 Unsupervised Learning 176
 Markov Models 177
 Word Learning with Markov Chains 177
 Word Generation with Markov Chains 179
 Markov Chain Implementation 180
 Other Applications of Markov Chains 184
 Nearest Neighbor Classification 185
 1NN Example 186
 k-NN Example 188
 Summary 192
 Resources 192
 Exercises 192

Chapter 7 Evolutionary Computation 195-247
 Short History of Evolutionary Computation 195
 Evolutionary Strategies 196
 Evolutionary Programming 197
 Genetic Algorithms 197
 Genetic Programming 198
 Biological Motivation 199
 Genetic Algorithms 200
 Genetic Algorithm Overview 200
 Genetic Algorithm Implementation 204
 Genetic Programming 212
 Genetic Programming Algorithm 212
 Genetic Programming Implementation 215
 Evolutionary Strategies 220
 Evolutionary Strategies Algorithm 221
 Evolutionary Strategies Implementation 223
 Differential Evolution 227
 Differential Evolution Algorithm 228
 Differential Evolution Implementation 230

 Particle Swarm Optimization 236
 Particle Swarm Algorithm 236
 Particle Swarm Implementation 238
 Evolvable Hardware 244
 Summary 244
 References 245
 Resources 245
 Exercises 245

Chapter 8 Neural Networks I 249-287
Short History of Neural Networks 249
Biological Motiviation 250
Fundamentals of Neural Networks 251
 Single Layer Perceptrons 252
 Multi-Layer Perceptrons 254
 Supervised vs. Unsupervised Learning Algorithms 257
 Binary vs. Continuous Inputs and Outputs 257
The Perceptron 257
 Perceptron Learning Algorithm 259
 Perceptron Implementation 260
Least-Mean-Square (LMS) Learning 262
 LMS Learning Algorithm 262
 LMS Implementation 263
Learning with Backpropagation 265
 Backpropagation Algorithm 267
 Backpropagation Implementation 268
 Tuning Backpropagation 274
 Training Variants 274
 Weight Adjustment Variants 274
Probabilistic Neural Networks 275
 PNN Algorithm 276
 PNN Implementation 277
Other Neural Network Architectures 281
 Time Series Processing Architecture 281
 Recurrent Neural Network 283
Tips for Building Neural Networks 283
 Defining the Inputs 283
 Defining the Outputs 284
 Choice of Activation Functions 284
 Number of Hidden Layers 285

Chapter Summary 285
References 285
Exercises 285

Chapter 9 Neural Networks II 289-328
 Unsupervised Learning 289
 Hebbian Learning 290
 Hebb’s Rule 291
 Hebb Rule Implementation 292
 Simple Competitive Learning 296
 Vector Quantization 297
 Vector Quantization Implementation 298
 k-Means Clustering 304
 k-Means Algorithm 305
 k-Means Implementation 307
 Adaptive Resonance Theory 313
 ART-1 Algorithm 314
 ART-1 Implementation 316
 Hopfield Auto-Associative Model 322
 Hopfield Auto-Associator Algorithm 323
 Hopfield Implementation 324
 Summary 327
 References 328
 Exercises 328

Chapter 10 Robotics and AI 329-348
 Introduction to Robotics 329
 What is a Robot? 330
 A Sampling from the Spectrum of Robotics 331
 Taxonomy of Robotics 332
 Fixed 333
 Legged 333
 Wheeled 333
 Underwater 333
 Aerial 333
 Other Types of Robots 334
 Hard vs. Soft Robotics 334
 Braitenburg Vehicles 334
 Natural Sensing and Control 336
 Perception with Sensors 337

 Actuation with Effectors 338
 Robotic Control Systems 338
 Simple Control Architectures 339
 Reactive Control 340
 Subsumption 340
 Other Control Systems 342
 Movement Planning 342
 Complexities of Motion Planning 342
 Cell Decomposition 343
 Potential Fields 344
 Group or Distributed Robotics 345
 Robot Programming Languages 346
 Robot Simulators 346
 Summary 346
 References 346
 Resources 347
 Exercises 347

Chapter 11 Intelligent Agents 349-391
 Anatomy of an Agent 350
 Agent Properties and AI 351
 Rationale 352
 Autonomous 352
 Persistent 352
 Communicative 352
 Cooperative 353
 Mobile 353
 Adaptive 353
 Agent Environments 353
 Agent Taxonomies 356
 Interface Agents 356
 Virtual Character Agents 357
 Entertainment Agents 358
 Game Agents 358
 ChatterBots 360
 Eliza and Parry 360
 AIML 361
 Mobile Agents 362
 User Assistance Agent 364
 Email Filtering 364

 Information Gathering and Filtering 365
 Other User-Assistance Applications 365
 Hybrid Agent 366
 Agent Architectures 366
 What is Architecture? 366
 Types of Architectures 367
 Reactive Architectures 367
 Deliberative Architectures 368
 Blackboard Architectures 369
 BDI Architecture 370
 Hybrid Architectures 371
 Mobile Architectures 371
 Architecture Description 372
 Subsumption Architecture (Reactive) 372
 Behavior Networks (Reactive) 373
 ATLANTIS (Deliberative) 375
 Homer (Deliberative) 376
 BB1 (Blackboard) 377
 Open Agent Architecture (Blackboard) 377
 Procedural Reasoning System (BDI) 378
 Aglets (Mobile) 379
 Messengers (Mobile) 380
 SOAR (Hybrid) 382
 Agent Languages 382
 Telescript 382
 Aglets 383
 Obliq 384
 Agent TCL 384
 Traditional Languages 385
 Agent Communication 385
 Knowledge Query and Manipulation Language (KQML) 385
 FIPA Agent Communication Language 388
 Extensible Markup Language (XML) 388
 Summary 389
 Resources 389
 References 390
 Exercises 391

Chapter 12 Biologically Inspired and Hybrid Models 393-432
 Cellular Automata 393

 One Dimensional CA 394
 Two Dimensional CA 395
 Conway Application 396
 Turing Completeness 398
 Emergence and Organization 398
 Artificial Immune Systems 398
 Self-Management Capabilities 399
 Touchpoints 400
 Touchpoint Autonomic Managers 400
 Orchestrating Autonomic Managers 401
 Integrated Management Console 401
 Autonomic Summary 402
 Artificial Life 402
 Echo 403
 Tierra 403
 Simulated Evolution 403
 Environment 403
 The Bug (or Agent) 404
 Variations of Artificial Life 408
 Lindenmayer Systems 408
 Fuzzy Logic 410
 Introduction to Fuzzy Logic 410
 Fuzzy Logic Mapping 411
 Fuzzy Logic Operators 414
 Fuzzy Control 415
 Evolutionary Neural Networks 416
 Genetically Evolved Neural Networks 416
 Simulation Evolution Example 419
 Ant Colony Optimization 423
 Traveling Salesman Problem 423
 Path Selection 425
 Pheromone Intensification 425
 Pheromone Evaporation 426
 New Tour 426
 Sample Usage 426
 ACO Parameters 430
 Affective Computing 430
 Characterizing Human Emotion 430
 Synthesizing Emotion 431
 Resources 432

Chapter 13 The Languages of AI 433-483
 Language Taxonomy 433
 Functional Programming 434
 Imperative Programming 437
 Object Oriented Programming 438
 Logic Programming 441
 Languages of AI 442
 The LISP Language 443
 The History of the LISP Language 443
 Overview of the LISP Language 444
 Data Representation 444
 Simple Expressions 444
 Predicates 445
 Variables 445
 List Processing 445
 Programs as Data 447
 Conditions 447
 Functions in LISP 448
 LISP Summary 451
 The Scheme Language 451
 History of Scheme 452
 Overview of the Scheme Language 452
 Data Representation 452
 Simple Expressions 452
 Predicates 453
 Variables 453
 List Processing 454
 Conditions 455
 Iteration and Maps 456
 Procedures in Scheme 457
 Scheme Summary 460
 The POP-11 Language 460
 History of POP-11 460
 Overview of the POP-11 Language 460
 Data Representation 460
 Predicates 461
 Simple Expressions 461
 Variables 462
 List Processing 462
 Conditions 463

 Iteration and Maps 464
 Pattern Matching 465
 Procedures in POP-11 465
 POP-11 Summary 468
 Prolog 468
 History of Prolog 469
 Overview of the Prolog Language 469
 Data Representation 469
 List Processing 470
 Facts, Rules, and Evaluation 471
 Arithmetic Expressions 478
 Prolog Summary 480
 Other Languages 480
 Chapter Summary 481
 References 481
 Resources 482
 Exercises 482

About the CD-ROM 485

Index 487-498

The history of AI is interesting all by itself. It’s a modern-day drama,
filled with excitement and anticipation, discovery, and disappointment.
From over-promises of early (and later) AI research, to fears of the

unknown from the general public, AI’s history is worthy of study by itself.
In this chapter, we’ll explore AI’s tumultuous history and also provide a
summary introduction to each of the chapters of this book.

WHAT IS INTELLIGENCE?

To build software that is deemed intelligent, it’s helpful to begin with a
definition of intelligence. Intelligence can be simply defined as a set of
properties of the mind. These properties include the ability to plan, solve
problems, and in general, reason. A simpler definition could be that
intelligence is the ability to make the right decision given a set of inputs and
a variety of possible actions.

Using this simple definition of intelligence (making the right decision),
we can apply this not only to humans, but also to animals that exhibit rational
behavior. But the intelligence that is exhibited by human beings is much
more complex than that of animals. For example, humans have the ability

C h a p t e r 1 THE HISTORY OF AI

2 Artificial Intelligence

to communicate with language, but so do some animals. Humans can also
solve problems, but the same can be said of some animals. One difference
then is that humans embody many aspects of intelligence (the ability to
communicate, solve problems, learn and adapt) where animals typically
embody a small number of intelligent characteristics, and usually at a much
lower level than humans.

We can use the same analogy on AI applied to computer systems. For
example, it’s possible to build an application that plays a world-class game of
Chess, but this program knows nothing of the game of Checkers, nor how to
make a good cup of tea. A data mining application can help identify fraud,
but can’t navigate a complex environment. From this perspective, the most
complex and intelligent applications can be deemed intelligent from one
perspective, but lack even the simplest intelligence that can be seen in the
least intelligent of animals.

NOTE Famed author Isaac Asimov once wrote about his experience with
aptitude tests in the army. In the army, he scored well above the norm.
But what he realized was that he could score well on tests that were
developed by others that shared his academic bents. He opined that if
the tests were developed by people involved in auto repair, he would have
scored very poorly. The issue being that tests are developed around a
core of expertise, and scoring poorly on one doesn’t necessarily indicate
a lack of intelligence.

THE SEARCH FOR MECHANICAL INTELLIGENCE

History is filled with stories of the creation of intelligent machines. In the
800s BC, the Iliad described the winged Talos, a bronze automaton forged by
Hephaestus to protect Crete. The inner workings of Talos weren’t described,
except that he was bronze, and filled with ichor (or a Greek god’s blood). A
more recent example is Mary Shelley’s Frankenstein, in which the scientist
recreates life from old. In 1921, Karel Capek’s play “Rossum’s Universal

Robots” introduced the concept of cheap labor through robotics.
But one of the most interesting applications of artificial intelligence,

in a non-robitic form, was that of the HAL 9000 introduced by Arthur C.
Clark in his his novel “2001: A Space Odyssey.” HAL was a sentient artificial
intelligence that occupied the Discovery spaceship (en route to Jupiter).
HAL had no physical form, but instead managed the spaceship’s systems,
visually watched the human occupants through a network of cameras, and

The History of AI 3

communicated with them in a normal human voice. The moral behind the
story of HAL was one of modern-day programming. Software does exactly
what one tells it to do, and can make incorrect decisions trying to focus on
a single important goal. HAL obviously was not created with Isaac Asimov’s
three laws of robotics in mind.

THE VERY EARLY DAYS (THE EARLY 1950s)

While the term artificial intelligence had not yet been conceived, the 1950s
were the very early days of AI. Early computer systems were being built, and
the ideas of building intelligent machines were beginning to form.

Alan Turing
In 1950 it was Alan Turing who asked whether a machine could think.
Turing not long before had introduced the concept of his universal abstract
machine (called the Turing Machine) that was simple and could solve any
mathematical problem (albiet with some complexity). Building on this idea,
Turing wondered that if a computer’s response were indistinguishable from
a human, then the computer could be considered a thinking machine. The
result of this experiment is called the Turing Test.

In the Turing test, if the machine could fool a human into thinking that
it was also human, then it passed the intelligence test. One way to think of
the Turing test is by communicating to the other agent through a keyboard.
Questions are asked of the peer through written text, and responses are
provided through the terminal. This test provides a way to determine if
intelligence was created. Considering the task at hand, not only must the
intelligent peer contain the necessary knowledge to have an intelligent
conversation, it must be able to parse and understand natural language and
generate natural language responses. The questions may involve reasoning
skills (such as problem solving), so mimicking humans would be a feat!

An important realization of Turing during this period was the need to
start small and grow intelligence, rather than expecting it to materialize.
Turing proposed what he called the Child Machine in which a lesser
intelligent agent would be created and then subjected to a course of
education. Rather than assume that we could build an adult intelligence,
we would build a child intelligence first and then inject it with knowledge.
This idea of starting small and at lower levels corresponds with later ideas
of so-called “scruffy” thinkers. The human brain is complex and not fully

4 Artificial Intelligence

understood, instead of striving to imitate this, why not start smaller at the
child (or even smaller organism) and work our way up? Turing called this the
blank sheets argument. A child is like a notebook that’s full of blank sheets,
but is a mechanism by which knowledge is stored.

Alan Turing’s life ended at a young age, but he’s considered the founder
of the field of AI (even though the moniker would not be applied for another
six years).

AI, Problem Solving, and Games
Some of the earliest applications of AI focused on games and general
problem solving. At this time, creating an intelligent machine was based on
the belief that the machine would be intelligent if it could do something that
people do (and perhaps find difficult).

NOTE In 1950, Claude Shannon proposed that the game of Chess was
fundamentaly a search problem. In fact, he was correct, but brute force
search isn’t truly practical for the search space that exists with Chess.
Search, heuristics, and a catalog of opening and ending moves provides
a faster and more efficient way to play Chess. Shannon’s seminal paper
on computer Chess produced what is called the Shannon number, or
10^120, which represents the lower bound of the game tree complexity
of Chess. [Shannon 1950]

The first AI program written for a computer was called “The Logic
Theorist.” It was developed in 1956 by Allen Newell, Herbert Simon, and J.
C. Shaw to find proofs for equations. [Newell 1956] What was most unique
about this program is that it found a better proof than had existed before for
a given equation. In 1957, Simon and Newell built on this work to develop
the General Problem Solver (GPS). The GPS used means-end analysis to
solve problems, but in general was restricted to toy problems.

Like complex math, early AI researchers believed that if a computer
could solve problems that they thought were complex, then they could build
intelligent machines. Similarly, games provided an interesting testbed for the
development of algorithms and techniques for intelligent decision making.

In the UK at Oxford University in the early 1950s, researchers developed
game-playing programs for two complex games. Christopher Strachey
developed a Checkers playing program on the Ferranti Mark I. By 1952, his
program could play a reasonable game of Checkers. Dietrich Prinz developed
a program, again for the Ferranti Mark I, that could play Chess (mate-in-two
variety). His program could search a thousand possible moves, but on this

The History of AI 5

early computer, it required significant time and played very slowly.
In 1952, Arthur Samuel raised the bar for AI programs. His Checkers

playing program, which ran on the IBM 701, included learning and
generalization. What Samuel did with his learning Checkers program was
unique in that he allowed two copies of his program to play one another,
and therefore learn from each other. The result was a program that could
defeat its creator. By 1962, Samuel’s Checkers program defeated the former
Connecticut Checkers champion.

NOTE Samuel’s program, and his approach of playing copies against one
another, is one of the first examples of computing survival of the fittest
and the field which came to be called evolutionary computation.

ARTIFICIAL INTELLIGENCE EMERGES AS A FIELD

By the mid 1950s, AI began to solidify as a field of study. At this point in AI’s
life, much of the focus was on what is called Strong AI Strong AI is focused
on building AI that mimics the mind. The result is a sapient entity with
human-like intelligence, self-awareness, and consciousness.

The Dartmouth AI Summer Research Project
In 1956, the Dartmouth AI Conference brought about those involved in
research in AI: John McCarthy (Dartmouth), Marvin Minsky (Harvard),
Nathaniel Rochester (IBM), and Claude Shannon (Bell Telephone
Laboratories) brought together researchers in computers, natural language
processing, and neuron nets to Dartmouth College for a month-long session
of AI discussions and research. The Summer research project on AI began:

We propose that a 2 month, 10 man study of artificial intelligence
be carried out during the summer of 1956 at Dartmouth College
in Hanover, New Hampshire. The study is to proceed on the basis
of the conjecture that every aspect of learning or any other feature
of intelligence can in principle be so precisely described that a
machine can be made to simulate it. An attempt will be made to
find how to make machines use language, form abstractions and
concepts, solve kinds of problems now reserved for humans, and
improve themselves. We think that a significant advance can be
made in one or more of these problems if a carefully selected
group of scientists work on it together for a summer.

6 Artificial Intelligence

Since then, many AI conferences have been held around the world,
and on a variety of disciplines studied under the AI moniker. In 2006,
Dartmouth held the “Dartmouth Artificial Intelligence Conference: The
Next Fifty Years” (informally known as AI@50). The conference was well
attended (even from a few that attended the first conference 50 years prior),
and analyzed AI’s progress and how its challenges relate to those of other
fields of study.

Building Tools for AI
In addition to coining the term artificial intelligence, and bringing together
major researchers in AI in his 1956 Dartmouth conference, John McCarthy
designed the first AI programming language. LISP was first described by
McCarthy in his paper titled “Recursive Functions of Symbolic Expressions
and their Computation by Machine, Part I.” The first LISP compiler was
also implemented in LISP, by Tim Hart and Mike Levin at MIT in 1962 for
the IBM 704.

This compiler introduced many advanced features, such as incremental
compilation. [LISP 2007] McCarthy’s LISP also pioneered many advanced
concepts now familiar in computer science, such as trees (data structures),
dynamic typing, object-oriented programming, and compiler self-hosting.

LISP was used in a number of early AI systems, demonstrating its
usefulness as an AI language. One such program, called SHRDLU, provides
a natural language interface to a table-top world of objects. The program can
understand queries about the table-top “world,” reason about the state of
things in the world, plan actions, and perform some rudimentary learning.
SHRDLU was designed and implemented by Terry Winograd at the MIT
AI Lab on a PDP-6 computer.

LISP, and the many dialects that evolved from it, are still in wide
use today. Chapter 13 provides an introduction to the languages of AI,
including LISP.

The Focus on Strong AI
Recall that the focus of early AI was in Strong AI. Solving math or logic
problems, or engaging in dialogue, was viewed as intelligent, while activities
such as walking freely in unstable environments (which we do every day)
were not.

In 1966, Joseph Weizenbaum of MIT developed a program that parodied
a psychologist and could hold an interesting dialogue with a patient. The
design of Eliza would be considered simple by today’s standards, but its

The History of AI 7

pattern-matching abilities, which provided reasonable responses to patient
statements was real to many people. This quality of the program was
troubling to Weizenbaum who later became a critic of AI because of its lack
of compassion.

Constrained Applications
While much of early AI was Strong-focused, there were numerous applications
that focused on solving practical problems. One such application was called
the “Dendral Project,” emerging in 1965 at Stanford University. Dendral was
developed to help organic chemists understand the organization of unknown
organic molecules. It used as its inputs mass spectrometry graphs and a
knowledge base of chemistry, making it the first known expert system.

Other constrained applications in this era include Macsyma, a
computer algebra system developed at MIT by Carl Engelman, William
Martin, and Joel Moses. Macsyma was written in MacLisp, a dialect
of LISP developed at MIT. This early mathematical expert system
demonstrated solving integration problems with symbolic reasoning.
The ideas demonstrated in Macsyma eventually made their way into
commercial math applications.

Bottom-Up Approaches Emerge
Early AI focused on a top-down approach to AI, attempting to simulate or
mimic the higher level concepts of the brain (planning, reasoning, language
understanding, etc.). But bottom-up approaches began to gain favor in the
1960s, primarily modeling lower-level concepts, such as neurons and learning
at a much lower level. In 1949, Donald Hebb introduced his rule that
describes how neurons can associate with one another if they are repeatedly
active at the same time. The contribution of one cell’s firing to enable another
will increase over time with persistent firing, leading to a strong relationship
between the two (a causal relationship).

But in 1957, the perceptron was created by Frank Rosenblatt at the
Cornell Aeronautical Laboratory. The perceptron is a simple linear classifier
that can classify data into two classes using an unsupervised learning
algorithm. The perceptron created considerable interest in neural network
architectures, but change was not far away.

NOTE Hebbian learning, perceptrons, and more advanced neural network
architectures and learning algorithms are covered in the neural network
Chapters 8 and 9.

8 Artificial Intelligence

AI’S WINTER

Prior to the 1970s, AI had generated considerable interest, and also
considerable hype from the research community. Many interesting systems
had been developed, but these fell quite short of the predictions made by
some in the community. But new techniques such as neural networks breathed
new life into this evolving field, providing additional ways for classification and
learning. But the excitement of neural networks came to an end in 1969 with
the publication of the mongraph titled “Perceptrons.” This monograph was
written by Marvin Minsky and Seymour Papert, strong advocates of Strong (or
top-down) AI. The authors rightly demonstrated that single-layer perceptrons
were limited, particularly when confronted with problems that are not linearly
separable (such as the XOR problem). The result was a steep decline of
funding into neural network research, and in general, research in AI as a field.
Subsequent research would find that the multi-layer networks solved the linear
separation problem, but too late for the damage done to AI.

Hardware built for AI, such as the LISP machines, also suffered a loss
of interest. While the machines gave way to more general systems (not
necessarily programmed in LISP), the functional languages like LISP
continued to attract attention. Popular editors such as EMACS (developed
during this period) still support a large user community with a scripting shell
based on LISP.

Results-Oriented Applications
While there was a reduction in focus and spending in AI research in the
1970s, AI development continued but in a more focused arena. Applications
that showed promise, such as expert systems, rose as one of the key
developments in this era.

One of the first expert systems to demonstrate the power of rules-based
architectures was called MYCIN, and was developed by Ted Shortliffe
following his dissertation on the subject while at Stanford (1974). MYCIN
operated in the field of medical diagnosis, and demonstrated knowledge
representation and inference. Later in this decade, another dissertation at
Stanford by Bill VanMelles built on the MYCIN architecture and serves as a
model for the expert system shell (still in use today). In Chapter 5 we’ll provide
an introduction to the representation of knowledge and inference with logic.

Other results-oriented applications included those focused on natural
language understanding. The goal of systems in this era was in the
development of intelligent question answering systems. To understand a
question stated in natural language, the question must first be parsed into

The History of AI 9

its fundamental parts. Bill Woods introduced the idea of the Augmented
Transition Network (or ATN) that represents formal languages as augmented
graphs. From Eliza in the 1960s to ATNs in the 1970s, Natural Language
Processing (NLP) and Natural Language Understanding (NLU) continues
today in the form of chatterbots.

Additional AI Tools Emerge
John McCarthy introduced the idea of AI-focused tools in the 1950s with the
development of the LISP language. Expert systems and their shells continued
the trend with tools for AI, but another interesting development that in a
way combined the two ideas resulted from the Prolog language. Prolog was
a language built for AI, and was also a shell (for which expert systems could
be developed). Prolog was created in 1972 by Alain Colmeraur and Phillipe
Roussel based on the idea of Horn clauses. Prolog is a declarative high-level
language based on formal logic. Programs written in Prolog consist of facts and
rules that reason over those facts. You can find more information on Prolog in
Chapter 5 Knowledge Representation and Chapter 13, The Languages of AI.

Neat vs Scruffy Approaches
A split in AI, its focus, and basic approaches was also seen during this
period. Traditional, or top-down AI (also called Good-Old-Fashioned-AI,
or GOFAI for short) continued during this period but new approaches
began to emerge that looked at AI from the bottom-up. These approaches
were also labeled Neat and Scruffy approaches segregating them into their
representative camps. Those in the neat camp favored formal approaches to
AI that were pure and provable. But those in the scruffy camp used methods
less provable but still yielding useful and significant results. A number of
scruffy approaches to AI that became popular during this period included
genetic algorithms (modeling natural selection for optimization) and neural
networks (modeling brain behavior from the neuron up).

Genetic algorithms became popularized in the 1970s due to the work
of John Holland and his students at the University of Michigan. Holland’s
book on the topic continues to be a useful resource. Neural networks, while
stagnant for a time after the publication of “Perceptrons,” were revived
with Paul John Werbos’ creation of the backpropagation algorithm. This
algorithm remains the most widely used supervised learning algorithm for
training feedforward neural networks. You can learn more about genetic
algorithms and evolutionary computation in Chapter 3 and neural networks
in Chapters 8, and 9.

10 Artificial Intelligence

AI RE-EMERGES

Just as spring always follows the winter, AI’s winter would eventually end
and bring new life into the field (starting in the mid to late 1980s). The
re-emergence of AI had significant differences from the early days. Firstly,
the wild predictions of creating intelligent machines were for the most part
over. Instead, researchers and AI practitioners focused on specific goals
primarily in the weak aspects of AI (as opposed to Strong AI). Weak AI
focused on solving specific problems, compared to Strong AI, whose goal
was to emulate the full range of human cognitive capabilities. Secondly,
the field of AI broadened to include many new types of approaches,
for example, the biologically inspired approaches such as Ant Colony
Optimization (ACO).

The Silent Return
An interesting aspect of AI’s return was that it occurred silently. Instead of
the typical claims of Strong AI, weak algorithms found use in a variety of
settings. Fuzzy logic and fuzzy control systems were used in a number of
settings, including camera auto-focus, antilock braking systems as well as
playing a part in medical diagnosis. Collaborative filtering algorithms found
their way into product recommendation at a popular online bookseller, and
popular Internet search engines use AI algorithms to cluster search results
to help make finding what you need easier.

The silent return follows what Rodney Brooks calls the “AI effect.” AI
algorithms and methods transition from being “AI” to standard algorithms
and methods once they become practically useful. The methods described
above are one example, another is speech recognition. The algorithms
behind recognizing the sounds of speech and translating them into symbols
were once described within the confines of AI. Now these algorithms are
commonplace, and the AI moniker has long since passed. Therefore, the AI
effect has a way of diminishing AI research, as the heritage of AI research
becomes lost in the practical application of the methods.

Messy and Scruffy Approaches Take Hold
With AI’s resurgence came different views and approaches to AI and problem
solving with AI algorithms. In particular, the scruffy approaches became
more widespread and the algorithms became more applicable to real-world
problems. Neural networks continued to be researched and applied, and new
algorithms and architectures resulted. Neural networks and genetic algorithms

The History of AI 11

combined to provide new ways to create neural network architectures that not
only solved problems, but did so in the most efficient ways. This is because the
survival of the fittest features of the genetic algorithm drove neural network
architectures to minimize for the smallest network to solve the given problem
at hand. The use of genetic algorithms also grew in a number of other areas
including optimization (symbolic and numerical), scheduling, modeling
and many others. Genetic algorithms and neural networks (supervised and
unsupervised) are covered in Chapters 7, 8, and 9.

Other bottom-up and biologically inspired approaches followed in the
1990s and beyond. In early 1992, for example, Marco Dorigo introduced
the idea of using stigmergy (indirect communication in an environment, in
this case, pheromones). Dorigo’s use of stigmergy was applied to a variety
of problems. Ant Colony Optimization (or ACO) is demonstrated with the
traveling salesman problem in Chapter 12.

Also emerging out of the messy approaches to AI was a new field
called Artificial Life. Artificial Life research studies the processes of life
and systems related to life through a variety of simulations and models.
In addition to modeling singular life, ALife also simulates populations of
lifeforms to help understand not only evolution, but also the evolution of
characteristics such as language. Swarm intelligence is another aspect of
this that grew from ALife research. ALife is interesting in the context of AI
because it can use a number of AI methods such as neural networks (as the
neuro-controller of the individuals in the population) as well as the genetic
algorithm to provide the basis for evolution. This book provides a number
of demonstrations of ALife both in the context of genetic algorithms and
neural networks.

NOTE One of the earliest simulation environments that demonstrated artificial
life was the “game of life” created by John Conway. This was an example
of a cellular automaton, and is explored later.

Another bottom-up approach that evolved during AI’s re-emergence used
the human immune system as inspiration. Artificial Immune Systems (or AIS)
use principles of the immune system and the characteristics that it exhibits
for problem solving in the domains of optimization, pattern recognition, and
data mining. A very novel application of AIS is in computational security.
The human body reacts to the presence of infections through the release of
antibodies which destroy those infectious substances. Networks of computers
can perform the same function, for example, in the domain of network
security. If a software virus is found on a computer within a given network,

12 Artificial Intelligence

other “antibody” programs can be dispatched to contain and destroy those
viruses. Biology continues to be a major source of inspiration for solutions
to many types of problems.

Agent Systems
Agents, which are also referred to as intelligent agents or software agents, are
a very important element of modern-day AI. In many ways, agents are not an
independent aspect of but instead a vehicle for AI applications. Agents are
applications that exhibit characteristics of intelligent behavior (such as learning
or classification), but are not in themselves AI techniques. There also exists
other agent-based methods such as agent-oriented computing and multi-agent
systems. These apply the agent metaphor for solving a variety of problems.

One of the most popular forms of intelligent agents is “agency”
applications. The word agency is used because the agent represents a user
for some task that it performs for the user. An example includes a scheduling
application. Agents representing users intelligently negotiate with one
another to schedule activities given a set of constraints for each user.

The concept of agents has even been applied to the operation of a
deepspace spacecraft. In 1999 NASA integrated what was called the “Remote
Agent” into the Deep Space 1 spacecraft. Deep Space 1’s goal was to test a
number of high-risk technologies, one of which was an agent that was used to
provide autonomy to the spacecraft for limited durations of time. The Remote
Agent employed planning techniques to autonomously schedule experiments
based on goals defined by ground operators. Under constrained conditions, the
Remote Agent succeeded in proving that an intelligent agent could be used to
autonomously manage a complicated probe and satisfy predefined objectives.

Today you’ll find agents in a number of areas, including distributed systems.
Mobile agents are independent agents that include autonomy and the ability
to travel amongst nodes of a network in order to perform their processing.
Instead of the agent communicating with another agent remotely, the mobile
agent can travel to the other agent’s location and communicate with it directly.
In disconnected network situations, this can be very beneficial. You can learn
more about intelligent agents (including mobile agents) in Chapter 11.

AI INTER-DISCIPLINARY R&D

In many cases, AI research tends to be fringe research, particularly when
it’s focused on Strong AI. But what’s notable about research in AI is that
the algorithms tend to find uses in many other disciplines beyond that of

The History of AI 13

AI. AI research is by no means pure research, but its applications grow well
beyond the original intent of the research. Neural networks, data mining,
fuzzy logic, and Artificial Life (for example) have found uses in many other
fields. Artificial Life is an interesting example because the algorithms and
techniques that have resulted from research and development have found
their way into the entertainment industry (from the use of swarming in
animated motion pictures to the use of AI in video games).

Rodney Brook’s has called this the AI effect, suggesting that another
definition for AI is “almost implemented.” This is because once an AI
algorithm finds a more common use, it’s no longer viewed as an AI algorithm
but instead just an algorithm that’s useful in a given problem domain.

SYSTEMS APPROACH

In this book, the majority of the algorithms and techniques are studied
from the perspective of the systems approach. This simply means that the
algorithm is explored in the context of inputs and outputs. No algorithm is
useful in isolation, but instead from the perspective of how it interacts with
its environment (data sampling, filtering, and reduction) and also how it
manipulates or alters its environment. Therefore, the algorithm depends
on an understanding of the environment and also a way to manipulate the
environment. This systems approach illustrates the practical side of artificial
intelligence algorithms and techniques and identifies how to ground the
method in the real world (see Figure 1.1).

As an example, one of the most interesting uses of AI today can be found in
game systems. Strategy games, for example, commonly occupy a map with two
or more opponents. Each opponent competes for resources in the environment
in order to gain the upper hand over the other. While collecting resources,
each opponent can schedule the development of assets to be used to defeat the
other. When multiple assets exist for an opponent (such as a military unit), they
can be applied in unison, or separately to lay siege on another opponent.

Where strategy games depend on a higher-level view of the environment
(such as would be viewed from a general), first-person shooter games
(FPS) take a lower-level view (from that of a soldier). An agent in an FPS
depends most often on its view of the battlefield. The FPS agent’s view of the
environment is at a much lower level, understanding cover, objectives, and
local enemy positions. The environment is manipulated by the FPS agent
through its own movement, attacking or defending from enemies (through
finding cover), and possibly communicating with other agents.

14 Artificial Intelligence

An obvious example of the systems approach is in the field of robotics.
Mobile robots, for example, utilize an array of sensors and effects that make
up the physical robot. At the core of the robot is one or more algorithms
that yield rational behavior.

FIGURE 1.1 The systems approach to Artificial Intelligence.

The History of AI 15

In each case, the AI algorithm that’s chosen is the core of an agent’s
sensors (inputs) and effectors (outputs). For this reason, the algorithm
can’t truly be useful or understood unless it’s considered from its place in
the environment.

OVERVIEW OF THIS BOOK

This book covers a wide range of AI techniques, each segmented
appropriately into their particular genre. The following chapter summaries
present the ideas and methods that are explored.

Uninformed Search
In the early days of AI, AI was a search, whether search involved looking for a
plan, or through the various moves that are possible (and subsequent moves)
in a game of Checkers. In this chapter on uninformed (or blind) search,
the concept of search in various spaces is introduced, the representation
of spaces for search, and then the various popular algorithms used in blind
search are explored. This includes depth-first, breadth-first, uniform-cost-
search, and others.

Informed Search
Informed search is an evolution of search that applies heuristics to the search
algorithm, given the problem space, to make the algorithm more efficient.
This chapter covers best-first, a star, hill climbing, simulated annealing, tabu
search, and constraint satisfaction.

AI and Games
One of the earliest uses of blind and informed search was in the application to
games. Games such as Checkers and Chess were believed to be an intelligent
activity, and if a computer could be endowed with the ability to play a game
and win against a human opponent, it could be considered intelligent.
Samuel’s Checkers program demonstrated a program that could defeat its
creator, and while a feat, this experiment did not produce an intelligent
computer except within the domain of Checkers. This chapter explores
two-player games and the core of many game-playing systems, the minimax
algorithm. A variety of games are then discussed, from the classical games
such as Chess, Checkers, and Go to video game AI, exploring movement,
behavior, team, and real-time strategy AI.

16 Artificial Intelligence

Knowledge Representation
Knowledge representation has a long history in AI, particularly in
Strong AI research. The goal behind knowledge representation is to find
abstractions for knowledge that result in a base of knowledge that’s useful
to a given application. For example, knowledge must be represented in
a way that makes it easy for a computer to reason with it and understand
the relationships between elements of the knowledge base. This chapter
will provide an introduction to a number of fundamental knowledge
representation techniques as well as introduce the ideas behind predicate
and first-order logic to reason with knowledge.

Machine Learning
Machine learning is best described as learning from example. Machine
learning incorporates a variety of methods such as supervised and
unsupervised learning. In supervised learning, a teacher is available to
define correct or incorrect responses. Unsupervised learning differs in that
no teacher is present. (Instead, unsupervised learning learns from the data
itself by identifying its) relationships. This chapter provides an introduction
to machine learning, and then explores a number of machine learning
algorithms such as decision trees and nearest neighbor learning.

Evolutionary Computation
Evolutionary computation introduced the idea of scruffy approaches to AI.
Instead of focusing on the high level, trying to imitate the behavior of the
human brain, scruffy approaches start at a lower level trying to recreate
the more fundamental concepts of life and intelligence using biological
metaphors. This chapter covers a number of the evolutionary methods
including genetic algorithms, genetic programming, evolutionary strategies,
differential evolution, and particle swarm optimization.

Neural Networks I
While neural networks are one of the earliest (and more controversial)
techniques, they remain one of the most useful. The attack on neural
networks severely impacted AI funding and research, but neural
networks re-emerged from AI’s winter as a standard for classification and
learning. This chapter introduces the basics of neural networks, and then
explores the supervised neural network algorithms (least-mean-squares,
backpropagation, probabilistic neural networks, and others). The chapter

The History of AI 17

ends with a discussion of neural network characteristics and ways to tune
them given the problem domain.

Neural Networks II
Where the previous chapter explored supervised neural network
algorithms, this chapter provides an introduction to the unsupervised
variants. Unsupervised algorithms use the data itself to learn without
the need for a “teacher.” This chapter explores unsupervised learning
algorithms, including Hebbian learning, Simple Competitive Learning,
k-Means Clustering, Adaptive Resonance Theory, and the Hopfield auto-
associative model.

Intelligent Agents
Intelligent (or Software) Agents are one of newest techniques in the AI
arsenal. In one major definition, agents are applications that include the
concept of “agency.” This means that those applications represent a user and
satisfy the goals of the task autonomously without further direction from the
user. This chapter on intelligent agents will introduce the major concepts
behind intelligent agents, their architectures and applications.

Biologically Inspired and Hybrid Models
AI is filled with examples of the use of biological metaphors, from early
work in neural networks to modern-day work in artificial immune systems.
Nature has proven to be a very worthy teacher for complex problem
solving. This chapter presents a number of techniques that are both
biologically inspired as well as hybrid (or mixed) models of AI. Methods
such as artificial immune systems, simulated evolution, Lindenmayer
systems, fuzzy logic, genetically evolved neural networks, and ant colony
optimization are explored, to name a few.

Languages of AI
While most people think of LISP when considering the languages of AI,
there have been a large number of languages developed specifically for AI
application development. In this chapter, a taxonomy of computer languages
is presented followed by short examples (and advantages) of each. Then a
number of AI-specific languages are investigated, exploring their history and
use through examples. Languages explored include LISP, Scheme, POP-11,
and Prolog.

18 Artificial Intelligence

CHAPTER SUMMARY

The history of AI is a modern-day drama. It’s filled with interesting
characters, cooperation, competition, and even deception. But outside of
the drama, there has been exceptional research and in recent history an
application of AI’s ideas in a number of different settings. AI has finally left
the perception of fringe research and entered the realm of accepted research
and practical development.

REFERENCES

[LISP 2007] Wikipedia “Lisp (programming language)”, 2007.
Available online at http://en.wikipedia.org/wiki/Lisp_%28programming_

language%29
[Newell 1956] Newell, A., Shaw, J.C., Simon, H.A “Emperical Explorations of

the Logic Theory Machine: A Case Study in Heuristics,” in Proceedings
of the Western Joint Computer Conference, 1956.

[Shannon 1950] Shannon, Claude, “Programming a Computer for Playing
Chess,” Philisophical Magazine 41, 1950.

RESOURCES

Rayman, Marc D., et al “Results from the Deep Space 1 Technology
Validation Mission,” 50th International Astronomical Congress,
Amsterdam, The Netherlands, 1999.

de castr, Leandro N., Timmis, Jonathan Artificial Immune Systems: A New
Computational Intelligence Approach Springer, 2002.

Holland, John Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, 1975.

McCarthy, John “Recursive Functions of Symbolic Expressions and their
Computation by Machine (Part I),” Communications of the ACM, April
1960.

Shortliffe, E.H. “Rule-based Exper Systems: The Mycin Experiments of the
Stanford Heuristic Programming Project,” Addison-Wesley, 1984.

Winograd, Terry “Procedures as a Representation for Data in a Computer
Program for Understanding Natural Language,” MIT AI Technical
Report 235, February 1971.

Woods, William A. “Transition Network Grammars for Natural Language
Analysis,” Communications of the ACM 13:10, 1970.

The History of AI 19

EXERCISES

1. In your own words, define intelligence and why intelligence tests can
hide the real measure of intelligence.

2. What was the Turing test, and what was it intended to accomplish?
3. Why were games the early test-bed for AI methods? How do you think

AI and games are viewed today?
4. How did Arthur Samuel set the bar for learning programs in the 1950s?
5. What was the first language developed specifically for AI? What language

followed in the 1970s, developed also for AI?
6. Define Strong AI.
7. What event is most commonly attributed to leading to AI’s winter?
8. What is meant by Scruffy and Neat approaches to AI?
9. After AI’s winter, what was most unique about AI’s re-emergence?
10. This book explores AI from the systems approach. Define the systems

approach and how this perspective is used to explore AI.

C h a p t e r

UNINFORMED
SEARCH2

Uninformed search, also called blind search and naïve search, is a
class of general purpose search algorithms that operate in a brute-
force way. These algorithms can be applied to a variety of search

problems, but since they don’t take into account the target problem, are
inefficient. In contrast, informed search methods (discussed in Chapter 3)
use a heuristic to guide the search for the problem at hand and are therefore
much more efficient. In this chapter, general state space search is explored
and then a variety of uninformed search algorithms will be discussed and
compared using a set of common metrics.

SEARCH AND AI

Search is an important aspect of AI because in many ways, problem solving
in AI is fundamentally a search. Search can be defined as a problem-solving
technique that enumerates a problem space from an initial position in search
of a goal position (or solution). The manner in which the problem space is
searched is defined by the search algorithm or strategy. As search strategies
offer different ways to enumerate the search space, how well a strategy works
is based on the problem at hand. Ideally, the search algorithm selected is one
whose characteristics match that of the problem at hand.

22 Artificial Intelligence

CLASSES OF SEARCH

Four classes of search will be explored here. In this chapter, we’ll review
uninformed search, and in Chapter 3, informed search will be discussed.
Chapter 3 will also review constraint satisfaction, which tries to find a set of
values for a set of variables. Finally, in Chapter 4, we’ll discuss adversarial
search, which is used in games to find effective strategies to play and win
two-player games.

GENERAL STATE SPACE SEARCH

Let’s begin our discussion of search by first understanding what is meant
by a search space. When solving a problem, it’s convenient to think about
the solution space in terms of a number of actions that we can take, and the
new state of the environment as we perform those actions. As we take one
of multiple possible actions (each have their own cost), our environment
changes and opens up alternatives for new actions. As is the case with
many kinds of problem solving, some paths lead to dead-ends where others
lead to solutions. And there may also be multiple solutions, some better
than others. The problem of search is to find a sequence of operators that
transition from the start to goal state. That sequence of operators is the
solution.

How we avoid dead-ends and then select the best solution available
is a product of our particular search strategy. Let’s now look at state space
representations for three problem domains.

Search in a Physical Space
Let’s consider a simple search problem in physical space (Figure 2.1). Our
initial position is ‘A’ from which there are three possible actions that lead to
position ‘B,’ ‘C,’ or ‘D.’ Places, or states, are marked by letters. At each place,
there’s an opportunity for a decision, or action. The action (also called an
operator) is simply a legal move between one place and another. Implied in
this exercise is a goal state, or a physical location that we’re seeking.

This search space (shown in Figure 2.1) can be reduced to a tree
structure as illustrated in Figure 2.2. The search space has been minimized
here to the necessary places on the physical map (states) and the transitions
that are possible between the states (application of operators). Each node in
the tree is a physical location and the arcs between nodes are the legal moves.
The depth of the tree is the distance from the initial position.

Uninformed Search 23

Search in a Puzzle Space
The “Towers of Hanoi” puzzle is an interesting example of a state space for
solving a puzzle problem. The object of this puzzle is to move a number of
disks from one peg to another (one at a time), with a number of constraints
that must be met. Each disk is of a unique size and it’s not legal for a larger
disk to sit on top of a smaller disk. The initial state of the puzzle is such that
all disks begin on one peg in increasing size order (see Figure 2.2). Our goal
(the solution) is to move all disks to the last peg.

As in many state spaces, there are potential transitions that are not legal.
For example, we can only move a peg that has no object above it. Further,
we can’t move a large disk onto a smaller disk (though we can move any disk

FIGURE 2.1: A search problem represented as a physical space.

FIGURE 2.2: Representing the physical space problem in Figure 2.1 as a tree.

24 Artificial Intelligence

to an empty peg). The space of possible operators is therefore constrained
only to legal moves. The state space can also be constrained to moves that
have not yet been performed for a given subtree. For example, if we move a
small disk from Peg A to Peg C, moving the same disk back to Peg A could
be defined as an invalid transition. Not doing so would result in loops and
an infinitely deep tree.

Consider our initial position from Figure 2.3. The only disk that may
move is the small disk at the top of Peg A. For this disk, only two legal moves
are possible, from Peg A to Peg B or C. From this state, there are three
potential moves:

1. Move the small disk from Peg C to Peg B.
2. Move the small disk from Peg C to Peg A.
3. Move the medium disk from Peg A to Peg B.

The first move (small disk from Peg C to Peg B), while valid is not a potential
move, as we just moved this disk to Peg C (an empty peg). Moving it a second
time serves no purpose (as this move could have been done during the prior
transition), so there’s no value in doing this now (a heuristic). The second
move is also not useful (another heuristic), because it’s the reverse of the

FIGURE 2.3: A search space for the “Tower of Hanoi” puzzle.

Uninformed Search 25

previous move. This leaves one valid move, the medium disk from Peg A to
Peg B. The possible moves from this state become more complicated, because
valid moves are possible that move us farther away from the solution.

TIP A heuristic is a simple or efficient rule for solving a given problem or
making a decision.

When our sequence of moves brings us from the initial position to the goal,
we have a solution. The goal state in itself is not interesting, but instead
what’s interesting is the sequence of moves that brought us to the goal state.
The collection of moves (or solution), done in the proper order, is in essence
a plan for reaching the goal. The plan for this configuration of the puzzle
can be identified by starting from the goal position and backtracking to the
initial position.

Search in an Adversarial Game Space
An interesting use of search spaces is in games. Also known as game trees,
these structures enumerate the possible moves by each player allowing
the search algorithm to find an effective strategy for playing and winning
the game.

NOTE The topic of adversarial search in game trees is explored in Chapter 4.

Consider a game tree for the game of Chess. Each possible move is provided
for each possible configuration (placement of pieces) of the Chess board.
But since there are 10120 possible configurations of a Chess board, a game
tree to document the search space would not be feasible. Heuristic search,
which must be applied here, will be discussed in Chapter 3.

Let’s now look at a much simpler game that can be more easily
represented in a game tree. The game of Nim is a two-player game where
each player takes turns removing objects from one or more piles. The player
required to take the last object loses the game.

Nim has been studied mathematically and solved in many different
variations. For this reason, the player who will win can be calculated based
upon the number of objects, piles, and who plays first in an optimally
played game.

NOTE The game of Nim is said to have originated in China, but can be traced
to Germany as the word nimm can be translated as take. A complete
mathematical theory of Nim was created by Charles Bouton in 1901.
[Bouton 1901]

26 Artificial Intelligence

Let’s walk through an example to see how Nim is played. We’ll begin with
a single small pile to limit the number of moves that are required. Figure
2.4 illustrates a short game with a pile of six objects. Each player may take
one, two, or three objects from the pile. In this example, Player-1 starts
the game, but ends the game with a loss (is required to take the last object
which results in a loss in the misère form of the game). Had Player-1 taken
3 in its second move, Player-2 would have been left with one resulting in a
win for Player-1.

A game tree makes this information visible, as illustrated in Figure 2.5.
Note in the tree that Player-1 must remove one from the pile to continue
the game. If Player-1 removes two or three from the pile, Player-2 can win
if playing optimally. The shaded nodes in the tree illustrate losing positions
for the player that must choose next (and in all cases, the only choice left is
to take the only remaining object).

Note that the depth of the tree determines the length of the game
(number of moves). It’s implied in the tree that the shaded node is the final
move to be made, and the player that makes this move loses the game. Also
note the size of the tree. In this example, using six objects, a total of 28 nodes
is required. If we increase our tree to illustrate a pile of seven objects, the
tree increases to 42 nodes. With eight objects, three balloons to 100 nodes.
Fortunately, the tree can be optimized by removing duplicate subtrees,
resulting in a much smaller tree.

FIGURE 2.4: A sample game of Nim with a pile of six objects.

Uninformed Search 27

TREES, GRAPHS, AND REPRESENTATION

A short tour of trees and graphs and their terminology is in order before
exploring the various uninformed search methods.

A graph is a finite set of vertices (or nodes) that are connected by edges
(or arcs). A loop (or cycle) may exist in a graph, where an arc (or edge) may
lead back to the original node. Graphs may be undirected where arcs do
not imply a direction, or they may be directed (called a digraph) where a
direction is implicit in the arc. An arc can also carry a weight, where a cost
can be associated with a path.

Each of these graphs also demonstrates the property of connectivity. Both
graphs are connected because every pair of nodes is connected by a path. If
every node is connected to every node by an arc, the graph is complete. One
special connected graph is called a tree, but it must contain no cycles.

Building a representation of a graph is simple and one of the most
common representations is the adjacency matrix. This structure is simply

FIGURE 2.5: A complete Nim game tree for six objects in one pile.

FIGURE 2.6: An example of an undirected
graph containing six nodes and eight arcs.

FIGURE 2.7: An example of a directed
graph containing six edges and nine arcs.

28 Artificial Intelligence

an N by N matrix (where N is the number of nodes in the graph). Each
element of the matrix defines a connectivity (or adjacency) between the node
referenced as the row and the node referenced as the column.

Recall the undirected graph in Figure 2.6. This graph contains six nodes and
eight arcs. The adjacency matrix for this undirected graph is shown in Figure
2.9. The two dimensions of the graph identify the source (row) and destination
nodes (column) of the graph. From Figure 2.6, we know that node A is adjacent
to nodes B, C, and D. This is noted in the adjacency matrix with a value of one
in each of the B, C, and D columns for row A. Since this is an undirected graph,
we note symmetry in the adjacency matrix. Node A connects to node B (as
identified in row A), but also node B connects to node A (as shown in row B).

For a directed graph (as shown in Figure 2.7), the associated adjacency
matrix is illustrated in Figure 2.10. Since the graph is directed, no symmetry
can be found. Instead, the direction of the arcs is noted in the matrix.
For example, node B connects to node A, but node A has no associated
connection to node B.

An interesting property of the adjacency matrix can be found by reviewing
the rows and columns in isolation. For example, if we review a single row, we
can identify the nodes to which it connects. For example, row C shows only a
connection to node F (as indicated by the one in that cell). But if we review
the column for node C, we find the nodes that have arcs connecting to node
C. In this case, we see nodes A, D, and E (as illustrated graphically in Figure
2.7). We can also find whether a graph is complete. If the entire matrix is
non-zero, then the graph is complete. It’s also simple to find a disconnected
graph (a node whose row and column contain zero values). Loops in a graph
can also be algorithmically discovered by enumerating the matrix (recursively

FIGURE 2.8: A connected graph with no cycles (otherwise known as a tree).

Uninformed Search 29

following all paths looking for the initial node).
In the simple case, the values of the adjacency matrix simply define the

connectivity of nodes in the graph. In weighted graphs, where arcs may not
all be equal, the value in a cell can identify the weight (cost, or distance).
We’ll explore examples of this technique in the review of neural network
construction (Chapter 11).

Adjacency lists are also a popular structure where each node contains
a list of the nodes to which it connects. If the graph is sparse, this
representation can require less space.

UNINFORMED SEARCH
The uninformed search methods offer a variety of techniques for graph
search, each with its own advantages and disadvantages. These methods are
explored here with discussion of their characteristics and complexities.

Big-O notation will be used to compare the algorithms. This notation
defines the asymptotic upper bound of the algorithm given the depth (d) of
the tree and the branching factor, or the average number of branches (b)
from each node. There are a number of common complexities that exist for
search algorithms. These are shown in Table 2.1.

Table 2.1: Common orders of search functions.

O-Notation Order
O(1) Constant (regardless of the number of nodes)

FIGURE 2.9: Adjacency matrix for the
undirected graph shown in Figure 2.6.

FIGURE 2.10: Adjacency matrix for the
directed graph (digraph) shown in Figure 2.7.

30 Artificial Intelligence

O(n) Linear (consistent with the number of nodes)
O(log n) Logarithmic
O(n2) Quadratic
O(cn) Geometric
O(n!) Combinatorial

Big-O notation provides a worst-case measure of the complexity of a search
algorithm and is a common comparison tool for algorithms. We’ll compare
the search algorithms using space complexity (measure of the memory
required during the search) and time complexity (worst-case time required
to find a solution). We’ll also review the algorithm for completeness (can the
algorithm find a path to a goal node if it’s present in the graph) and optimality
(finds the lowest cost solution available).

Helper APIs
A number of helper APIs will be used in the source code used to demonstrate
the search functions. These are shown below in Listing 2.1.

LISTING 2.1: Helper APIs for the search functions.

/* Graph API */
graph_t *createGraph (int nodes);
void destroyGraph (graph_t *g_p);
void addEdge (graph_t *g_p, int from, int to, int value);
int getEdge (graph_t *g_p, int from, int to);
/* Stack API */
stack_t *createStack (int depth);
void destroyStack (stack_t *s_p);
void pushStack (stack_t *s_p, int value);
int popStack (stack_t *s_p);
int isEmptyStack (stack_t *s_p);
/* Queue API */
queue_t *createQueue (int depth);
void destroyQueue (queue_t *q_p);
void enQueue (queue_t *q_p, int value);
int deQueue (queue_t *q_p);
int isEmptyQueue (queue_t *q_p);
/* Priority Queue API */
pqueue_t *createPQueue (int depth);

Uninformed Search 31

void destroyPQueue (pqueue_t *q_p);
void enPQueue (pqueue_t *q_p, int value, int cost);
void dePQueue (pqueue_t *q_p, int *value, int *cost);
int isEmptyPQueue (pqueue_t *q_p);
int isFullPQueue (pqueue_t *q_p);

O

N THE CD

 The helper functions can be found on the CD-ROM at ./software/
common.

General Search Paradigms
Before we discuss some of the uninformed search methods, let’s look at two
simple general uninformed search methods.

The first is called ‘Generate and Test.’ In this method, we generate a
potential solution and then check it against the solution. If we’ve found
the solution, we’re done, otherwise, we repeat by trying another potential
solution. This is called ‘Generate and Test’ because we generate a potential
solution, and then test it. Without a proper solution, we try again. Note here
that we don’t keep track of what we’ve tried before; we just plow ahead with
potential solutions, which is a true blind search.

Another option is called ‘Random Search’ which randomly selects a new
state from the current state (by selecting a given valid operator and applying
it). If we reach the goal state, then we’re done. Otherwise, we randomly
select another operator (leading to a new state) and continue.

Random search and the ‘Generate and Test’ method are truly blind
methods of search. They can get lost, get caught in loops, and potentially
never find a solution even though one exists within the search space.

Let’s now look at some search methods that while blind, can find a
solution (if one exists) even if it takes a long period of time.

Depth-First Search (DFS)
The Depth-First Search (DFS) algorithm is a technique for searching a
graph that begins at the root node, and exhaustively searches each branch
to its greatest depth before backtracking to previously unexplored branches
(Figure 2.11 illustrates this search order). Nodes found but yet to be
reviewed are stored in a LIFO queue (also known as a stack).

NOTE A stack is a LIFO (Last-In-First-Out) container of objects. Similar to
a stack of paper, the last item placed on the top is the first item to be
removed.

32 Artificial Intelligence

The space complexity for DFS is O(bd) where the time complexity is
geometric (O(bd)). This can be very problematic on deep branching graphs,
as the algorithm will continue to the maximum depth of the graph. If loops
are present in the graph, then DFS will follow these cycles indefinitely.
For this reason, the DFS algorithm is not complete, as cycles can prohibit
the algorithm from finding the goal. If cycles are not present in the graph,
then the algorithm is complete (will always find the goal node). The DFS
algorithm is also not optimal, but can be made optimal using path checking
(to ensure the shortest path to the goal is found).

O

N THE CD
 The DFS implementation can be found on the CD-ROM at ./software/

ch2/dfs.c.

Graph algorithms can be implemented either recursively or using a stack to
maintain the list of nodes that must be enumerated. In Listing 2.2, the DFS
algorithm is implemented using a LIFO stack.

Listing 2.2: The depth-first search algorithm.

#include <stdio.h>
#include “graph.h”
#include “stack.h”
#define A 0
#define B 1

FIGURE 2.11: Search order of the DFS algorithm over a small tree.

Uninformed Search 33

#define C 2
#define D 3
#define E 4
#define F 5
#define G 6
#define H 7
int init_graph(graph_t *g_p)
{
 addEdge(g_p, A, B, 1);
 addEdge(g_p, A, C, 1);
 addEdge(g_p, B, D, 1);
 addEdge(g_p, C, E, 1);
 addEdge(g_p, C, F, 1);
 addEdge(g_p, D, G, 1);
 addEdge(g_p, D, H, 1);
 return 0;
}
void dfs(graph_t *g_p, int root, int goal)
{
 int node;
 int to;
 stack_t *s_p;
 s_p = createStack(10);
 pushStack(s_p, root);
 while (!isEmptyStack(s_p)) {
 node = popStack(s_p);
 printf(“%d\n”, node);
 if (node == goal) break;
 for (to = g_p->nodes-1 ; to > 0 ; to--) {
 if (getEdge(g_p, node, to)) {
 pushStack(s_p, to);
 }
 }
 }
 destroyStack(s_p);
 return;
}
int main()
{
 graph_t *g_p;

34 Artificial Intelligence

 g_p = createGraph(8);
 init_graph(g_p);
 dfs(g_p, 0, 5);
 destroyGraph(g_p);
 return 0;
}

TIP A search algorithm is characterized as exhaustive when it can search
every node in the graph in search of the goal. If the goal is not present in
the graph, the algorithm will terminate, but will search each and every
node in a systematic way.

Depth-Limited Search (DLS)
Depth-Limited Search (DLS) is a modification of depth-first search that
minimizes the depth that the search algorithm may go. In addition to starting
with a root and goal node, a depth is provided that the algorithm will not
descend below (see Listing 2.3). Any nodes below that depth are omitted from
the search. This modification keeps the algorithm from indefinitely cycling
by halting the search after the pre-imposed depth. Figure 2.12 illustrates this
search with a depth of two (no nodes deeper than level two are searched).

O

N THE CD

 The DLS implementation can be found on the CD-ROM at ./software/
ch2/dls.c.

Listing 2.3: The depth-limited search algorithm.

#include <stdio.h>
#include “graph.h”
#include “stack.h”
#define A 0
#define B 1
#define C 2
#define D 3
#define E 4
#define F 5
#define G 6
#define H 7
int init_graph(graph_t *g_p)
{

Uninformed Search 35

 addEdge(g_p, A, B, 1);
 addEdge(g_p, A, C, 1);
 addEdge(g_p, B, D, 1);
 addEdge(g_p, C, E, 1);
 addEdge(g_p, C, F, 1);
 addEdge(g_p, D, G, 1);
 addEdge(g_p, D, H, 1);
 return 0;
}
void dls(graph_t *g_p, int root, int goal, int limit)
{
 int node, depth, to;
 stack_t *s_p, *sd_p;
 s_p = createStack(10);
 sd_p = createStack(10);
 pushStack(s_p, root);
 pushStack(sd_p, 0);
 while (!isEmptyStack(s_p)) {
 node = popStack(s_p);
 depth = popStack(sd_p);
 printf(“%d (depth %d)\n”, node, depth);
 if (node == goal) break;
 if (depth < limit) {
 for (to = g_p->nodes-1 ; to > 0 ; to--) {
 if (getEdge(g_p, node, to)) {
 pushStack(s_p, to);
 pushStack(sd_p, depth+1);
 }
 }
 }
 }
 destroyStack(s_p);
 destroyStack(sd_p);
 return;
}
int main()
{
 graph_t *g_p;
 g_p = createGraph(8);
 init_graph(g_p);

36 Artificial Intelligence

 dls(g_p, 0, 5, 2);
 destroyGraph(g_p);
 return 0;
}

While the algorithm does remove the possibility of infinitely looping in the
graph, it also reduces the scope of the search. If the goal node had been one
of the nodes marked ‘X’, it would not have been found, making the search
algorithm incomplete. The algorithm can be complete if the search depth is
that of the tree itself (in this case d is three). The technique is also not optimal
since the first path may be found to the goal instead of the shortest path.

The time and space complexity of depth-limited search is similar to DFS,
from which this algorithm is derived. Space complexity is O(bd) and time
complexity is O(bd), but d in this case is the imposed depth of the search and
not the maximum depth of the graph.

Iterative Deepening Search (IDS)
Iterative Deepening Search (IDS) is a derivative of DLS and combines the
features of depth-first search with that of breadth-first search. IDS operates
by performing DLS searches with increased depths until the goal is found.

FIGURE 2.13: Iterating increased depth searches with IDS.

FIGURE 2.12: Search order for a tree using depth-limited search (depth = two).

Uninformed Search 37

The depth begins at one, and increases until the goal is found, or no further
nodes can be enumerated (see Figure 2.13).

As shown in Figure 2.13, IDS combines depth-first search with breadth-
first search. By minimizing the depth of the search, we force the algorithm to
also search the breadth of the graph. If the goal is not found, the depth that
the algorithm is permitted to search is increased and the algorithm is started
again. The algorithm, shown in Listing 2.4, begins with a depth of one.

LISTING 2.4: The iterative deepening-search algorithm.

#include <stdio.h>
#include “graph.h”
#include “stack.h”
#define A 0
#define B 1
#define C 2
#define D 3
#define E 4
#define F 5
#define G 6
#define H 7
int init_graph(graph_t *g_p)
{
 addEdge(g_p, A, B, 1);
 addEdge(g_p, A, C, 1);
 addEdge(g_p, B, D, 1);
 addEdge(g_p, C, E, 1);
 addEdge(g_p, C, F, 1);
 addEdge(g_p, D, G, 1);
 addEdge(g_p, D, H, 1);
 return 0;
}
int dls(graph_t *g_p, int root, int goal, int limit)
{
 int node, depth;
 int to;
 stack_t *s_p, *sd_p;
 s_p = createStack(10);
 sd_p = createStack(10);
 pushStack(s_p, root);

38 Artificial Intelligence

 pushStack(sd_p, 0);
 while (!isEmptyStack(s_p)) {
 node = popStack(s_p);
 depth = popStack(sd_p);
 printf(“%d (depth %d)\n”, node, depth);
 if (node == goal) return 1;
 if (depth < limit) {
 for (to = g_p->nodes-1 ; to > 0 ; to--) {
 if (getEdge(g_p, node, to)) {
 pushStack(s_p, to);
 pushStack(sd_p, depth+1);
 }
 }
 }
 }
 destroyStack(s_p);
 destroyStack(sd_p);
 return 0;
}
int main()
{
 graph_t *g_p;
 int status, depth;
 g_p = createGraph(8);
 init_graph(g_p);
 depth = 1;
 while (1) {
 status = dls(g_p, 0, 5, depth);
 if (status == 1) break;
 else depth++;
 }
 destroyGraph(g_p);
 return 0;
}

O

N THE CD

 The IDS implementation can be found on the CD-ROM at ./software/
ch2/ids.c.

IDS is advantageous because it’s not susceptible to cycles (a characteristic
of DLS, upon which it’s based). It also finds the goal nearest to the root node,

Uninformed Search 39

as does the BFS algorithm (which will be detailed next). For this reason, it’s
a preferred algorithm when the depth of the solution is not known.

The time complexity for IDS is identical to that of DFS and DLS, O(bd).
Space complexity of IDS is O(bd).

Unlike DFS and DLS, IDS is will always find the best solution and
therefore, it is both complete and optimal.

Breadth-First Search (BFS)
In Breadth-First Search (BFS), we search the graph from the root node in
order of the distance from the root. Because the order search is nearest the
root, BFS is guaranteed to find the best possible solution (shallowest) in a
non-weighted graph, and is therefore also complete. Rather than digging
deep down into the graph, progressing further and further from the root
(as is the case with DFS), BFS checks each node nearest the root before
descending to the next level (see Figure 2.14).

The implementation of BFS uses a FIFO (first-in-first-out) queue,
differing from the stack (LIFO) implementation for DFS. As new nodes
are found to be searched, these nodes are checked against the goal, and if
the goal is not found, the new nodes are added to the queue. To continue
the search, the oldest node is dequeued (FIFO order). Using FIFO order
for new node search, we always check the oldest nodes first, resulting in
breadth-first review (see Listing 2.5).

LISTING 2.5: The breadth-first search algorithm.

#include <stdio.h>
#include “graph.h”
#include “queue.h”
#define A 0

FIGURE 2.14: Search order of the breadth-first search algorithm.

40 Artificial Intelligence

#define B 1
#define C 2
#define D 3
#define E 4
#define F 5
#define G 6
#define H 7
int init_graph(graph_t *g_p)
{
 addEdge(g_p, A, B, 1);
 addEdge(g_p, A, C, 1);
 addEdge(g_p, B, D, 1);
 addEdge(g_p, C, E, 1);
 addEdge(g_p, C, F, 1);
 addEdge(g_p, D, G, 1);
 addEdge(g_p, D, H, 1);
 return 0;
}
void bfs(graph_t *g_p, int root, int goal)
{
 int node;
 int to;
 queue_t *q_p;
 q_p = createQueue(10);
 enQueue(q_p, root);
 while (!isEmptyQueue(q_p)) {
 node = deQueue(q_p);
 printf(“%d\n”, node);
 if (node == goal) break;
 for (to = g_p->nodes-1 ; to > 0 ; to--) {
 if (getEdge(g_p, node, to)) {
 enQueue(q_p, to);
 }
 }
 }
 destroyQueue(q_p);
 return;
}
int main()
{

Uninformed Search 41

 graph_t *g_p;
 g_p = createGraph(8);
 init_graph(g_p);
 bfs(g_p, 0, 7);
 destroyGraph(g_p);
 return 0;
}

O

N THE CD

 The BFS implementation can be found on the CD-ROM at ./software/
ch2/bfs.c.

The disadvantage of BFS is that each node that is searched is required
to be stored (space complexity is O(bd)). The entire depth of the tree does
not have to be searched, so d in this context is the depth of the solution, and
not the maximum depth of the tree. Time complexity is also O(bd).

TIP In practical implementations of BFS, and other search algorithms, a
closed list is maintained that contains those nodes in the graph that
have been visited. This allows the algorithm to efficiently search the
graph without re-visiting nodes. In implementations where the graph is
weighted, keeping a closed list is not possible.

FIGURE 2.15: Bidirectional search meeting in the middle at node H.

42 Artificial Intelligence

Bidirectional Search
The Bidirectional Search algorithm is a derivative of BFS that operates by
performing two breadth-first searches simultaneously, one beginning from
the root node and the other from the goal node. When the two searches
meet in the middle, a path can be reconstructed from the root to the goal.
The searches meeting is determined when a common node is found (a node
visited by both searches, see Figure 2.15). This is accomplished by keeping
a closed list of the nodes visited.

Bidirectional search is an interesting idea, but requires that we know the
goal that we’re seeking in the graph. This isn’t always practical, which limits
the application of the algorithm. When it can be determined, the algorithm
has useful characteristics. The time and space complexity for bidirectional
search is O(bd/2), since we’re only required to search half of the depth of
the tree. Since it is based on BFS, bidirectional search is both complete and
optimal.

Uniform-Cost Search (UCS)
One advantage of BFS is that it always finds the shallowest solution. But
consider the edge having a cost associated with it. The shallowest solution
may not be the best, and a deeper solution with a reduced path cost would
be better (for example, see Figure 2.16). Uniform -Cost Search (UCS) can
be applied to find the least-cost path through a graph by maintaining an
ordered list of nodes in order of descending cost. This allows us to evaluate
the least cost path first

FIGURE 2.16: An example graph where choosing the lowest cost path for the first node (A->C)
may not result in the best overall path through the graph (A->B->E).

Uninformed Search 43

TIP Uniform-cost search is an uninformed search method because no heuristic
is actually used. The algorithm measures the actual cost of the path
without attempting to estimate it.

The algorithm for UCS uses the accumulated path cost and a priority queue
to determine the path to evaluate (see Listing 2.6). The priority queue
(sorted from least cost to greatest) contains the nodes to be evaluated. As
node children are evaluated, we add their cost to the node with the aggregate
sum of the current path. This node is then added to the queue, and when
all children have been evaluated, the queue is sorted in order of ascending
cost. When the first element in the priority queue is the goal node, then the
best solution has been found.

LISTING 2.6: The uniform-cost search algorithm.

#include <stdio.h>
#include “graph.h”
#include “pqueue.h”
#define A 0
#define B 1
#define C 2
#define D 3
#define E 4
int init_graph(graph_t *g_p)
{
 addEdge(g_p, A, B, 5);
 addEdge(g_p, A, C, 1);
 addEdge(g_p, A, D, 2);
 addEdge(g_p, B, E, 1);
 addEdge(g_p, C, E, 7);
 addEdge(g_p, D, E, 5);
 return 0;
}
void ucs(graph_t *g_p, int root, int goal)
{
 int node, cost, child_cost;
 int to;
 pqueue_t *q_p;
 q_p = createPQueue(7);
 enPQueue(q_p, root, 0);
 while (!isEmptyPQueue(q_p)) {

44 Artificial Intelligence

 dePQueue(q_p, &node, &cost);
 if (node == goal) {
 printf(“cost %d\n”, cost);
 return;
 }
 for (to = g_p->nodes-1 ; to > 0 ; to--) {
 child_cost = getEdge(g_p, node, to);
 if (child_cost) {
 enPQueue(q_p, to, (child_cost+cost));
 }
 }
 }
 destroyPQueue(q_p);
 return;
}
int main()
{
 graph_t *g_p;
 g_p = createGraph(6);
 init_graph(g_p);
 ucs(g_p, A, E);
 destroyGraph(g_p);
 return 0;
}

FIGURE 2.17: Node evaluations and the
state of the priority queue.

FIGURE 2.18: Illustrating the path cost
through the graph.

Uninformed Search 45

O
N THE CD

 The UCS implementation can be found on the CD-ROM at ./software/
ch2/ucs.c.

The UCS algorithm is easily demonstrated using our example graph in
Figure 2.16. Figure 2.17 shows the state of the priority queue as the nodes
are evaluated. At step one, the initial node has been added to the priority
queue, with a cost of zero. At step two, each of the three connected nodes
are evaluated and added to the priority queue. When no further children are
available to evaluate, the priority queue is sorted to place them in ascending
cost order.

At step three, children of node C are evaluated. In this case, we find the
desired goal (E), but since its accumulated path cost is eight, it ends up at
the end of the queue. For step four, we evaluate node D and again find the
goal node. The path cost results in seven, which is still greater than our B
node in the queue. Finally, at step five, node B is evaluated. The goal node is
found again, with a resulting path cost of six. The priority queue now contains
the goal node at the top, which means at the next iteration of the loop, the
algorithm will exit with a path of A->B->E (working backwards from the
goal node to the initial node).

To limit the size of the priority queue, it’s possible to prune entries that are
redundant. For example, at step 4 in Figure 2.17, the entry for E(8) could have
been safely removed, as another path exists that has a reduced cost (E(7)).

The search of the graph is shown in Figure 2.18, which identifies the path
cost at each edge of the graph. The path cost shown above the goal node (E)
makes it easy to see the least-cost path through the graph, even when it’s not
apparent from the initial node.

UCS is optimal and can be complete, but only if the edge costs are
non-negative (the summed path cost always increases). Time and space
complexity are the same as BFS, O(bd) for each, as it’s possible for the entire
tree to be evaluated.

IMPROVEMENTS

One of the basic problems with traditional DFS and BFS is that they
lack a visited list (a list of nodes that have already been evaluated). This
modification makes the algorithms complete, by ignoring cycles and only
following paths that have not yet been followed. For BFS, keeping a visited
list can reduce the search time, but for DFS, the algorithm can be made
complete.

46 Artificial Intelligence

ALGORITHM ADVANTAGES

Each of the algorithms has advantages and disadvantages based on the graph
to be searched. For example, if the branching factor of the graph is small,
then BFS is the best choice. If the tree is deep, but a solution is known to
be shallow in the graph, then IDS is a good choice. If the graph is weighted,
then UCS should be used as it will always find the best solution where DFS
and BFS will not.

CHAPTER SUMMARY
Uninformed search algorithms are a class of graph search algorithms that
exhaustively search for a node without the use of a heuristic to guide the
search. Search algorithms are of interest in AI because many problems can
be reduced to simple search problems in a state space. The state space
consists of states (nodes) and operators (edges), allowing the state space to
be represented as a graph. Examples range from graphs of physical spaces
to massive game trees such as are possible with the game of Chess.

The depth-first search algorithm operates by evaluating branches to
their maximum depth, and then backtracking to follow unvisited branches.
Depth-limited search (DLS) is based on DFS, but restricts the depth of the
search. Iterative-deepening search (IDS) uses DLS, but continually increases
the search depth until the solution is found.

The breadth-first search (BFS) algorithm searches with increasing
depth from the root (searches all nodes with depth one, then all nodes with
depth two, etc.). A special derivative algorithm of BFS, bidirectional search
(BIDI), performs two simultaneous searches. Starting at the root node and
the goal node, BIDI performs two BFS searches in search of the middle.
Once a common node is found in the middle, a path exists between the root
and goal nodes.

The uniform-cost search (UCS) algorithm is ideal for weight graphs
(graphs whose edges have costs associated with them). UCS evaluates a graph
using a priority queue that is ordered in path cost to the particular node. It’s
based on the BFS algorithm and is both complete and optimal.

ALGORITHMS SUMMARY
Table 2.2: Summary of the uninformed algorithms and their
characteristics.

Uninformed Search 47

Algorithm Time Space Optimal Complete Derivative
DFS O(bm) O(bm) No No
DLS O(bl) O(bl) No No DFS
IDS O(bd) O(bd) Yes No DLS
BFS O(bd) O(bd) Yes Yes
BIDI O(bd/2) O(bd/2) Yes Yes BFS
UCS O(bd) O(bd) Yes Yes BFS
b, branching factor
d, tree depth of the solution
m, tree depth
l, search depth limit

REFERENCES

[Bouton 1901] “Nim, a game with a complete mathematical theory,” Ann,
Math, Princeton 3, 35-39, 1901-1902.

EXERCISES

1. What is uninformed (or blind) search and how does it differ from
informed (or heuristic) search?

2. The graph structure is ideal for general state space representation.
Explain why and define the individual components.

3. Define the queuing structures used in DFS and BFS and explain why
each uses their particular style.

4. What is the definition of tree depth?
5. What is the definition of the branching factor?
6. What are time and space complexity and why are they useful as metrics

for graph search?
7. If an algorithm always finds a solution in a graph, what is this property

called? If it always finds the best solution, what is this characteristic?
8. Considering DFS and BFS, which algorithm will always find the best

solution for a non-weighted graph?
9. Use the DFS and BFS algorithms to solve the Towers of Hanoi problem.

Which performs better and why?
10. Provide the search order for the nodes shown in Figure 2.19 for DFS, BFS,

DLS (d=2), IDS (start depth = 1), and BIDI (start node A, goal node I).

48 Artificial Intelligence

11. In general, IDS is better than DFS. Draw a graph where this is not the
case.

12. In general, IDS is not complete. Why?
13. Identify a major disadvantage of bidirectional search.
14. Using the UCS algorithm, find the shortest path from A to F in Figure 2.20.

FIGURE 2.19: Example graph. FIGURE 2.20: Example
weighted graph.

C h a p t e r 3 INFORMED SEARCH

In Chapter 2, we explored the uninformed search methods such as
depth-first and breadth-first search. These methods operate in a brute-
force fashion and are subsequently inefficient. In contrast, this chapter

will present the informed search methods. These methods incorporate a
heuristic, which is used to determine the quality of any state in the search
space. In a graph search, this results in a strategy for node expansion (which
node should be evaluated next). A variety of informed search methods will be
investigated and, as with uninformed methods, compared using a common
set of metrics.

NOTE A heuristic is a rule of thumb that may help solve a given problem.
Heuristics take problem knowledge into consideration to help guide the
search within the domain.

INFORMED SEARCH

In this chapter, we’ll explore a number of informed search methods, including
best-first search, a-star search, iterative improvement algorithms such as hill
climbing and simulated annealing, and finally, constraint satisfaction. We’ll
demonstrate each with a sample problem and illustrate the heuristics used.

50 Artificial Intelligence

BEST-FIRST SEARCH (BEST-FS)

In Best-First search, the search space is evaluated according to a heuristic
function. Nodes yet to be evaluated are kept on an OPEN list and those that
have already been evaluated are stored on a CLOSED list. The OPEN list is
represented as a priority queue, such that unvisited nodes can be dequeued
in order of their evaluation function (recall the priority queue from Chapter
2 for the Uniform-Cost Search).

The evaluation function f(n) is made up of two parts. These are the
heuristic function (h(n)) and the estimated cost (g(n)), where (see Eq 3.1):

f (n) = g(n)+h(n) (Eq 3.1)

We can think of the estimated cost as a value measurable from our search
space, and the heuristic function as an educated guess. The OPEN list is
then built in order of f(n). This makes best-first search fundamentally greedy
because it always chooses the best local opportunity in the search frontier.

NOTE The search frontier is defined as the set of node opportunities that can be
searched next. In Best-First search, the frontier is a priority queue sorted
in f(n) order. Given the strict order of f(n), the selection of the node to
evaluate from the priority queue is greedy.

The complexity of best-first is O(bm) for both time and space (all nodes
are saved in memory). By maintaining a CLOSED list (to avoid revisiting
nodes and therefore avoiding loops) best-first search is complete, but it is
not optimal, as a solution can be found in a longer path (higher h(n) with a
lower g(n) value.

TIP Best-First search is a combination of evaluation functions, h(n) and g(n).
Note that Breadth-First search is a special case of Best-First search where
f(n) = h(n), and Uniform-Cost search is a special case of Best-First search
where f(n) = g(n).

Best-First Search and the N-Queens Problem
Let’s now discuss the best-first search algorithm in the context of a large
search space. The N-queens problem is a search problem where the desired
result is an N by N board with N queens such that no queen threatens
another (see Figure 3.1). For this board, in each of the horizontal, vertical,
and diagonal rows, no queen is able to capture another.

Informed Search 51

An important aspect of problem solving and search is representation. For
this example, we’ll choose a simple representation that fits the solution space
well and makes it simple to enumerate. Each board position is represented
by a single bit and if the bit is zero, then the position is vacant, otherwise,
it is occupied by a queen. We’ll simplify the problem by assigning a queen
to each row on the board. Enumerating the search space is then defined as
looking at the possible moves of queens horizontally. For example, the queen
at the top of Figure 3.1 can move left or right, but the queen in the second
row can only move right (see Figure 3.1). Figure 3.2 also shows the board
representation as a 16-bit value (unsigned short, in the case of C).

Given a state (the board configuration), we can identify the child states
for this board by creating a new board for each of the possible queen

FIGURE 3.1: Sample N-Queens board (where N=4).

FIGURE 3.2: Board representation for the N-Queens problem (where N=4).

52 Artificial Intelligence

position changes, given horizontal movement only. For Figure 3.2, this board
configuration can result in six new child states (a single queen change position
in each). Note that since we maintain a closed list, board configurations that
have already been evaluated are not generated, resulting in a small tree and
more efficient search.

For the heuristic, we’ll use the node’s depth in the tree for h(n), and
the number of conflicts (number of queens that could capture another)
for g(n).

Best-First Search Implementation
Let’s now look at a simple implementation of Best-First search in the C
language. We’ll present the two major functions that make up this search
algorithm; the first is best_fs, which is the main loop of the algorithm. The
second function, generateChildNodes, builds out the possible states (board
configurations) given the current state.

Our main function (best_fs) is the OPEN list enumerator and solution
tester. Prior to calling this function, our OPEN list (priority queue)
and CLOSED list have been created. The root node, our initial board
configuration, has been placed on the OPEN list. The best_fs function (see
Listing 3.1) then dequeues the next node from the open list (best f(n)) If
this node has a g(n) (number of conflicts) of zero, then a solution has been
found, and we exit.

LISTING 3.1: The Best-Search first main function.

void best_fs (pqueue_t *open_pq_p, queue_t *closed_q_p)
{
 node_t *node_p;
 int cost;
 /* Enumerate the Open list */
 while (!isEmptyPQueue (open_pq_p)) {
 dePQueue (open_pq_p, (int *)&node_p, &cost);
 /* Solution found? */
 if (node_p->g == 0) {
 printf(“Found Solution (depth %d):\n”, node_p->h);
 emitBoard (node_p);
 break;
 }
 generateChildNodes(open_pq_p, closed_q_p, node_p);

Informed Search 53

 }
 return;
}

Note in Listing 3.1 that while cost is the f(n), we check g(n) to determine
whether a solution is found. This is because f(n) may be non-zero since it
includes the depth of the solution (h(n)).

O

N THE CD

 The BestFS implementation can be found on the CD-ROM at ./software/
ch3/bestfs.c.

The next function, generateChildNodes, takes the current board configuration
and enumerates all possible child configurations by potentially moving each
queen one position. The moves array defines the possible moves for each
position on the board (-1 means only right, 2 means both left and right, and
1 means only left). The board is then enumerated, and whenever a queen is
found, the moves array is checked for the legal moves, and new child nodes
are created and loaded onto the OPEN list.

Note that we check the CLOSED list here to avoid creating a board
configuration that we’ve seen before. Once all positions on the current board
have been checked, and new child nodes are created, the function returns
to best_fs.

When a new board configuration is found, the createNode function
is called to allocate a new node structure and places this new node on the
OPEN list (and CLOSED list). Note here that the one plus the depth (h(n))
is passed in to identify the level of the solution in the tree.

LISTING 3.2: The generateChildNodes function to enumerate the child nodes.

void generateChildNodes(pqueue_t *pq_p,
 queue_t *closed_q_p, node_t *node_p)
{
 int i;
 unsigned short cboard1, cboard2;
 const int moves[16]={ -1, 2, 2, 1,
 -1, 2, 2, 1,
 -1, 2, 2, 1,
 -1, 2, 2, 1 };
/* Generate the child nodes for the current node by
 * shuffling the pieces on the board.

54 Artificial Intelligence

 */
 for (i = 0 ; i < 16 ; i++) {
 /* Is there a queen at this position? */
 if (checkPiece(node_p->board, i)) {
 /* Remove current queen from the board */
 cboard1 = cboard2 = (node_p->board & ~(1 << (15-i)));
 if (moves[i] == -1) {
 /* Can only move right */
 cboard1 |= (1 << (15-(i+1)));
 if (!searchQueue(closed_q_p, cboard1)) {
 (void)createNode(pq_p, closed_q_p, cboard1, node_p->h+1);
 }
 } else if (moves[i] == 2) {
 /* Can move left or right */
 cboard1 |= (1 << (15-(i+1)));
 if (!searchQueue(closed_q_p, cboard1)) {
 (void)createNode(pq_p, closed_q_p, cboard1, node_p->h+1);
 }
 cboard2 |= (1 << (15-(i-1)));
 if (!searchQueue(closed_q_p, cboard2)) {
 (void)createNode(pq_p, closed_q_p, cboard2, node_p->h+1);
 }
 } else if (moves[i] == 1) {
 /* Can only move left */
 cboard2 |= (1 << (15-(i-1)));
 if (!searchQueue(closed_q_p, cboard2)) {
 (void)createNode(pq_p, closed_q_p, cboard2, node_p->h+1);
 }
 }
 }
 }
 return;
}

Let’s now watch the algorithm in action. Once invoked, a random root node
is enqueued and then the possible child configurations are enumerated and
loaded onto the OPEN list (see Listing 3.3). The demonstration here shows
a shallow tree of three configurations checked, the root node, one at level
one, and the solution found at depth two. A condensed version of this run
is shown in Figure 3.3.

Informed Search 55

LISTING 3.3: Best-First Search for the N-Queens problem (N=4).

 New node: evaluateBoard 4824 = (h 0, g 3)
Initial Board:
board is 0x4824
0 1 0 0
1 0 0 0

FIGURE 3.3: Graphical (condensed) view of the search tree in Listing 3.3.

56 Artificial Intelligence

0 0 1 0
0 1 0 0
Checking board 0x4824 (h 0 g 3)
 New node: evaluateBoard 2824 = (h 1, g 2)
 New node: evaluateBoard 8824 = (h 1, g 3)
 New node: evaluateBoard 4424 = (h 1, g 4)
 New node: evaluateBoard 4814 = (h 1, g 3)
 New node: evaluateBoard 4844 = (h 1, g 4)
 New node: evaluateBoard 4822 = (h 1, g 3)
 New node: evaluateBoard 4828 = (h 1, g 2)
Checking board 0x2824 (h 1 g 2)
 New node: evaluateBoard 1824 = (h 2, g 1)
 New node: evaluateBoard 2424 = (h 2, g 5)
 New node: evaluateBoard 2814 = (h 2, g 0)
 New node: evaluateBoard 2844 = (h 2, g 2)
 New node: evaluateBoard 2822 = (h 2, g 3)
 New node: evaluateBoard 2828 = (h 2, g 2)
Checking board 0x2814 (h 2 g 0)
Found Solution (h 2 g 0):
board is 0x2814
0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

Variants of Best-First Search
One interesting variant of best-first search is called greedy best-first search.
In this variant, f(n) = h(n), and the OPEN list is ordered in f order. Since
h is the only factor used to determine which node to select next (identified
as the closeness to the goal), it’s defined as greedy. Because of this, greedy
best-first is not complete as the heuristic is not admissible (because it can
overestimate the path to the goal). We’ll discuss admissibility in more detail
in the discussion of A-star search.

Another variant of best-first search is beam-search, like greedy best-first
search, it uses the heuristic f(n) = h(n). The difference with beam-search is
that it keeps only a set of the best candidate nodes for expansion and simply
throws the rest way. This makes beam-search much more memory efficient
than greedy best-first search, but suffers in that nodes can be discarded
which could result in the optimal path. For this reason, beam-search is
neither optimal or complete.

Informed Search 57

A* SEARCH

A* search, like best-first search, evaluates a search space using a heuristic
function. But A* uses both the cost of getting from the initial state to the
current state (g(n)), as well as an estimated cost (heuristic) of the path from
the current node to the goal (h(n)). These are summed to the cost function f(n)
(See Eq 3.1). The A* search, unlike best-first, is both optimal and complete.

The OPEN and CLOSED lists are used again to identify the frontier for
search (OPEN list) and the nodes evaluated thus far (CLOSED). The OPEN
list is implemented as a priority queue ordered in lowest f(n) order. What
makes A* interesting is that it continually re-evaluates the cost function for
nodes as it re-encounters them. This allows A* to efficiently find the minimal
path from the initial state to the goal state.

Let’s now look at A* at a high level and then we’ll dig further and apply
it to a well-known problem. Listing 3.4 provides the high level flow for A*.

LISTING 3.4: High-level flow for the A* search algorithm.

Initialize OPEN list (priority queue)
Initialize CLOSED list
Place start node on the OPEN list
Loop while the OPEN list is not empty
 Get best node (parent) from OPEN list (least f (n))
 if parent is the goal node, done
 Place parent on the CLOSED list
 Expand parent to all adjacent nodes (adj_node)
 if adj_node is on the CLOSED list
 discard adj_node and continue
 else if adj_node is on the OPEN list
 if adj_node’s g value is better than
 the OPEN.adj_node’s g value
 discard OPEN.cur_node
 calculate adj_node’s g, h and f values
 set adj_node predecessor to parent
 add adj_node to OPEN list
 continue
 end
 else
 calculate adj_node’s g, h and f values
 set adj_node predecessor to parent

58 Artificial Intelligence

 add adj_node to OPEN list
 end
 end
end loop

Note in the flow from Listing 3.4 that once we find the best node from the
OPEN list, we expand all of the child nodes (legal states possible from the
best node). If the new legal states are not found on either the OPEN or
CLOSED lists, they are added as new nodes (setting the predecessor to the
best node, or parent). If the new node is on the CLOSED list, we discard
it and continue. Finally, if the new node is on the OPEN list, but the new
node has a better g value, we discard the node on the OPEN list and add
the new node to the OPEN list (otherwise, the new node is discarded, if its g
value is worse). By re-evaluating the nodes on the OPEN list, and replacing
them when cost functions permit, we allow better paths to emerge from the
state space.

As we’ve defined already, A* is complete, as long as the memory supports
the depth and branching factor of the tree. A* is also optimal, but this
characteristic depends on the use of an admissible heuristic. Because A*
must keep track of the nodes evaluated so far (and also the discovered nodes
to be evaluated), the time and space complexity are both O(bd).

NOTE The heuristic is defined as admissible if it accurately estimates the
path cost to the goal, or underestimates it (remains optimistic). This
requires that the heuristic be monotonic, which means that the cost
never decreases over the path, and instead monotonically increases. This
means that g(n) (path cost from the initial node to the current node)
monotonically increases, while h(n) (path cost from the current node to
the goal node) monotonically decreases.

FIGURE 3.4: The Eight Puzzle and a demonstration of moving from an initial configuration to
the goal configuration (does not include all steps).

Informed Search 59

A* Search and the Eight Puzzle
While A* has been applied successfully to problem domains such as path-
finding, we’ll apply it here to what’s called the Eight Puzzle (also known
as the N by M, or n2-1 tile puzzle). This particular variation of the puzzle
consists of eight tiles in a 3 by 3 grid. One location contains no tile, which
can be used to move other tiles to migrate from one configuration to another
(see Figure 3.4).

Note in Figure 3.4 that there are two legal moves that are possible.
The ‘1’ tile can move left, and the ‘6’ tile can move down. The final goal
configuration is shown at the right. Note that this is one variation of the goal,
and the one that we’ll use here.

The Eight Puzzle is interesting because it’s a difficult problem to solve,
but one that’s been studied at length and is therefore very well understood.
[Archer 1999] For example, the number of possible board configurations of
the Eight Puzzle is (n*n)!, but only half of these are legal configurations.

TIP During the 1870s, the Fifteen Puzzle (4 by 4 variant of the N by M
puzzle) became a puzzle craze much like the Rubik’s cube of the 1970s
and 1980s.

On average, 22 moves are required to solve the 3 by 3 variant of the puzzle.
But considering 22 as the average depth of the tree, with an average branching
factor of 2.67, 2.4 trillion non-unique tile configurations can be evaluated.

Eight-Puzzle Representation
We’ll use a common representation for the Eight Puzzle, a linear vector
containing the tile placement from left to right, top to bottom (see Figure
3.5). This particular figure shows the moves possible from the initial puzzle
configuration to depth two of this particular state space tree.

FIGURE 3.5: Eight Puzzle configuration using a simple vector.

60 Artificial Intelligence

For our heuristic, we’ll use the depth of the tree as the cost from the root to
the current node (otherwise known as g(n)), and the number of misplaced
tiles (h(n)) as the estimated cost to the goal node (excluding the blank). The
path cost (f(n)) then becomes the cost of the path to the current node (g(n))
plus the estimated cost to the goal node (h(n)). You can see these heuristics
in the tree in Figure 3.6. From the root node, only two moves are possible,
but from these two moves, three new moves (states) open up. At the bottom
of this tree, you can see that the cost function has decreased, indicating that
these board configurations are likely candidates to explore next.

NOTE There are two popular heuristics for the N-puzzle problem. The first is
simply the number of tiles out of place, which in general decreases as
the goal is approached. The other heuristic is the Manhattan distance of

FIGURE 3.6: Eight Puzzle tree ending at depth two, illustrating the cost functions.

Informed Search 61

tiles which sums the tile distance of each out of place tile to its correct
location. For this implementation, we’ll demonstrate the simple, but
effective, tiles-out-of-place heuristic.

TIP While there are (3*3)! board configurations possible, there are only
(3*3)!/2 valid configurations. The other half of the configurations are
unsolvable. We’ll not dwell on this here, but in the source implementation
you’ll see the test in initPuzzle using the concept of inversions to validate
the configuration of the board. This concept can be further explored in
[KGong 2005].

A* Search Implementation
The core the of A-star algorithm is implemented in the function astar(). This
function implements A-star as shown in Listing 3.4. We’ll also present the
evaluation function, which implements the ‘tiles-out-of-place’ metric. The
list and other support functions are not presented here, but are available on
the CD-ROM for review.

NOTE The A* implementation can be found on the CD-ROM at ./software/ch3/
astar.c.

Let’s start with the evaluation function which calculates the estimated cost
from the current node to the goal (as the number of tiles out of place), see
Listing 3.6. The function simply enumerates the 3 by 3 board as a one-
dimensional vector, incrementing a score value whenever a tile is present in
a position it should not be in. This score is then returned to the caller.

LISTING 3.6: The Eight Puzzle h(n) estimated cost metric.

double evaluateBoard(board_t *board_p)
{
 int i;
 const int test[MAX_BOARD-1]={1, 2, 3, 4, 5, 6, 7, 8 };
 int score=0;
 for (i = 0 ; i < MAX_BOARD-1 ; i++) {
 score += (board_p->array[i] != test[i]);
 }
 return (double)score;
}

62 Artificial Intelligence

The astar function is shown in Listing 3.7. Prior to calling this function, we’ve
selected a random board configuration and placed it onto the OPEN list. We
then work through the OPEN list, retrieving the best node (with the least f
value using getListBest) and immediately place it on the CLOSED list. We
check to see if this node is the solution, and if so, we emit the path from
the initial node to the goal (which illustrates the moves that were made). To
minimize searching too deeply in the tree, we halt enumerating nodes past
a given depth (we search them no further).

The next step is to enumerate the possible moves from this state, which
will be a maximum of four. The getChildBoard function is used to return
an adjacent node (using the index passed in to determine which possible
move to make). If a move isn’t possible, then a NULL is returned and it’s
ignored.

With a new child node, we first check to see if it’s already been evaluated
(if it’s on the CLOSED list). If it is, then we’re to destroy this node and
continue (to get the child node for the current board configuration). If
we’ve not seen this particular board configuration before, we calculate the
heuristics for the node. First, we initialize the node’s depth in the tree as the
parent’s depth plus one. Next, we call evaluateBoard to get the tiles-out-of-
place metric, which will act as our h value (cost from the root node to this
node). The g value is set to the current depth, and the f value is initialized
with Eq 3.1.

 (Eq 3.1)

We include an alpha and beta parameter here to give different weights to
the g and h values. In this implementation, alpha is 1.0 and beta is 2.0. This
means that more weight is given to the h value, and subsequently the closer a
node is to the goal is weighed higher than its depth in the state space tree.

With the f value calculated, we check to see if the node is on the OPEN
list. If it is, we compare their f values. If the node on the OPEN list has a
worse f value, the node on the OPEN list is discarded and the new child
node takes its place (setting the predecessor link to the parent, so we know
how we got to this node). If the node on the OPEN list has a better f value,
then the node on the OPEN list remains on the open list and the new child
is discarded.

Finally, if the new child node exists on neither the CLOSED or OPEN
list, it’s a new node that we’ve yet to see. It’s simply added to the OPEN list,
and the process continues.

This algorithm continues until either one of two events occur. If the
OPEN list becomes empty, then no solution was found and the algorithm

Informed Search 63

exits. If the solution is found, then showSolution is called, and the nodes
linked together via the predecessor links are enumerated to show the solution
from the initial node to the goal node.

LISTING 3.7: The A* algorithm.

void astar(void)
{
 board_t *cur_board_p, *child_p, *temp;
 int i;
 /* While items are on the open list */
 while (listCount(&openList_p)) {
 /* Get the current best board on the open list */
 cur_board_p = getListBest(&openList_p);
 putList(&closedList_p, cur_board_p);
 /* Do we have a solution? */
 if (cur_board_p->h == (double)0.0) {
 showSolution(cur_board_p);
 return;
 } else {
 /* Heuristic - average number of steps is 22 for a 3x3, so
 * don’t go too deep.
 */
 if (cur_board_p->depth > MAX_DEPTH) continue;
 /* Enumerate adjacent states */
 for (i = 0 ; i < 4 ; i++) {
 child_p = getChildBoard(cur_board_p, i);
 if (child_p != (board_t *)0) {
 if (onList(&closedList_p, child_p->array, NULL)) {
 nodeFree(child_p);
 continue;
 }
 child_p->depth = cur_board_p->depth + 1;
 child_p->h = evaluateBoard(child_p);
 child_p->g = (double)child_p->depth;
 child_p->f = (child_p->g * ALPHA) + (child_p->h * BETA);
 /* New child board on the open list? */
 if (onList(&openList_p, child_p->array, NULL)) {
 temp = getList(&openList_p, child_p->array);
 if (temp->g < child_p->g) {

64 Artificial Intelligence

 nodeFree(child_p);
 putList(&openList_p, temp);
 continue;
 }
 nodeFree(temp);
 } else {
 /* Child board either doesn’t exist, or is better than a
 * previous board. Hook it to the parent and place on the
 * open list.
 */
 child_p->pred = cur_board_p;
 putList(&openList_p, child_p);
 }
 }
 }
 }
 }
 return;
}

Eight Puzzle Demonstration with A*
In the implementation, the tiles are labeled A-H with a space used to denote
the blank tile. Upon execution, once the solution is found, the path taken
from the initial board to the goal is enumerated. This is shown below in
Listing 3.8, minimized for space.

LISTING 3.8: A sample run of the A* program to solve the Eight Puzzle.

$./astar
GBD
FCH
 EA
BGD
FCH
E A
BGD
FCH
EA
GBD
FC

Informed Search 65

EAH
...
ABC
 DF
GEH
ABC
D F
GEH
ABC
DEF
G H
ABC
DEF
GH

A* Variants
The popularity of A* has spawned a number of variants that offer different
characteristics. The Iterative-Deepening A* algorithm backtracks to other
nodes when the cost of the current branch exceeds a threshold. To minimize
the memory requirements of A*, the Simplified Memory-Bounded A*
algorithm (SMA*) was created. SMA* uses the memory made available to
it, and when it runs out of memory, the algorithm drops the least promising
node to make room for new search nodes from the frontier.

Applications of A* Search
A* search is a popular technique and has seen use as a path-finding algorithm
for computer strategy games. For better performance, many games employ
simpler shortcut methods for path-finding by limiting the space of their
movement (using a much sparser graph over the landscape), or by pre-
calculating routes for in-game use.

HILL-CLIMBING SEARCH

Hill climbing is an iterative improvement algorithm that is similar to greedy
best-first search, except that backtracking is not permitted. At each step in
the search, a single node is chosen to follow. The criterion for the node to
follow is that it’s the best state for the current state. Since the frontier for the
search is a single node, the algorithm is also similar to beam search using a
beam width of one (our OPEN list can contain exactly one node).

66 Artificial Intelligence

The problem with hill climbing is that the best node to enumerate locally
may not be the best node globally. For this reason, hill climbing can lead to
local optimums, but not necessarily the global optimum (the best solution
available). Consider the function in Figure 3.7. There exists a local optimum
and a global optimum. The goal should be to maximize the function, but if
we begin at the far left and work our way toward the global optimum, we
get stuck at the local optimum.

SIMULATED ANNEALING (SA)

Simulated Annealing (SA) is another iterative improvement algorithm in
which randomness is incorporated to expand the search space and avoid
becoming trapped in local minimum. As the name implies, the algorithm
simulates the process of annealing.

Annealing is a technique in metal-casting where molten metal is heated
and then cooled in a gradual manner to evenly distribute the molecules into a
crystalline structure. If the metal is cooled too quickly, a crystalline structure
does not result, and the metal solid is weak and brittle (having been filled with
bubbles and cracks). If cooled in a gradual and controlled way, a crystalline
structure forms at a molecular level resulting in great structural integrity.

The basic algorithm for simulated annealing is shown in Listing 3.9. We
start with an initial solution candidate and the loop while the temperature is
greater than zero. In this loop, we create an adjacent candidate solution by
perturbing our current solution. This changes the solution to a neighboring
solution, but at random. We then calculate the delta energy between the
new (adjacent) solution, and our current solution. If this delta energy is less

FIGURE 3.7: State space illustrating the problem with hill climbing.

Informed Search 67

than zero, then our new solution is better than the old, and we accept it (we
move the new adjacent solution to our current solution).

LISTING 3.9: Simulated annealing algorithm.

simulated_annealing()
{
 cur_solution = random()
 computeE(cur_solution)
 while (Temperature > 0)
 adj_solution = perturb_solution(cur_solution)
 computeE(adj_solution)
 deltaE = adj_solution.energy – cur_solution.energy
 /* Is new solution better, then take it */
 if (deltaE < 0)
 cur_solution = adj_solution
 else
 p = exp(-deltaE / Temperature)
 /* Randomly accept worse solution */
 if (p > RANDOM(0..1))
 cur_solution = adj_solution
 end
 end
 reduce Temperature
 end
end simulated_annealing

If our new solution was not better than the old, then we accept it with a
probability proportional to the current temperature and the delta energy.
The lower the temperature, the less likely we’ll accept a worse solution. But
the better the delta energy, the more likely we’ll accept it. This probability
is calculated as shown in Eq 3.2.

 (Eq 3.2)

Since our temperature decreases over time, it’s less likely that a worse
solution will be accepted. Early on when the temperature is high, worse
solutions can be accepted allowing the search to move away from local
maximum in search of the global maximum. As the temperature decreases,
it becomes more difficult to accept a worse solution, which means that the
algorithm settles on a solution and simply fine-tunes it (if possible).

68 Artificial Intelligence

The classical simulated annealing algorithm also includes monte carlo
cycles where a number of trials are performed before decreasing the
temperature.

The Traveling Salesman Problem (TSP)
To demonstrate the simulated annealing algorithm, we’ll use the classic
Traveling Salesman Problem (or TSP). In the TSP, we’re given a set of cities
and a relative cost for traveling between each city to each other. The goal
is to find a path through all cities where we visit all cities once, and find the
shortest overall tour. We’ll start at one city, visit each other city, and then
end at the initial city.

Consider the graph shown in Figure 3.8. Many cities are connected to
one another, but an optimal path exists that tours each city only once.

The TSP is both interesting and important because it has practical
implications. Consider transportation problems where deliveries are required
and fuel and time are to be minimized. Another interesting application is
that of drilling holes in a circuit board. A number of holes must be drilled
quickly on a single board, and in order to do this, an optimal path is needed
to minimize the movement of the drill (which will be slow). Solutions to the
TSP can therefore be very useful.

TSP Tour Representation
To represent a set of cities and the tour between them, we’ll use an implicit
adjacency list. Each city will be contained in the list, and cities that are next
to one another are implied as connected in the tour. Recall our sample TSP
in Figure 3.8 where seven cities make up the world. This will be represented
as shown in Figure 3.9.

FIGURE 3.8: A Sample TSP tour through a small graph.

Informed Search 69

FIGURE 3.9: Adjacency list for the TSP tour shown in Figure 3.8.

FIGURE 3.10: Demonstration of row swapping to perturb the tour.

70 Artificial Intelligence

Note that the list shown in Figure 3.9 is a single list in tour order. When
we reach the end of the list, we wrap to the first element, completing the
tour. To perturb the tour we take two random rows from the list and swap
them. This is demonstrated in Figure 3.10. Note how by simply swapping
two elements, the tour is greatly perturbed and results in a worse tour
length.

Simulated Annealing Implementation
The implementation of simulated annealing is actually quite simple in the
C language. We’ll review three of the functions that make up the simulated
annealing implementation, the main simulated annealing algorithm,
perturbing a tour, and computing the length of the tour. The remaining
functions are available on the CD-ROM.

LISTING 3.10: Structures for the TSP solution.

typedef struct {
 int x, y;
} city_t;
typedef struct {
city_t cities[MAX_CITIES];
double tour_length;
} solution_t;

The Euclidean distance of the tour is calculated with compute_tour. This
function walks through the tour, accumulating the segments between each
city (see Listing 3.11). It ends by wrapping around the list, and adding in the
distance from the last city back to the first.

LISTING 3.11: Calculating the Euclidean tour with compute_tour.

void compute_tour(solution_t *sol)
{
 int i;
 double tour_length = (double)0.0;
 for (i = 0 ; i < MAX_CITIES-1 ; i++) {
 tour_length +=
 euclidean_distance(
 sol->cities[i].x, sol->cities[i].y,
 sol->cities[i+1].x, sol->cities[i+1].y);

Informed Search 71

 }
tour_length +=
 euclidean_distance(
 sol->cities[MAX_CITIES-1].x,
 sol->cities[MAX_CITIES-1].y,
 sol->cities[0].x, sol->cities[0].y);
 sol->tour_length = tour_length;
 return;
}

Given a solution, we can create an adjacent solution using the function
perturb_tour. In this function, we randomly select two cities in the tour, and
swap them. A loop exists to ensure that we’ve selected two unique random
points (so that we don’t swap a single city with itself). Once selected, the x
and y coordinates are swapped and the function is complete.

LISTING 3.12: Perturbing the tour by creating an adjacent solution.

void perturb_tour(solution_t *sol)
{
 int p1, p2, x, y;
 do {
 p1 = RANDMAX(MAX_CITIES);
 p2 = RANDMAX(MAX_CITIES);
 } while (p1 == p2);
 x = sol->cities[p1].x;
 y = sol->cities[p1].y;
 sol->cities[p1].x = sol->cities[p2].x;
 sol->cities[p1].y = sol->cities[p2].y;
 sol->cities[p2].x = x;
 sol->cities[p2].y = y;
 return;
}

Finally, the simulated_annealing function implements the core of
the simulated annealing algorithm. The algorithm loops around the
temperature, constantly reducing until it reaches a value near zero.
The initial solution has been initialized prior to this function. We take
the current solution and perturb it (randomly alter it) for a number of

72 Artificial Intelligence

iterations (the Monte Carlo step). If the new solution is better, we accept
it by copying it into the current solution. If the new solution is worse,
then we accept it with a probability defined by Eq 3.2. The worse the new
solution and the lower the temperature, the less likely we are to accept the
new solution. When the Monte Carlo step is complete, the temperature
is reduced and the process continues. When the algorithm completes, we
emit the city tour.

LISTING 3.13: The simulated annealing main function implementation.

int simulated_annealing(void)
{
 double temperature = INITIAL_TEMP, delta_e;
 solution_t tempSolution;
 int iteration;
 while(temperature > 0.0001) {
 /* Copy the current solution to a temp */
 memcpy((char *)&tempSolution,
 (char *)&curSolution, sizeof(solution_t));
 /* Monte Carlo Iterations */
 for (iteration = 0 ;
 iteration < NUM_ITERATIONS ; iteration++) {
 perturb_tour(&tempSolution);
 compute_tour(&tempSolution);
 delta_e = tempSolution.tour_length –
 curSolution.tour_length;
 /* Is the new solution better than the old? */
 if (delta_e < 0.0) {
 /* Accept the new, better, solution */
 memcpy((char *)&curSolution,
 (char *)&tempSolution, sizeof(solution_t));
 } else {
 /* Probabilistically accept a worse solution */
 if (exp((-delta_e / temperature)) > RANDOM()) {
 memcpy((char *)&curSolution,
 (char *)&tempSolution, sizeof(solution_t));
 }
 }
 }
 /* Decrease the temperature */

Informed Search 73

 temperature *= ALPHA;
 }
 return 0;
}

Simulated annealing permits a random walk through a state space, greedily
following the best path. But simulated annealing also probabilistically allows
following worse paths in an effort to escape local maximums in search of
the global maximum. This makes simulated annealing a random search,
but heuristically driven. For all of its advantages, simulated annealing is
incomplete and suboptimal.

Simulated Annealing Demonstration
Let’s now look at the simulated annealing algorithm in action. We’ll look at
the algorithm from a variety of perspectives, from the temperature schedule,
to a sample solution to TSP for 25 cities.

FIGURE 3.11: The temperature decay curve using Eq 3.3.

74 Artificial Intelligence

The temperature schedule is a factor in the probability for accepting a
worse solution. In this implementation, we’ll use a geometric decay for the
temperature, as shown in Eq 3.3.

 T = aT (Eq 3.3)
In this case, we use an alpha of 0.999. The temperature decay using this

equation is shown in Figure 3.11.
The relative fitness of the solution over a run is shown in Figure 3.12.

This graph shows the length of the tour during the decrease in temperature.
Note at the left-hand side of the graph that the relative fitness is very erratic.
This is due to the high temperature accepting a number of poorer solutions.
As the temperature decreases (moving to the right of the graph), poorer
solutions are not accepted as readily. At the left-hand side of the graph, the
algorithm permits exploration of the state space, where at the right-hand of
the graph, the solution is fine-tuned.

A sample TSP tour is shown finally in Figure 3.13. This particular
solution was for a 25 city tour.

FIGURE 3.12: The relative fitness.

Informed Search 75

TABU SEARCH

Tabu search is a very simple search algorithm that is easy to implement and
can be very effective. The basic idea behind Tabu search is neighborhood
search with a Tabu list of nodes that is made up of nodes previously evaluated.
Therefore, the search may deteriorate, but this allows the algorithm to widen
the search to avoid becoming stuck in local maxima. During each iteration
of the algorithm, the current search candidate is compared against the best
solution found so far so that the best node is saved for later. After some
search criteria has been met (a solution found, or a maximum number of
iterations) the algorithm exits.

The Tabu list can be of finite size so that the oldest nodes can be dropped
making room for new Tabu nodes. The nodes on the Tabu list can also be
timed, such that a node can only be Tabu for some period of time. Either
case allows the algorithm to reuse the Tabu list and minimize the amount
of memory needed.

FIGURE 3.13: Sample TSP tour optimized by simulated annealing.

76 Artificial Intelligence

Monitoring Tabu search through the state space of the 4-Queens problem
is shown in Figure 3.14. The initial position is the root, which has a score
of three (three conflicts). The goal is to minimize the score, where zero is a
solution (goal node). At the first iteration, the neighbor nodes are evaluated,
and the best selected. Note also here that our initial node has been placed
on the Tabu list. At iteration two, the neighbors are evaluated for the current
node and the best is chosen to move forward. The Tabu list now contains the
previous two best nodes. In this iteration, we’ve found a node with a score of
zero, which indicates a goal node and the algorithm terminates.

The basic flow for Tabu search is shown in Listing 3.14. Given an initial
position (shown here as a initial random position), the search space is
enumerated by taking the best neighbor node that is not Tabu. If it’s better
than our best saved solution, it becomes the best solution. The process then
continues with the last solution until a termination criteria is met.

FIGURE 3.14: The 4-Queens problem solved by Tabu search.

Informed Search 77

LISTING 3.14: The basic flow of the Tabu search algorithm.

tabu_search()
{
cur_solution = random()
evaluate_position(cur_solution)
best = cur_solution
 tabu(cur_solution)
 while (!termination_critera) {

 /* Get the best neighbor, not on the tabu list */
 cur_solution = best_non_tabu_neighbor(cur_solution)
 evaluate_position(cur_solution)

 tabu(cur_solution)
 if (cur_solution.f < best.f) {
 best = cur_solution

 }
}
 return best
}

To illustrate the Tabu search algorithm, we’ll use the N-Queens problem
as demonstrated with the best-first search algorithm. (See Figure 3.1 for a
recap of the problem and desired solution.) After discussing the basic Tabu
search implementation, we’ll explore some of the variants that improve the
algorithm.

Tabu Search Implementation
The Tabu search algorithm is very simple and can be illustrated in a single
function (see Listing 3.15, function tabu_s). This function is the core of
the Tabu search algorithm. The supporting functions are not shown here,
but are available on the CD-ROM.

O

N THE CD

 The C source language implementation of Tabu search can be found on
the CD-ROM at ./software/ch3/tabus.c.

The implementation begins with a seeding of the random function
(RANDINIT) followed by the creation of the Tabu queue. This queue
represents our Tabu list, or those elements that will not be evaluated further

78 Artificial Intelligence

if rediscovered. The initial solution is then created, and copied to the best
solution (via initBoard to create the solution, and evaluateBoard to evaluate
the value of the solution). The current solution is then loaded onto the Tabu
list so that it’s not evaluated again.

The loop then begins, for which we’ll operate forever, or until a solution
is found. For this simple problem, we’ll always find a solution in some
number of iterations. The call to reviewChildNodes evaluates the neighbor
solutions, and picks the best one that is not on the Tabu list. This solution is
returned (by reference) and then loaded onto the Tabu list. Note here that
we first check to see if it’s already on the Tabu list. If not, we check the state
of the Tabu list. If full, we need the oldest element to make room for the
new node, and then add it to the queue.

TIP Recall that queues are FIFO in nature. Therefore, removing a node from
the queue automatically removes the oldest node, satisfying the policy
for the algorithm (remove the oldest node first, if the Tabu list is full).

Finally, we check the value of the solution, and if zero, we have the goal node.
This can now be emitted using the emitBoard function.

LISTING 3.15: Basic Tabu search algorithm implementation in C.

void tabu_s()
{
 unsigned short best_sol, cur_sol;
 int best_f, cur_f;
 RANDINIT();
 tabu_q = createQueue(MAX_ELEMENTS);
 /* Get initial board */
 cur_sol = best_sol = initBoard();
 cur_f = best_f = evaluateBoard(best_sol);
 enQueue(tabu_q, best_sol);
 while(1) {
 printf(“Iteration for %x\n”, cur_sol);
 /* Return (by reference) the best non-tabu neighbor */
 reviewChildNodes(&cur_sol, &cur_f);
 /* Add the current best solution to the tabu list (remove
 * the oldest if needed).
 */
 if (!searchQueue(tabu_q, cur_sol)) {
 if (isFullQueue(tabu_q)) {

Informed Search 79

 (void)deQueue(tabu_q);
 }
 enQueue(tabu_q, cur_sol);
 }
 /* Save the best solution so far */
 if (cur_f <= best_f) {
 best_sol = cur_sol;
 best_f = cur_f;
 }
 /* Solution found? */
 if (best_f == 0) {
 emitBoard(best_sol);
 break;
 }
 }
 destroyQueue(tabu_q);
 return;
}

Tabu Search Demonstration
The Tabu search application efficiently finds the solution to this problem (a
state space of 256 unique nodes). The first evaluateBoard is the initial node
(see Listing 3.16), followed by four iterations of the algorithm. Note that while
the initial node had a cost of two, subsequent nodes evaluated were worse,
but eventually led to the goal. Tabu search permits the evaluation away from
local minimum to find the global minimum, as demonstrated here.

LISTING 3.16: Sample execution of Tabu search for the 4-Queens problem.

evaluateBoard 1281 = (f 2)
Iteration for 1281
 evaluateBoard 2281 = (f 2)
 evaluateBoard 2181 = (f 3)
 evaluateBoard 2481 = (f 3)
 evaluateBoard 2241 = (f 2)
 evaluateBoard 2221 = (f 3)
 evaluateBoard 2281 = (f 2)
 evaluateBoard 2282 = (f 3)
Iteration for 2281
 evaluateBoard 4281 = (f 1)

80 Artificial Intelligence

 evaluateBoard 4181 = (f 1)
 evaluateBoard 4481 = (f 3)
 evaluateBoard 4281 = (f 1)
 evaluateBoard 4241 = (f 3)
 evaluateBoard 4282 = (f 2)
Iteration for 4281
 evaluateBoard 8281 = (f 2)
 evaluateBoard 8181 = (f 3)
 evaluateBoard 8481 = (f 4)
 evaluateBoard 8241 = (f 2)
 evaluateBoard 8221 = (f 3)
 evaluateBoard 8281 = (f 2)
 evaluateBoard 8282 = (f 2)
Iteration for 8282
 evaluateBoard 4282 = (f 2)
 evaluateBoard 2282 = (f 3)
 evaluateBoard 4182 = (f 0)
 evaluateBoard 4482 = (f 2)
 evaluateBoard 4282 = (f 2)
 evaluateBoard 4142 = (f 2)
 evaluateBoard 4181 = (f 1)
 evaluateBoard 4184 = (f 3)
solution is 0x4182
0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

Tabu Search Variants
In order to make Tabu search more effective for very difficult search problems,
a number of modifications exist. The first of these is called intensification and
essentially intensifies the search around a given point (such as the best known
solution). The idea is that we take a promising node, and intensify the search
around this point. This is implemented using an intermediate memory, which
contains the neighbor nodes to dig into further.

One issue that comes up in local search algorithms is that they can get
stuck in local optimums. Tabu search introduces the concept of diversification
to allow the algorithm to search nodes that have been previously unexplored
to expand the space of search.

Informed Search 81

When we follow the best solutions, it’s very possible to get stuck in
local optimums for difficult problems. Another interesting variant is called
constraint relaxation, which relaxes the neighborhood selection algorithm to
accept lower quality nodes in the search space. This permits the algorithm to
expand its search to descend into lower quality solutions in search of higher
quality solutions. [Gendreau 2002]

CONSTRAINT SATISFACTION PROBLEMS (CSP)

In many search problems, we’re interested not just in the goal, but how we
got from the initial state to the goal state (take for example, the eight puzzle).
As we’ll learn later, planning systems rely on this aspect of search as a plan
is nothing more than a sequence of steps to get from a given state to a goal
state. For some problems, we’re not interested in the path to the goal, but
instead just the goal state (for example, the N-Queens problem). Problems
of this type are called Constraint Satisfaction Problems (CSP).

Formally, we can think about CSP in terms of a set of variables with a
domain of possible values, and a set of constraints that specify the allowable
combinations of variable values. Consider the following simple example. We
wish to find values for the set of variables x and y each having a domain of
{1-9}, such that Eq 3.4 (the constraint) is satisfied.

x + y = x * y (Eq 3.4)

Without much work, we know that assigning the value of two for both x
and y satisfies the constraint defined by the equation.

Graph Coloring as a CSP
One of the more popular CSPs is called Graph Coloring. Given a graph,
and a set of colors, the problem is to color the nodes such that an edge does
not directly connect to a node of the same color. Consider the map shown
in Figure 3.15. We can see a set of objects that are adjacent to one another.
Object A is adjacent to objects B and C, while object D is adjacent only to
object B. The graph portion of Figure 3.14 illustrates the graph of the map.
From this graph, we can see edges which define the adjacency of the objects
(nodes) of the graph.

Now consider the problem of coloring the map given the constraints that
each object can be one color and no colored objects should be adjacent to one
another. Can the graph be colored using three colors (red, green, and blue)?

82 Artificial Intelligence

Using trial and error, we can very easily color this simple graph by
iterating through the nodes of the graph and assigning a color so that our
constraint remains satisfied. Let’s start with node A, color it, and then step to
each remaining node, coloring as we go. In Listing 3.17, we see the coloring
process. Each node is followed by a constraint, with the color finally chosen
in parentheses.
 Node A – Pick any color (Red)
 Node B – Pick a color other than Red (Blue)
 Node C – Pick a color other than Red and Blue (Green)
 Node D – Pick a color other than Blue (Red)
 Node E – Pick a color other than Green (Red)
 Node F – Pick a color other than Green or Red (Blue)
 Node G – Pick a color other than Red or Blue (Green)

LISTING 3.17: Graph coloring through trial and error.

Through a simple process of elimination, we’ve been able to color the graph
using the constraints of previously colored nodes to determine the color to
paint adjacent nodes (final result shown in Figure 3.17).

FIGURE 3.15: The classical graph coloring CSP.

Informed Search 83

TIP The famous Four Color Theorem (to prove that only four colors are
required to color any planar map) dates back to the mid 1800s. There
were numerous failed attempts to prove the theorem and it remained
conjecture until 1976, when Appel and Haken created a formal proof.

Scheduling as a CSP
One of the most practical applications of constraint satisfaction is to the problem
of scheduling. Numerous types of scheduling problems exist, from airline
timetables to the scheduling of manufacturing processes. The scheduling
problem comes down to allocating resources to activities in time preserving a
set of constraints. For example, in a manufacturing problem, a resource can
be processed through a variety of activities each requiring a specific amount
of time. In addition, activities have precedence that must be maintained (a
resource must be processed by Activity A before Activity B). The goal of the
CSP in this problem is to identify an optimal schedule of resources through the
activities such that the end product can be optimally produced.

FIGURE 3.16: Result of Graph Coloring from Listing 3.17.

84 Artificial Intelligence

CONSTRAINT-SATISFACTION ALGORITHMS
A large number of algorithms exist to solve CSPs from the simple Generate
and Test algorithm to constraint-propagation and consistency. We’ll explore
a few of the available algorithms that can be used. Note that some of the
algorithms we’ve discussed thus far (such as depth-first search investigated
in Chapter 2, and simulated annealing and Tabu search from Chapter 3) can
be used effectively to solve CSPs.

Generate and Test
Generate and Test is the simplest of the algorithms to identify a solution for
a CSP. In this algorithm, each of the possible solutions is attempted (each
value enumerated for each variable) and then tested for the solution. Since
testing each combination of variable within the domain of each value can
be extremely slow and inefficient, heuristics can be applied to avoid those
combinations that are outside of the solution space.

Backtracking
The backtracking algorithm operates with a simple uninformed search
algorithm, such as depth-first search. At each node, a variable is instantiated
with a value and the constraint violations are checked. If the values are legal,
search is permitted to continue, otherwise, the current branch is abandoned
and the next node from the OPEN list is evaluated.

To increase the efficiency of the backtracking algorithm, the most
constrained variable is instantiated first. Take for example, node C from
Figure 3.14. In this case, the node has four neighbors (the most of any node
in the graph).

TIP Both Generate and Test and backtracking are common systematic search
algorithms, as they systematically assign values to variables in search of
a solution. Generate and Test is highly inefficient, while backtracking
suffers from trashing, or the repeated failure to find a solution for the
same reason (for example, a single variable remaining constant).

Forward Checking and Look Ahead
Forward checking is similar to backtracking, except that when a particular
node is evaluated for the current variable (called arc consistency), only those
valid nodes are considered for the OPEN list to evaluate in the future. Nodes
that can be detected as invalid are immediately ignored, resulting only in the

Informed Search 85

most promising branches for further search. This can minimize a number of
nodes generated for search, but tends to involve more work when evaluating
a single node (for forward checking of constraints).

A variation on forward checking is called look ahead. In this algorithm,
instead of simply evaluating child nodes based on the currently instantiated
value, all subsequent to be instantiated variables are instantiated given the
currently instantiated values. This results in very flat search trees. (See
Figure 3.17 for a graphical view of backtracking, forward checking, and
look ahead.)

TIP Forward checking is commonly more effective than backtracking as the
number of nodes to be evaluated is reduced.

FIGURE 3.17: Comparison of backtracking, forward checking, and look ahead constraint
propagation algorithms.

86 Artificial Intelligence

Min-Conflicts Search
An interesting heuristic repair algorithm is the Min-Conflicts heuristic. This
algorithm begins by choosing the variable that violates the fewest number
of constraints and then systematically improves the solution through using
an algorithm such as hill climbing or A* with the heuristic function h(n)
defined as the total number of constraints violated.

CHAPTER SUMMARY
Informed search methods, unlike the uninformed (or blind) methods, use a
heuristic to determine the quality of any state in the search space. This allows
the algorithm to guide the search and choose the next node to expand. In
this chapter, a number of informed search methods were explored, including
best-first search, A* search, hill-climbing search, simulated annealing, Tabu
search, and finally algorithms for constraint satisfaction. Understanding the
informed methods of search is important because much of problem solving
in AI can be refined to search methods. The key is choosing the algorithm
that is best suited to the particular problem at hand.

ALGORITHMS SUMMARY

Table 3.1: Summary of the uninformed algorithms and their characteristics.

Algorithm Time Space Optimal Complete Derivative
Best-First Search O(bm) O(bm) No Yes BFS/UCS
A* Search O(2N) O(bd) Yes Yes BestFS
IDA* O(2N) O(d) Yes Yes A*
SMA*
SimAnneal - - No No
Tabu - - No No
b, branching factor
d, tree depth of the solution
m, tree depth

REFERENCES
[Archer 1999] Archer, A.F. “A Modern Treatment of the 15 Puzzle,”

American Math. Monthly 106, 793-799, 1999.

Informed Search 87

[KGong 2005] Gong, Kevin. “A Mathematical Analysis of the Sixteen Puzzle.”
Last updated 12/2005.

Available online at http://www.kevingong.com/Math/SixteenPuzzle.html
[Gendreau 2002] Gendreau, Michel. “An Introduction to Tabu Search,”

Universite de Montreal. July 2002. Available online at http://www.ifi.uio.
no/infheur/Bakgrunn/Intro_to_TS_Gendreau.htm

RESOURCES

[Glover 1990] Glover, Fred. “Tabu Search: A Tutorial,” Interfaces, 20 (4):
74-94, 1990.

EXERCISES

1. Best-first search uses a combined heuristic to choose the best path to
follow in the state space. Define the two heuristics used (h(n) and g(n)).

2. Best-first search uses both an OPEN list and a CLOSED list. Describe
the purpose of each for the best-first algorithm.

3. Describe the differences between best-first search and greedy best-first
search.

4. Describe the differences between best-first search and beam search.
5. What are the advantages of beam search over best-first search?
6. A* search uses a combined heurstic to select the best path to follow

through the state space toward the goal. Define the two heuristics used
(h(n) and g(n)).

7. Briefly describe A* search and the problems to which it can be
applied.

8. What is meant by an admissible heuristic?
9. How do the alpha and beta parameters tune the heuristics for A*

search?
10. Briefly explain the difference between A* search and SMA*. What

advantage does SMA have over A*?
11. Hill climbing is a standard iterative improvement algorithm similar

to greedy best-first search. What are the primary problems with hill
climbing?

12. Describe Simulated annealing and if it combines iterative improvement
with stochastic search.

13. Describe the algorithm and how it differs from random search.

88 Artificial Intelligence

14. What is the purpose of the Monte Carlo step in the simulated annealing
algorithm?

15. Briefly describe the Tabu search algorithm.
16. The Tabu list can be sized for the problem at hand. What effect does

changing the size of the Tabu list have on the search algorithm?
17. Describe the intensification and diversification modifications of Tabu

search.
18. Describe the essence of a constraint satisfaction problem.
19. What are some of the major applications of constraint satisfaction

search?
20. Compare and contrast the CSP algorithms of backtracking, forward

checking, and look ahead.

C h a p t e r

AI has a long history in the genre of games. From the first intelligent
Checkers player, to the team AI developed for first-person-shooters,
AI is at the core. This chapter will cover aspects of game AI from

traditional game playing of Checkers, Chess, Othello, and Go to more recent
video games including first-person-shooters, strategy games, and others.
We’ll introduce the minimax algorithm and alpha-beta pruning, which are
central to traditional two-player games. We’ll then explore other algorithms
that can be found in modern game systems.

TWO-PLAYER GAMES

Two-player games are games in which two players compete against each
other. These are also known as zero-sum games. The goal then in playing a
two-player game is choosing a move that maximizes the score of the player
and/or minimizes the score of the competing player.

NOTE A zero-sum game is one in which the gain of one player is balanced
exactly by the loss of the other player. Zero sum games have been studied
extensively by John von Neumann and Oskar Morgenstern and then

4 AI AND GAMES

90 Artificial Intelligence

later by John Nash. Chess is an example of a zero-sum game. In contrast,
non-zero-sum games are those in which two players attempt to get
rewards from a banker by cooperating or betraying the other player. The
prisoner’s dilemma is a classic example of a non-zero-sum game. Both
zero and non-zero-sum games are types of games within the field of game
theory. Game theory has a range of uses from parlor games such as Poker,
to the study of economic phenomena from auctions to social networks.

Consider the two-player game Tic-Tac-Toe. Players alternate moves, and
as each move is made, the possible moves are constrained (see the partial
Tic-Tac-Toe game tree in Figure 4.1). In this simple game, a move can be
selected based on the move leading to a win by traversing all moves that are
constrained by this move. Also, by traversing the tree for a given move, we
can choose the move that leads to the win in the shallowest depth (minimal
number of moves).

Tic-Tac-Toe is an interesting case because the maximum number of
moves is tiny when compared to more complex games such as Checkers or

FIGURE 4.1: Partial game tree for the two-player game of Tic-Tac-Toe.

AI and Games 91

Chess. Tic-Tac-Toe is also open to numerous optimizations. Consider, for
example, the first X move in Figure 4.1. If the board is rotated, only three
unique moves are actually possible. Without optimization, there exist 362,880
nodes within the complete game tree.

NOTE Two-player games are useful as a test-bed for validating competitive
algorithms. Also of interest are one-player games (also known as puzzles).
Examples of useful one-player games include the n-disk Towers of Hanoi
puzzle and the N-puzzle (see Chapters 2 and 3).

At each node in the tree (a possible move) a value defining the goodness
of the move toward the player winning the game can be provided. So at a
given node, the child nodes (possible moves from this state in the game)
each have an attribute defining the relative goodness of the move. It’s an
easy task then to choose the best move given the current state. But given
the alternating nature of two-player games, the next player makes a move
that benefits himself (and in zero-sum games, results in a deficit for the
alternate player).

A static evaluation function (that measure the goodness of a move) is
used to determine the value of a given move from a given game state. The
evaluation function identifies the relative value of a successor move from the
list of possible moves as a measure of the move quality toward winning the
game. Consider the partial game tree in Figure 4.2.

The static evaluation function is defined as the number of possible win
positions not blocked by the opponent minus the number of possible win
positions (row, column, and diagonal) for the opponent not blocked by the
current player:

FIGURE 4.2: Tic-Tac-Toe game tree with static evaluation function.

92 Artificial Intelligence

f (n) = win_positions-lose_positions (Eq 4.1)

Using this evaluation function, we identify the goodness of the board
configuration given a move for X in Figure 4.2. The higher the result of the
static evaluation function, the closer the move brings the player toward a win.
Three moves result in the evaluation function equaling three, but only one
move can lead to a win for X as the other two lead to a subsequent win for O.
Therefore, while the static evaluation function is useful, another heuristic is
necessary to pick the move with the highest static evaluation while protecting
against a loss in the next move.

Let’s now look at an algorithm that provides a means to select a move
that brings the player closer to a win while moving the opponent further
from a win.

THE MINIMAX ALGORITHM

In simple games, algorithms exist that can search the game trees to determine
the best move to make from the current state. The most well known is called
the Minimax algorithm. The minimax algorithm is a useful method for
simple two-player games. It is a method for selecting the best move given
an alternating game where each player opposes the other working toward
a mutually exclusive goal. Each player knows the moves that are possible
given a current game state, so for each move, all subsequent moves can be
discovered.

At each node in the tree (possible move) a value defining the goodness of
the move toward the player winning the game can be provided. So at a given
node, the child nodes (possible moves from this state in the game) each have
an attribute defining the relative goodness of the move. It’s an easy task then
to choose the best move given the current state. But given the alternating
nature of two-player games, the next player makes a move that benefits them
(and in zero-sum games, results in a deficit for the alternate player).

NOTE The ply of a node is defined as the number of moves needed to reach the
current state (game configuration). The ply of a game tree is then the
maximum of the plies of all nodes.

Minimax can use one of two basic strategies. In the first, the entire game
tree is searched to the leaf nodes (end-games), and in the second, the tree is
searched only to a predefined depth and then evaluated. Let’s now explore
the minimax algorithm in greater detail.

AI and Games 93

NOTE When we employ a strategy to restrict the search depth to a maximum
number of nodes (do not search beyond N levels of the tree), the look
ahead is restricted and we suffer from what is called the horizon effect.
When we can’t see beyond the horizon, it becomes easier to make a move
that looks good now, but leads to problems later as we move further into
this subtree.

Minimax is a depth-first search algorithm that maintains a minimum or
a maximum value for successor nodes at each node that has children. Upon
reaching a leaf node (or the max depth supported), the value of the node
is calculated using an evaluation (or utility) function. Upon calculating a
node’s utility, we propagate these values up to the parent node based on
whose move is to take place. For our move, we’ll use the maximum value as
our determiner for the best move to make. For our opponent, the minimum
value is used. At each layer of the tree, the child nodes area is scanned and
depending on whose move is to come, the maximum value is kept (in the case
of our move), or the minimum value is kept (in the case of the opponent’s
move). Since these values are propagated up in an alternating fashion, we
maximize the minimum, or minimize the maximum. In other words, we
assume that each player makes the move next that benefits them the most.
The basic algorithm for minimax is shown in Listing 4.1.

LISTING 4.1: Basic algorithm for minimax game tree search.

minimax(player, board)
 if game_won(player, board) return win
 for each successor board
 if (player == X) return maximum of successor boards
 if (player == O) return minimum of successor boards
 end
end

To demonstrate this approach, Figure 4.3 shows the end-game for a
particular Tic-Tac-Toe board configuration. Both X and O have played
three turns, and now it’s X’s turn. We traverse this tree in depth-first order,
and upon reaching either a win/lose or draw position, we set the score for
the board. We’ll use a simple representation here, -1 representing a loss, 0
for a draw, and 1 for a win. The boards with bold lines define the win/loss/
draw boards where the score is evaluated. When all leaf nodes have been
evaluated, the node values can be propagated up based on the current player.

94 Artificial Intelligence

At layer 2 in the game tree, it’s O’s turn, so we minimize the children and
score the parent with the smallest value. At the far left portion of the game
tree, the values 0 and 1 are present, so 0 is kept (the minimum) and stored
in the parent. At layer 1 in the tree, we’re looking at the maximum, so out
of node scores 0, -1, and -1, we keep 0 and store this at the parent (the root
node of our game tree).

With the scores having been propagated to the root, we can now make
the best move possible. Since it’s our move, we’re maximizing, so we look for
the node with the largest score (the left-most node with a value of 0), and
we take this position. Our opponent (who is minimizing) then chooses the
minimum node value (left-most node in tree depth 2). This leaves us with
our final move, resulting in a draw.

Note that in a game where perfect information is available to each
player, and no mistakes are made, the end-result will always be a draw. We’ll
build a program to play Tic-Tac-Toe to illustrate how this algorithm can be
constructed. Like any tree algorithm, it can be built simply and efficiently
using recursion.

TIP An alternative to building the entire search tree is to reduce the depth
of the search, which implies that we may not encounter leaf nodes. This

FIGURE 4.3: End-game tree for a game of Tic-Tac-Toe.

AI and Games 95

is also known as an imperfect information game and can result in sub-
optimal strategies of play. The advantage of reducing the search tree is
that game play can occur much more quickly and minimax can be used
for games of higher complexity (such as Chess or Checkers).

Recursively searching an entire game tree can be a time (and space)
consuming process. This means that minimax can be used on simple games
such as Tic-Tac-Toe, but games such as Chess are far too complex to build
an entire search tree. The number of board configurations for Tic-Tac-Toe
is around 24,683. Chess is estimated to have on the order of 10100 board
configurations – a truly massive number.

Minimax and Tic-Tac-Toe
Let’s now look at an implementation of the minimax algorithm that uses
recursion between two functions. We’ll first explore the representation of
the problem, which can be very important to be able to store large numbers
of board configurations for game tree search.

The Tic-Tac-Toe board requires nine positions where each position can
take one of three values (an ‘X,’ ‘O,’ or empty). Bitwise, we can represent our
values in two bits, which gives us four unique identifies. With nine positions
on the Tic-Tac-Toe board, requiring two bits each, we can use a 32-bit value
to represent the entire board with numerous bits left over (see Figure 4.4
for the Tic-Tac-Toe board representation).

FIGURE 4.4: Representing a Tic-Tac-Toe board in a packed 32-bit value.

96 Artificial Intelligence

TIP From Figure 4.4, we can see that the Tic-Tac-Toe board fits easily within
a 32-bit type, including room to spare. Using a 32-bit value is also
important for efficiency as most modern computer systems use this type
internally for atomic memory access register storage.

The minimax algorithm is easily implemented as a recursive algorithm. For this
implementation, we’ll use two functions that recursively call each other. Each
function plays the game in the context of a specific player (see Listing 4.2).

LISTING 4.2: Recursive algorithm for minimax game tree search.

play_O (board)
 if end_game(board) return eval(board)
 for each empty slot in board
 new_board = board
 mark empty cell with O in new_board
 value = play_X(new_board)
 if value < min
 value = min
 end
 return value
end
play_X (board)
 if end_game(board) return eval(board)
 for each empty slot in board
 new_board = board
 mark empty cell with X in new_board
 value = play_O(new_board)
 if value > max
 value = max
 end
 end
 return value
end

A call to play_X begins the construction of the game tree with a specific
board. Each function begins with a call to end-game, which determines if
the game has ended (no cells available to place a piece, or the game has been
won). If the end-game has been detected, the board is evaluated and a score

AI and Games 97

returned. We’ll use a very simple scoring method for the Tic-Tac-Toe board.
If the game has been won by the X player, a ‘1’ is returned. If the game has
been won by the O player, a ‘-1’ is returned. Finally, if a draw results, the
value 0 is returned.

If the end-game has not occurred, the current board is iterated, looking
for empty locations. For each empty location, the function places its value (in
a new board, to avoid corrupting the current board that will be used multiple
times). The new board is then passed to the alternate function to continue

FIGURE 4.5: Demonstrating the two recursive functions in a partial game tree.

98 Artificial Intelligence

building the game tree for the opposing player. As the play_ function returns
its value, it’s compared to the current min or max value depending on the
current role of the player (X is maximizing, O is minimizing).

We could have implemented this using one function, but two functions
makes it a bit easier to understand as we know when we’re in play_X,
that we’re maximizing and when we’re in play_Y, we’re minimizing. The
relationships of the two functions and their roles are shown in Figure 4.5.

Minimax Implementation for Tic-Tac-Toe
As shown in Listing 4.3, we’ll use two functions to implement the recursive
game-tree search. We’ll discuss these two functions in particular, but not the
entire implementation, which can be found on the CD-ROM.

O

N THE CD

 The source code for the minimax Tic-Tac-Toe game player can be found
on the CD-ROM at ./software/ch4/minimax.c.

Once the human player’s move has been accepted and placed on the
board, a call is made to evaluateComputerMove (with the new game board,
and a depth of 0, since we’re at the root of the tree). We’ll discuss the
implementation for both functions now, as they fundamentally are the same,
except for the minimum and maximum checking.

Upon entry to the function, we immediately check for a win by the
opposing player (since this call is done when the opposing player has made
a move). If the prior player executed a play that won the game, the score is
returned (MIN_INFINITY for evaluateComputerMove, MAX_INFINITY
for evaluateHumanMove). This may seem opposite, but we’re maximizing
for the computer player, and we check for this in the opposing function,
evaluateHumanMove. We then walk through all available open board
positions, place our token in the space, and then call the opposing function
for evaluation. Upon return, we store the min or max, depending on the
function’s role (max for computer player that is maximizing, min for human
player that is minimizing). If no empty spaces were found, then by default
the game is a draw and we return this score.

One important point to note in evaluateComputerMove is that as we
store a new max value, which identifies the current best move, we check
the depth of this particular board configuration. As computer_move is a
global (identifying the best move so far), we only want to store this for the
board configuration containing our possible next move, not every board in
the tree to the depths of the ultimate solution. This can be identified as the
tree depth, which will be 0.

AI and Games 99

LISTING 4.3: Recursive algorithm Implementation for minimax game tree search.

short evaluateHumanMove(unsigned int board, int depth)
{
 int i, value;
 unsigned int new_board;
 short min = MAX_INFINITY+1;
 short evaluateComputerMove(unsigned int, int);
 /* The computer (max) just made a move, so we evaluate that move here
*/
 if (checkPlayerWin(O_PLAYER, board)) return MAX_INFINITY;
 for (i = 0 ; i < MAX_CHILD_NODES ; i++) {
 if (getCell(i, board) == EMPTY) {
 new_board = board;
 putCell(X_PLAYER, i, &new_board);
 value = evaluateComputerMove(new_board, depth+1);
 if (value <= min) {
 min = value;
 }
 }
 }
 /* No move is possible -- draw */
 if (min == MAX_INFINITY+1) {
 return DRAW;
 }
 return min;
}
int computer_move;
short evaluateComputerMove(unsigned int board, int depth)
{
 int i, value;
 unsigned int new_board;
 short max = MIN_INFINITY-1;
 /* The human (min) just made a move, so we evaluate that move here */
 if (checkPlayerWin(X_PLAYER, board)) return MIN_INFINITY;
 for (i = 0 ; i < MAX_CHILD_NODES ; i++) {
 if (getCell(i, board) == EMPTY) {
 new_board = board;
 putCell(O_PLAYER, i, &new_board);
 value = evaluateHumanMove(new_board, depth+1);

100 Artificial Intelligence

 if (value >= max) {
 max = value;
 if (depth == 0) computer_move = i;
 }
 }
 }
 /* No move is possible -- draw */
 if (max == MIN_INFINITY-1) {
 return DRAW;
 }
 return max;
}

FIGURE 4.6: A sample game of Tic-Tac-Toe showing the number of boards analyzed with minimax.

AI and Games 101

Minimax is a great algorithm for small depth and branching factors, but it
can consume quite a bit of storage for more complex problems. Figure 4.6
shows a sample game played using the minimax algorithm. The computer
plays four moves, chosen by minimax. For each of those four moves, a total
of 60,810 configurations are evaluated.

TIP While there are 39 unique Tic-Tac-Toe boards, there are actually many
fewer valid boards as an early win (prior to filling up the board) makes
all successor boards invalid.

What’s needed is a way to avoid searching branches of the game tree that
are obviously bad. One way to achieve this is through a pruning algorithm
called Alpha-Beta that’s used in conjunction with the minimax algorithm.

Minimax with Alpha-Beta Pruning
Alpha-beta pruning is a simple algorithm that minimizes the game-tree
search for moves that are obviously bad. Consider a Tic-Tac-Toe board where
the opposing player would win on the next move. Rather than going on the
offensive with another move, the best move is the one that defends the board
from a win on the next move.

Chess is a classic example of this problem. Consider moving the king so
that it’s in immediate danger. It’s an invalid move, and therefore the game
tree that followed this move could be pruned (not evaluated) to reduce the
search space.

This is the basic idea of alpha-beta pruning. Identify moves that are not
beneficial, and remove them from the game tree. The higher in the game tree
that branches are pruned the greater effect in minimizing the search space of
the tree. Let’s now explore the algorithm behind alpha-beta pruning.

During the depth-first search of the game tree, we calculate and maintain
two variables called alpha and beta. The alpha variable defines the best move
that can be made to maximize (our best move) and the beta variable defines
the best move that can be made to minimize (the opposing best move). While
we traverse the game tree, if alpha is ever greater than or equal to beta, then
the opponent’s move forces us into a worse position (than our current best
move). In this case, we avoid evaluating this branch any further.

Let’s look at an example game tree to demonstrate the operation of
alpha-beta pruning. We’ll use the simple game tree shown in Figure 4.7. The
algorithm begins by setting alpha to -INFINITY and beta to +INFINITY,
and then makes a call to the minimizing routine. The minimizer iterates
through the successor nodes and finds the smallest utility of three. This

102 Artificial Intelligence

becomes the beta variable in the minimizer, but is returned to the maximizer
function to become the alpha variable.

The current alpha and beta variables are then passed to the minimizer
again for check of the right-hand subtree (see Figure 4.8). Once the first
node is evaluated (from left to right), we find its utility to be two. Since this
value is less than our beta (currently +INFINITY), beta becomes two. We

FIGURE 4.7: Initial game tree for alpha-beta pruning.

FIGURE 4.8: Pruned game tree at the minimizer level.

AI and Games 103

then check to see if alpha >= beta. It is, and therefore we can conclude the
remaining nodes will be minimized to two or less (since the parent node
is a minimizer), which is less than the utility of the left-hand subtree, and
available for pruning.

The idea behind alpha-beta pruning is that if we’re evaluating moves, and
find a move that’s worse than the move we’ve discovered so far, we ignore it
and move on (don’t dig any deeper into that subtree).

O

N THE CD

 The source code for minimax with alpha-beta pruning can be found on
the CD-ROM at ./software/ch4/alphabeta.c.

The implementation for alpha-beta pruning is quite simple as the only
necessity is to maintain the alpha and beta variables and determine when
pruning should occur. Listing 4.4 provides the alpha-beta implementation,
as amended from our original minimax functions from Listing 4.3.

Listing 4.4: Updated minimax implementation for alpha-beta pruning.

short evaluateHumanMove(unsigned int board, int depth,
 int alpha, int beta)
{
 int i, value;
 unsigned int new_board;
 short min = MAX_INFINITY+1;
 short evaluateComputerMove(unsigned int, int, int, int);
 /* The computer (max) just made a move, so we evaluate that move here
*/
 if (checkPlayerWin(O_PLAYER, board)) return MAX_INFINITY;
 for (i = 0 ; i < MAX_CHILD_NODES ; i++) {
 if (getCell(i, board) == EMPTY) {
 new_board = board;
 putCell(X_PLAYER, i, &new_board);
 value = evaluateComputerMove(new_board, depth+1, alpha, beta);
 if (value < min) {
 min = value;
 }
 if (value < beta) beta = value;
 /* Prune this subtree by not checking any further successors */
 if (alpha >= beta) return beta;
 }

104 Artificial Intelligence

 }
 /* No move is possible -- draw */
 if (min == MAX_INFINITY+1) {
 return DRAW;
 }
 return min;
}
short evaluateComputerMove(unsigned int board, int depth,
 int alpha, int beta)
{
 int i, value;
 unsigned int new_board;
 short max = MIN_INFINITY-1;
 /* The human (min) just made a move, so we evaluate that move here */
 if (checkPlayerWin(X_PLAYER, board)) return MIN_INFINITY;
 for (i = 0 ; i < MAX_CHILD_NODES ; i++) {
 if (getCell(i, board) == EMPTY) {
 new_board = board;
 putCell(O_PLAYER, i, &new_board);
 value = evaluateHumanMove(new_board, depth+1, alpha, beta);
 if (value > max) {
 max = value;
 if (depth == 0) computer_move = i;
 }
 if (value > alpha) alpha = value;
 /* Prune this subtree by not checking any further successors */
 if (alpha >= beta) return alpha;
 }
 }
 /* No move is possible -- draw */
 if (max == MIN_INFINITY-1) {
 return DRAW;
 }
 return max;
}

In both functions, the alpha (upper-bound) and beta (lower-bound)
variables are maintained from the current node’s utility. Recall that upon
first call, alpha is –INFINITY and beta is +INFINITY. For each node, the
alpha is compared to the beta, and if greater-than or equal, the remaining

AI and Games 105

successor nodes are pruned (by simply returning at this point, with the
current alpha value).

So how does alpha-beta pruning help to optimize the basic minimax
algorithm? Let’s review a sample game played using alpha-beta, and the
number of boards evaluated at each step (see Figure 4.9). The computer’s
first move with alpha-beta scanned a total of 2,338 Tic-Tac-Toe boards. Recall
from Figure 4.6 that the first move for the minimax algorithm scanned 59,705
Tic-Tac-Toe boards. Quite a difference, making it possible to do game-tree
search for more complex games, such as Chess or Checkers.

FIGURE 4.9: A sample game of Tic-Tac-Toe showing the number of boards analyzed with
alpha-beta pruning.

106 Artificial Intelligence

When alpha-beta pruning is used, the number of nodes on average that
need to be scanned is O(bd/2). This compared to minimax, which will scan
on average O(bd) nodes. The branching factor can also be reduced in the
best case from b, for minimax, to b1/2 for alpha-beta pruning. When the
effective branching factor of a game tree is reduced, the possibilities for
search can extend deeper into a game tree or make more complex game
trees searchable.

TIP The average branching factor for Chess is 38, while the average branching
factor for Checkers is 8 (for non-capture positions). [Lu 1993]

CLASSICAL GAME AI

Let’s now explore the application of AI and search that’s used in classical
games such as Chess, Go, Backgammon, and even Bridge and Poker. The
application of AI to games is one of search, knowledge, and heuristics.
Understanding AI and games is important because it provides a sandbox
to test the efficacy of search algorithms. It’s also a means to understand the
complexity of games. For example, while building a worthy AI algorithm for
the game of Go is elusive, Bridge-playing AI algorithms regularly win at the
highest level of Bridge championships.

In this section, we’ll review some of the more popular games that have
found use of AI and the technologies they employ. As we’ll soon discover,
minimax with alpha-beta pruning is a popular technique among intelligent
game-playing programs, but heuristics also play a big part in building faster
and more efficient players.

Checkers
We’ll begin our exploration of AI in classical games with a quick review of
AI’s application in Checkers. Arthur Samuel, an early pioneer in AI and
machine learning, did some of the earliest work in giving computers the
ability to learn from experience. In addition to programming a computer
to play Checkers on the IBM 701 computer, he pioneered the idea of
letting the program learn by competing against itself. The resulting
Checkers program competed and defeated the fourth ranked player in
the nation. [Samuel 1959] Arthur Samuel’s work on the checkers program
was so important in non-numerical computation, that he influenced the
designers of IBM’s early computers to include new logical instructions.
[McCarthy 1990]

AI and Games 107

NOTE The Checkers program built at the University of Alberta, Canada, is the
first program to win vs a human in the machine world championship
competition. [Chinnok]

Samuel’s work remains of interest in the world of Checkers AI, but more
recently, neural networks have been employed. In the Anaconda Checkers
player, enough knowledge was provided for an understanding of the legal
moves in the game, and then the “player” was adapted using an evolutionary
strategy (genetic algorithms evolving the weights of the neural network). The
result was a Checkers player that beat a commercially available Checkers
program 6-0. [Chellapilla, Fogel 2000].

TIP The topic of genetically evolved neural networks is covered in Chapter 8.

Checkers is much simpler than Chess in both the types of pieces at play
(two for Checkers, six for Chess) and the rules that are used during play.
Further, in Checkers, each player has half the board to play (32 squares
instead of the full 64). But while simpler than Chess, Checkers is complex
in its own right. Let’s now review how Checker’s AI represents the board
and plays an intelligent game.

Checker-Board Representation
The data structure representation of a Checkers board is important because
it is a strong determiner in the efficiency of the search and evaluation aspects
of the program (as well as the amount of overall memory used by the search
game tree, opening book, and endgame database).

A common representation is a simple 8 by 8 matrix that contains one of
six values (empty, red, black, red-king, and black-king). An optimization of
the 8 by 8 is the 10 by 10 model, which includes a border of one cell around
the entire board (with these cells containing the static value offboard). This
simplifies the move generator in identifying illegal moves.

Other representations exist to pack the board into a smaller space, but
commonly rely on a particular CPU architecture and the instructions to
interrogate and manipulate the individual bits.

Techniques Employed by Checkers Programs
Checkers programs have some similarities with other types of AI players
such as Chess in that they have unique opening and ending game phases.
For this reason, we’ll see similarities between Checkers and Chess
programs.

108 Artificial Intelligence

Opening Books
Since Checkers has been widely studied from a theoretical perspective, there
is a large amount of work in investigating opening moves that can lead to
beneficial board configurations. Commonly, a database of opening moves
for a given strategy is interrogated to select the first set of moves before the
evaluation and search functions are used to drive piece movement.

Static Evaluation Function
The board evaluator is commonly a weighted numeric feature vector.
Particular features include the number of red pieces, number of black pieces,
disparity of pieces (number of red pieces minus the number of black pieces),
the number of red kings, etc. The weights are commonly tuned by a human
expert, but can also be tuned automatically (meaning the evaluation function
is no longer static).

NOTE Chinook includes 22 weighted features that define the evaluation function.
The feature weights are typically hand-tuned (in some cases for a specific
competition).

Search Algorithm
As with most classical games, minimax with alpha-beta pruning is used as the
means to search the game tree. Checkers has an average branching factor of
10, which is less than Chess, but large enough to make searching the entire
tree infeasible.

While alpha-beta pruning does a great job of minimizing the search tree,
there are other techniques that can be applied heuristically to further reduce
the game tree’s search space.

A number of search enhancements exist such as windowing, where the
alpha and beta bounds are a window of the previously computed values and
can result in faster searching of the game tree. Other modifications include
Principal Variation Search (PVS), which applies windowing to each node in
the game tree.

Move History
To speed up the search, a hash-table is constructed during play that maintains
board configurations and their characteristics. Since particular boards can
show up frequently during a game, they can be stored (with their associated
alpha and beta parameters from the minimax tree) to minimize searching
the particular subtree. The hashtable permits a fast lookup of the board
configuration to see if it has been seen before. If so, its alpha and beta
parameters are returned, which are then used by the alpha-beta search.

AI and Games 109

TIP A common hash function used in Checkers hash-tables is called Zobrist
hashing. This hash function creates an XOR of the checker board,
which results in uniquely different hash results for different board
configurations (which is necessary for fast hash store and lookup to
ensure a hit).

End-game Database
An end-game database contains a relation between board configurations
where a few pieces remain, and the strategy that will lead to a win. These
(typically compressed) databases encode the board in a compact way and
then use an index function to quickly identify the strategy to be used.

NOTE The Chinook end-game database includes all eight piece board
configurations (almost 444 billion configurations). The database
is compressed using a run-length encoding of the end-game
representation.

Chess
Chess is an interesting test-bed for intelligent applications because the game is
rich and complex with a massive search space. For this reason, traditional search
algorithms are woefully inadequate to play a reasonably intelligent game.

Chess is a game of perfect information, unlike games such as Poker,
where not all of the information is known to each player. Both players see the
same Chess board and know all moves that are possible for both players.

Early Chess computers operated in a brute-force way, as the speed of the
computer was viewed as its greatest asset. Understanding the complexity of
the game of Chess, it’s now known that more is required (but computational
speed doesn’t hurt).

NOTE Early in the days of Chess automation, limited depth search minimax was
used to determine the best move to make. With limited CPU power and
memory, minimax operated in very shallow trees, so the horizon effect
minimized the intelligence of the moves. With the advent of minimax
variations, you’ll still find minimax as the core algorithm in modern
Chess systems today.

Chess programs are commonly made up of three modules. The first is
a move generator which analyzes the current board and identifies the legal
moves that can be made. The second module is the evaluation function,

110 Artificial Intelligence

which computes a relative utility for a given board configuration (how good
a given board is compared to others for a given board configuration). The
final module is the search algorithm which must efficiently iterate through
the available board configurations, given a move, and decide which path to
take through the tree to select the next move to make.

TIP In the 1990s IBM’s Deep Blue successfully defeated Gary Kasparov, who
at the time was the world Chess champion.

Chess-Board Representation
A simple representation for a Chess board is an 8 by 8 two Dimensional
array with each cell containing an identifier representing the state of the
cell. For example, 0 would represent an empty cell, 1 for a white pawn, -1
for a black pawn, etc.

An improved representation added a two cell board to the entire board,
which was filled with a known character signifying an illegal move. This
made it easier to identify illegal moves as would be possible with knights,
and optimized the bounds checking aspect of the Chess program.

Today, a common representation for Chess programs is the bitboard.
Using a 64-bit word (available on many computers), each cell on the Chess
board can be represented by a bit in the 64-bit word. Each bit simply
determines if a piece is in the cell (1) or if the cell is empty (0). But instead
of having a single bitboard for the entire Chess board, there’s a bitboard for
every type of piece on the Chess board (one each for the white and black
piece types). A pawn bitboard would represent the placement of white pawns
on the board. A bishop bitboard would contain bits for the black bishops.
The advantage of the bitboard is that the computers that support the 64-bit
type can very easily represent and query the state of the boards through bit
masking operations, which are extremely efficient.

Another advantage of the bitboard is the efficiency in selecting a legal
move. By bitwise or-ing (combining) the bitboards, you can see which cells
are taken on the board and therefore, which moves are legal. It’s a simple
operation that’s efficient for move generation.

Techniques Used in Chess programs
Let’s now look at some of the major techniques and algorithms that are
employed by Chess programs.

Opening Book Database
The first few moves in a Chess game are important to help establish good

AI and Games 111

board position. For this reason, many Chess systems employ a database of
opening moves for a given strategy that can be linearly searched.

Minimax Search with Alpha-Beta Pruning
Chess systems typically use a modified version of game-tree search by
performing only a shallow search of the game tree using minimax with alpha-
beta pruning. While not intuitive, moves that result in smaller scores (gain
or loss) are sometimes chosen that can improve the overall board position
rather than a short-term gain.

TIP The typical branching factor for Chess is around 35, but with alpha-beta
pruning, this can be reduced to an effective branching factor of 25. Still
large, but this reduction can help greatly to allow deeper searches into
the game tree.

Other search algorithms have been devised for Chess such as aspiration
search, which sets the bound of the alpha and beta parameters to some
heuristically defined value instead of +INFINITY and -INFINITY. This
narrows the search to nodes with a particular characteristic. There’s also
quiescence search, which tries to evaluate positions that are “relatively
quiescent,” or dead. [Shannon 1950]

NOTE Another mechanism to minimize the search space is called null move
forward pruning. The basic idea here is if you do nothing (no move),
can the opponent do anything to change the board configuration to their
benefit? If the answer is no, then opponent moves could be safely pruned
from the tree. Hashed transposition tables are also employed to identify
subtrees that have already been evaluated to avoid repetitive search. The
hash is used to quickly identify the identical board configuration.

Static Board Evaluation
It should be clear that unless we’re near the end-game, our search of the
game tree will not encounter any leaf nodes. Therefore, we’ll need to have
a good utility function that helps us decide which move to make given our
nearby horizon. The utility function for Chess defines whether a given board
configuration is good or bad for the player, and it can decide this based on
a large number of factors. For example, is our king or an important piece in
jeopardy, or is the opponent in jeopardy for the current board? Is a piece lost
in the board, and if it is, what’s the cost of the piece (pawn being the least,
followed by the bishop, knight, rook, and queen in increasing value). Some

112 Artificial Intelligence

of the other evaluations that can take place include the space available for
pieces to move to and then the number of current threats (for or against).
[AI Chess]

While the minimax algorithm with alpha-beta pruning provides the
means to search the game tree, the evaluation function helps us to decide
which path is best based on a number of independent utility functions.

Othello
The game of Othello (also known as Reversi) is another game for which many
algorithms of AI have been applied. Examples of AI algorithms that have
been implemented in Othello players include basic heuristics, minimax with
alpha-beta pruning, neural networks, genetic algorithms, and others.

Othello has some common aspects that are similar to other two-player zero-
sum games. For example, like Chess, Othello has an opening game, a mid-game,
and an end-game. During these phases of the game, the algorithms may differ
for how moves are searched and selected (we’ll explore some of these shortly).

AI for Othello programs, like Chess and Checkers, regularly beat
human champions of the game. For example, in 1997, the Othello program
Logistello defeated the world champion Takeshi Murakami six games to zero.
This program retired the following year from tournament play.

Techniques Used in Othello Programs

Opening Knowledge
Like many game-playing systems, opening moves are a good indicator for
later strong board positions. For this reason, knowledge of strong initial
board positions is collected and used by many Othello-playing programs. In
some cases, the data is collected automatically through self-play.

Static Evaluation Function
The most important aspect of all Othello programs is the evaluation function.
It’s also one of the most difficult parts to program, as there are a number of
variations that can be applied. Three particular variations are disk-square tables,
mobility-based evaluation, and pattern-based evaluation. [Anderson 2005]

Disk-square tables evaluate the board from the perspective that different
cells have different values. For example, the corner cell evaluates to a high
score, where the cells next to corners evaluate to low scores.

In mobility-based evaluation, moves that maximize mobility (defined as
the number of moves available) are scored higher than those that minimize
mobility.

AI and Games 113

Finally, pattern-based evaluation functions attempt to pattern match local
configurations to determine the utility of a move. This is commonly done by
evaluating each row, column, diagonal, and corner configuration independently
and then summing them, potentially with weights for different features.

Additionally, there are a number of heuristics that can be used in
evaluating potential moves. This includes avoiding edge moves (as they
can create opportunities for the opponent), as well as maintaining access to
regions of the board (as can be the case when all edge disks in a region are
for the current player).

Search Algorithm
In the mid-and end-game phases of Othello, minimax game-tree search with
alpha-beta pruning is used. Alpha-beta pruning is especially significant in
Othello as searching nine plies with minimax alone evaluates about a billion
nodes. Using alpha-beta pruning, the number of nodes to evaluate reduces to
a million nodes and sometimes less. The Logistello Othello player makes use
of minimax with alpha-beta, among other specialized algorithms for Othello.

In addition to minimax with alpha-beta pruning, selective search can
be used effectively. Selective search is similar to iterative deepening (see
Chapter 2). In selective search, we search to a shallow depth, and then take
paths that lead to the best moves, and search them to a much deeper depth.
This allows us to search deeper into the game tree by focusing our search
to moves that provide the greatest benefit. Using this method with statistics
to understand the relationship between the shallow search and the deeper
search is called Multi-Prob-Cut, or MPC. This was created by Michael Buro
and is formalized to cut-pairs (for example, the shallow search of four levels
to the deep search of 12 levels is called a cut pair of 4/12).

End-games
As the game nears the end, the number of available moves decreases and
allows a much deeper search of the game tree. As in the mid-game, minimax
search with alpha-beta pruning works well, but variations such as MPC are
also used.

Other Algorithms
While minimax and alpha-beta are common, and used in varying stages of the
game, other algorithms have also found application in Othello. The Othello
program Hannibal makes use of multi-layer neural networks for move
determination. In order to train the neural network, a random multi-layer
neural network is created and then plays against itself. The moves that led
to a win are reinforced in the network through a backpropagation algorithm.

114 Artificial Intelligence

Conversely, the moves that resulted in a loss are negatively reinforced to
weaken their selection in the future. After many games and associated
backpropagation a reasonable Othello player results.

Go
We’ll end our discussion of perfect information games with the game of Go.
Go is one of the current AI challenges as the scope and complexity of the
game is quite large. Consider, for example, the game tree branching factor
which is a great determiner of game complexity. In the game of Chess, the
average branching factor is 35. But in Go, the typical branching factor is
300. This order of magnitude difference means that game-tree search with
minimax, even when applying alpha-beta pruning, results in shallow tree
searches. Even then, considerable memory and time are required.

TIP To give a concrete example, four moves in Chess can evaluate 35^4 board
configurations (or roughly 1.5 million). In Go, four moves would evaluate
200^4 board configurations (or 1.6 trillion).

While considerable development continues for building an intelligent
Go player, the results have not been promising. Chess, even with its massive
game trees is now viewed as simple in comparison to Go. For this reason,
some believe that when a Go program is able to play at the championship
level, AI will have matured to a new level. [Johnson 1997]

Go-Board Representation
Representing a Go board can be a little different than in other game board’s
representation. In addition to the simple board representation (19 by 19
board with values indicating empty, black stone, or white stone), other
attributes are maintained to support analysis of the board and subsequent
move generation. Attributes include groups of connected stones, eye
information (patterns of stones), and life-and-death status (which stones are
in danger of capture, and which can be kept alive).

Techniques Used in Go Programs
Go has some similarities with other game playing AI, and also some
differences. It’s interesting to note that building algorithms for computer
Go has ranged from game-tree search, rules systems, evolutionary
algorithms, and cognitive science. But given the complexity of Go, new
algorithms are likely necessary to deal with the breadth and depth found
in the game.

AI and Games 115

Opening Moves
Like most other game AI, the opening moves are important to establish a
good board configuration. For this reason, almost all Go programs use what’s
known as Joseki libraries. These libraries contain sequences of moves that
can be used prior to using the evaluation function for move generation.

Move Generation
Given the large branching factor of Go, simply taking each legal move and
generating a game tree to a certain depth is not feasible. Instead, heuristics
are applied to identify which legal moves are good candidates for review.
For this set of moves, evaluation is invoked to determine which to take.
This differs from Chess, for example, where search determines the move to
take. In Go, move candidates are generated, and then these are evaluated
to determine which is best.

Some of the heuristics that can be applied to Go move generation include
shape or group generation (attempting to match patterns in a pattern library),
keeping groups alive, or trying to kill opponents groups, and also expanding
or defending territories on the board. Heuristics can also be applied for
global moves, or those that focus on local regions of the board.

NOTE Relating to move generation, some Go programs implement Goal
Generation. This provides a higher-level view of the strategy and tactics
to be used for lower-level move generation.

Evaluation
Once a set of candidate moves are identified, the moves are ordered to
evaluate them based on their relative importance. The importance could
be based on the current goal (as dictated by a higher-level goal generator),
capturing a string, or making an eye, among others.

Evaluating the candidate moves can now be performed using game-tree
search (such as minimax with alpha-beta pruning). But Go differs quite a
bit in how the search is performed. For example, the Go Intellect program
uses heuristics within the search to determine when to cut off a search based
on a pre-determined target value, or to associate an urgency value with a
move and to consider this when evaluating the position. Other programs can
restrict moves to a region of the board and perform local tree search.

Other algorithms have been used in evaluating Go board configurations,
such as And-Or graphs, neural networks, Temporal Difference (TD) learning,
and Proof-Number Search. By far the most important characteristic of Go
programs lies in heuristics and rules developed by strong Go players or
through retrograde analysis.

116 Artificial Intelligence

End-game
The use of the end-game database finds successful use in Go, like many
other complex games. These databases can be automatically generated
from board configurations and applying rules to determine the best move
to make, and then after determining the final outcome, attributing the move
with win/loss/draw.

Backgammon
Let’s now leave the world of perfect information games and explore a
number of imperfect information games (or stochastic games). Recall
that in a perfect information game, each player has access to all available
information about the game (nothing is hidden). Backgammon introduces
the element of chance, where dice are rolled to determine the legal moves
that are possible.

What makes Backgammon so interesting in the domain of AI is that it is
extremely complex. Recall that in Chess, the average branching factor is 35,
and in Go, the branching factor can be as high as 300. In Backgammon, the
branching factor reaches 400, making it infeasible as a candidate for game-
tree search. Simple lookup of moves based on a given board configuration
is also infeasible due to the enormous number of states in Backgammon
(estimated at over 10^20).

Luckily, there are some other AI techniques that have been successfully
applied to Backgammon, and play at the same level as human champions.

Techniques Used in Backgammon Programs
While other complex games such as Chess, Checkers, and Othello have
successfully used game-tree search for move evaluation and generation, the
high branching ratio of Backgammon makes it infeasible. Two approaches
that have been applied to Backgammon are both based on multi-layer neural
networks with self-learning.

Neurogammon
The Neurogammon player (created by Gerald Tesauro) used a multi-layer
neural network and the backpropagation algorithm for training. The raw
board configuration was used as the MLP network input, and the output
defined the move to make. Neurogammon was trained using supervised
learning (backpropagation) and a database of games recorded from expert
Backgammon players. The result was a strong Backgammon player, but due
to its dependence on a finite database of recorded games, played below the
level of expert players.

AI and Games 117

TD-Gammon
The subsequent Backgammon program, also built by Tesauro, called TD-
Gammon, used a multi-layer neural network knowledge structure, but a
different technique for training as well as an improved learning algorithm.

First, TD-Gammon makes use of the Temporal Difference, or TD,
learning algorithm (covered in Chapter 8). For each play, the virtual dice
were rolled, and each of the potential 20 moves were evaluated. The move
with the highest estimated value was used as the expected value. The board
configuration was then applied to the neural network and then fed-forward

FIGURE 4.10: TD-Gammon MLP neural network representation.

118 Artificial Intelligence

through the network. A delta error was then computed given the resulting
value and the move with the highest expected value, and the error applied
to the weights of the network.

Interestingly, no expert games were applied to the network, but instead
the neural network was used to select moves for the player and the opponent.
In this way, the neural network played against itself, and after many games,
a neural network resulted that could play (and win) at the expert level.

TIP The ability for TD-Gammon to learn the game of Backgammon with
zero initial knowledge of the game is a testament to the work of Arther
Samuel’s Checkers player that introduced the idea of self-play as a means
to build a program that learned without the need for supervision.

Additionally, Tesauro updated the inputs to the neural network to
include not only the configuration of the Backgammon board, but also some
specialized inputs that characterized features of the current board.

When not learning, the TD-Gammon program used the generated neural
network as the means for move generation. For each of the possible moves
from a given board configuration, each possible new board (after the move
is made) is applied to the neural network. The result of the network is the
probability of a win, given the last move (see Figure 4.10). The process then
is simply to evaluate each of the possible moves (using a move generator)
and select the new board configuration, which yields the highest probability
for win (the output cell of the neural network).

Tesauro’s TD-Gammon has evolved since the initial version. The initial
TD-Gammon (0.0) utilized 40 hidden nodes within the neural network and
300K training games to tie for best using other Backgammon programs (such
as Neurogammon). Later versions of TD-Gammon increased the hidden
nodes to 160 and also increased the number of training games to well above
one million. The result was a strong Backgammon player that operates at the
same level as the best human players in the world. [Sutton/Barto 1998]

In addition to having zero knowledge of the game, the neural network
has learned the best opening positions that differed from those thought to
be the best at the time by human players. In fact, human players now use
the opening positions found by TD-Gammon.

Poker
Poker is a very interesting game that doubles as an ideal test-bed for AI
algorithms. It’s also a game of many aspects that can utilize different AI

AI and Games 119

techniques. As Poker is a game of imperfect information (not all information
is available to all players in terms of their cards), a Poker program must
include the ability to model the likely card the opponent has.

What makes Poker most interesting is that Poker is a game of deception. In
addition to modeling the opponent and their strategy, the Poker program must
be able to see through deceptive tactics of the opponent in terms of bluffing
(attempting to make another player believe that their hand is better than it
actually is). Of equal importance is the requirement to avoid predictable play.
Professional Poker players can easily exploit any predictable feature or pattern
of a Poker player, and therefore some element of randomness is necessary.

From a practical perspective, a number of characteristics are necessary
to build a strong Poker program. The first is the ability to evaluate the given
hand (as compared to the invisible hands of the opponents) and determine
whether the hand could win. The likelihood would be measured as a
probability, but given the need to avoid predictability of the player, bluffing
must be incorporated to make use of weak hands. The betting strategy is
also an important characteristic. While this could be based solely on hand
strength, it should also include data from the opponent model, payoff from
the pot, etc. The opponent model is another important element which is
used to understand the player’s hidden cards based on their behavior (betting
strategy, past experience, etc.).

Loki - A Learning Poker Player
The Loki Poker player is a learning program that incorporates opponent
modeling with play that can be difficult to predict. The simplified basic
architecture of Loki is shown in Figure 4.11. The primary elements of this
architecture are the Tripler Generator, Hand Evaluator, Opponent Modeler,
and finally the Action Selector.

The fundamental element of the architecture is what’s called the triple. A
triple is a set of three probabilities that represent the probability of folding,
raising, and calling. Using the public game state, the opponent’s behavior is
modeled by maintaining triples for the various game states. As the opponent
makes decisions, the triples are updated to maintain a constant picture of
what the opponent does given a certain scenario.

Using the model of the opponent, we can then identify what we should
do given our current hand and the probability of the opponent’s move. From
this, we generate a triple. The action selector can then randomly pick one
of the actions based on the probabilities in the triple. Using probabilities in
this way makes it much more difficult for the opponent to predict what we
will do, since fundamentally it can be random.

120 Artificial Intelligence

The betting strategy is based on an internal simulation given a scenario
and the expected payout. The simulation makes use of game-tree search to
identify the possible outcomes, but the search is selective to avoid the large
state space that could be enumerated.

Loki has also made use of self-play as a means to learn the game of Poker
and self-optimization. The variance in play with Loki (using probability
triples) allowed it to play numerous versions of itself, while adapting to the
play. The opponent modeling and simulation allow Loki to play reasonably
strong Poker.

Scrabble
For our final classical game, we’ll explore the game of Scrabble. The
interesting ideas behind building a Scrabble player are also ones that we’ve
seen thus far in other classical game players.

The Maven Scrabble player (created by Brian Sheppard) divides its
play into three separate phases. These are the mid-game (which lasts until
there are nine or fewer tiles left in the bag), pre-end-game phase (which
begins when nine tiles are left) and finally, the end-game phase (when no
tiles remain).

FIGURE 4.11: Basic architecture of the Loki Poker player (Adapted from [Loki 2003]).

AI and Games 121

In the mid-game phase, Maven uses a simulation-based approach to
determine which move to make. The evaluation function for choosing the
move is based simply on that move which leads to the maximum number of
points. Given the available tiles to the player, the computer identifies the
words that are possible (using the board, which determines the legal moves
that can be made). These words (potential moves) are then ordered by
quality (score). Some of these potential moves are then simulated by random
drawing of tiles (such as with Poker AI), with play continuing some number of
turns (typically two to four ply search in a game tree). During the simulation,
the points scored are evaluated and associated with the given potential move.
Performing thousands of random drawings allows the program to understand
the best move to make (word to place on the board).

The pre-end-game phase operates similarly to the mid-game, but this
phase works toward setting up a good situation for the end-game.

Finally, the end-game phase begins once no tiles are left in the bag. At
this stage in the game, no tiles are left in the bag, and each player can deduce
the remaining tiles on the opposing player’s racks (as all tiles are on the board
or in the racks). At this point, the game changes from a game of imperfect
information to one of perfect information. The B* algorithm is then applied
at this stage for a deep search of the word possibilities.

For fast word lookup, a lexicon of words is stored in a tree. This permits
fast lookup of related words where the root is the first letter of the word,
and the leaf contains the last letter for a given word. For example, the word
‘exam’ and ‘example’ would exist from the same root of letter ‘e.’

Maven shares a number of techniques that we’ve explored thus far in
classical game playing AI. Recall that many games, such as Chess, split the
game up into a number of phases. Each phase may differ in game complexity
and therefore incorporate different algorithms, or strategies, for play. Also
of interest is the use of simulation to identify the directions of game play
that can occur (as Scrabble is a game of chance and imperfect information).
Recall that Poker used simulation to identify the different paths of play given
hidden (or hole) cards. Similarly, Maven uses simulation to better understand
the effects or word selection from the perspective of opponent tiles and also
tiles that still remain in the bag.

VIDEO GAME AI

While classical games have concentrated on building optimal players using
AI, video games such as first-person-shooters (FPS) or strategy games focus

122 Artificial Intelligence

more on building AI that is both challenging and enjoyable to play. As
challenging is relative to the player’s ability, the AI ideally should be adaptive
and increase in difficulty as the player’s ability increases.

Much of the development of AI for classical games focused on brute-
force search relying on high-performance computing. Video game AI differs
greatly in that little of the CPU is available for the AI (as little as 10%, since
the majority of the CPU is tied up with the physics and graphics engines).
Therefore, novel algorithms are necessary to synthesize believable characters
and behaviors in video games that consume little of the CPU.

TIP While AI is the term commonly used to describe the opponent’s behavior
in a variety of video games, this is a misnomer. Most video game AI
is simplistic in nature and rarely rises above the level of finite state
machines.

Applications of AI Algorithms in Video Games
Let’s now review some of the techniques used in video game AI. We’ll take
a cross-section of the domains in which AI can be applied, and then explore
some of the algorithms that have been used there.

NOTE The following sections define some of the commonly used elements for
AI, but not necessarily the state of the art. See the references section for
more information on where video game AI is going today.

The application of AI into video games is a rich area for research on a
number of levels. Video game environments (such as can be found in real-
time strategy games or first-person-shooters) provide a useful test-bed for
the application and visualization of AI techniques. Games themselves have
become a huge industry (it’s estimated that games gross more than movies),
so the development of AI techniques with the associated constraints that can
be found in games (such as minimal CPU allotment) can be very beneficial.
It’s also possible to allow different algorithms and techniques to compete
against one another in these environments to understand their subtle
differences and advantages.

In addition to the entertainment value of video games, the techniques
for building believable characters also finds value (and research funding)
in military applications. For example, flight combat simulators that mimic
the strategy and tactics of veteran pilots, or the hierarchical and disciplined
behavior of troops on the ground in battle management simulators. Each

AI and Games 123

of these applications requires intelligent algorithms that may differ in
embodiment, but evolve from the same set of techniques.

NOTE The physical embodiment of many of these ideas and algorithms in the
field of robotics will be explored in Chapter 10.

Movement and Path-finding
The object of path-finding in many games from first or third-person-shooters,
to real-time strategy games is identifying a path from point A to point B. In
most cases, multiple paths exist from point A to point B, so constraints may
exist such as shortest path, or least cost. Consider, for example, two points
separated by a hill. It may in fact be faster to go around the hill, than going
over it, but going up the hill could give some advantage to the player (say an
archer with an enemy opponent on the opposite down-slope).

In some cases, path-finding is search. The landscape upon which we’re
to plot a route is a graph of nodes representing waypoints. Each edge of
the graph has a given cost (for example, plains could have an edge cost
of one, where inclines could have an edge cost consistent with its slope).
Considering path-finding as search through a graph of nodes with weighted
edges, the A* search algorithm (explored in Chapter 3) is ideal for this
application. It is optimal compared to DFS and BFS, and can give us the
optimal path.

The problem with A* is that it’s a very compute-intensive algorithm.
Considering the number of agents in a real-time strategy game that need to
move around the map, the amount of time taken by A* would be multiplied.
As the AI in a real-time strategy game would also need to support high-level
goal planning and economic strategy, path-finding is but one element that
should be optimized.

Luckily, there are some other options to simplify the operation of
determining which move to make in a map. We’ll start with a simple example
that demonstrates offensive and defensive movement using a graph and
lookup table, and then explore some of the other techniques used.

Table Lookup with Offensive and Defensive Strategy
Any map can be reduced to a graph, where the nodes are the places that can
be visited, and the edges are the paths between the nodes. Reducing a map
in this way does a couple of things. First, it potentially reduces a map with
an infinite number of points into a graph with fewer points. The edges, or
the paths between nodes in the graph, define the various ways that we can
travel around our graph (and our map).

124 Artificial Intelligence

Consider the simple map of a room in Figure 4.12. In this map, the human
player enters at the bottom. Our Non-Player-Character (or, NPC) enters at
the top. There are many locations on the map that the player and NPC could
go, but very few of them are important. Note that this is a simplistic example,
and a real system would include many more map points.

Consider that we’re developing an AI for an FPS. The object is for
the player and NPC to fight one another, but this implies that we must
instill in our NPC the ability to attack the player by moving to his location.
Additionally, if our NPC is injured, we want to avoid the player to regain
our strength. To make it simpler for our NPC agent, we’ll encode the map
as a simple graph. This graph contains the defensive positions that will be
important to our NPC (see Figure 4.13).

In Figure 4.13, our simple map has been reduced to an even simpler
graph. This contains the seven positions that our NPC agent may exist.
Additionally, the edges of the graph show the legal moves that our NPC

FIGURE 4.12: Simple map for a NPC AI.

AI and Games 125

agent may make. Note that since the player may exist at any location in the
map (not restricted to the graph), we define rectangles for the player. If the
player is in the rectangle, we’ll simplify his position to the node contained
in the rectangle. The purpose of this will become clear shortly.

NOTE We’ll assume here, for the sake of simplicity, that the NPC always sees
the player. In a more complicated system, the player would need to be
in the NPC’s field-of-view (FOV) in order for the NPC to identify the
player’s presence.

We now have a simple graph for our NPC. The next step is to define
what our NPC agent should do depending on its strategy. For simplicity,
we’ll implement two basic strategies. If our NPC is healthy, we’ll take an
offensive strategy to attack the player. If the NPC is not healthy, then we’ll
take a defensive strategy.

FIGURE 4.13: Simple map reduced to an even simpler graph.

126 Artificial Intelligence

Let’s begin with the offensive strategy (shown in Figure 4.14). The
strategy is implemented as a simple graph connectivity matrix with two
dimensions. The rows represent the current location of our NPC, while the
columns represent the current location of the player. Recall that our player
can exist anywhere in the map. If the player is in a rectangle, we’ll use the
node contained in the rectangle to identify the player’s current position. If
the player is not in a rectangle, we’ll simply define this as unknown.

The strategy defined in Table 4.14 is one of following the player to his
position in the map. For example, if the NPC is at node E, and the player is
around node A, then the NPC will use the offensive strategy table and move
to node D. If the player then moves from node A to node C, we use the table
again for the NPC at node D, and the player at node C, which results in the
NPC moving to node C (on the attack).

FIGURE 4.14: Lookup table for the NPC agent offensive strategy.

AI and Games 127

TIP The lookup table provides for reactive behaviors, as our NPC simply
reacts to the movement of the player. Note that it’s also stateless, no state
is kept between lookups, and the NPC simply uses its position and the
player’s position to determine the next move.

The defensive strategy is shown in Table 4.15. This strategy is one of
taking some time to heal by avoiding the player. Take, for example, the NPC
at node D and the player again around node A. The lookup table returns a
move from node D to node E, essentially putting distance between us and
the player. If the player then moved to node D, the lookup table would
return node F, moving away from an eventual move by the player to node
E. Note that in some cases, the best move is to not move at all. If the NPC
was at node G and the player at node B, the return value from the table is
‘-’ indicating to simply stay put.

FIGURE 4.15: Lookup table for the NPC agent defensive strategy.

128 Artificial Intelligence

While simple, this method gives us an efficient way to build offensive and
defensive strategies for an NPC. No search is involved, simply table lookup.
To add some level of unpredictability in the offensive strategy, the move
could be selected randomly with some probability, rather than simply taking
the lookup value.

NOTE Consider also the offensive strategy in Figure 4.14 as a path-finder to a
given node. If we need to get from node G to node B, the lookup table
takes us from node G to node C and then finally to node B. The lookup
table in this way gives us a simple and efficient algorithm to get from
point A to point B. This works well in static environments, but tends to
fall apart if the environment changes over time.

In large environments, it can also be possible to segregate a map into
multiple connected maps, each having funnel points for which an NPC may
travel. Figure 4.16 shows a map of three zones. Rather than including a single
lookup table for all points, three separate lookup tables would exist. If our
NPC agent was in the left room, it could use the lookup table to determine
which path to take to a given node. If the destination were outside of the
room, it would by default move to node A, and from there, the external
lookup table would take over for routing the NPC to its destination. If the

FIGURE 4.16: Segregating a map into separate zones to simplify path-finding.

AI and Games 129

destination were to the room on the right-hand side, the NPC would be
directed to node B, and upon reaching node B, use its lookup table to get
the rest of the way.

It’s also very common for these algorithms to time-slice their processing.
This permits the work to be done over a number of iterations, without tying
up the CPU on a single operation.

NPC Behavior
In the last section, we gave our NPC the ability to traverse a map using
strategies based on the NPC’s health (using intentional offensive and
defensive strategies). Let’s now explore some options for giving our NPC
the ability to behave intelligently in its environment.

The behavior of an NPC can’t be considered in isolation, because
behavior is ultimately grounded in the environment. The NPC must be
able to perceive its environment (see, hear, etc.). With the information
perceived from the environment (as well as internal state information such
as motivation), the NPC can reason about what should be done. The result
of reasoning is potentially an intentional act, which is performed as an action
(see Figure 4.17). This action (and subsequent actions) is what we externally
view as the agent’s behavior.

FIGURE 4.17: The closed Loop of reasoning.

130 Artificial Intelligence

The NPC will be equipped with a set of sensors that allow it to sense, or
perceive, its environment. These sensors could indicate objects (such as the
player) in its field-of-view in terms of sight, or direction of an object using
localization of sound. With a set of sensors as input, the NPC can now reason
about what to do. The internal state is also kept to indicate a higher-level
set of goals that are to be achieved, or to indicate the health of the NPC
(which could change its strategy). Given the state of the environment and
the internal state of the NPC, an action can be selected. This can alter the
environment, change the NPC’s internal state, and result in a change in what
the NPC will do next. An NPC’s action could be moving to a new location (as
described in the previous section), communicating with other NPCs (possibly
about the location of the player), changing its weapon, or changing its stance
(going from an upright to a prone position).

Let’s now review a few of the options that can give our NPC some basic
reasoning abilities.

Static State Machines
One of the simplest methods, and also one of the most common, is the state
machine. State machines consist of a set of states, and arcs, between the
states that define the conditions necessary for transition. Consider the simple
game AI state machine in Figure 4.18.

Our NPC sentry defined by the state machine (better known as a Finite
State Machine, or FSM) has two basic functions in life. The NPC marches
between two locations, guarding some entry from the player. When the
player is in sight, the NPC fights to the death. The state machine implements
this as three simple states (one can think of them as mental states). In the
first state, the NPC marches to the location identified as X. It continues to
march to X unless one of two things happen. If the NPC reaches location X,
it’s at its destination for the state, and we transition to the alternate march

FIGURE 4.18: State machine for a simple game AI.

AI and Games 131

state. If the NPC sees the player, it attacks. If neither of these events occurs,
the NPC continues marching.

When the NPC sees the player, by entering its field-of-view, the FSM
transitions to the attack state. In this state, the NPC fights to the death. If the
NPC dies, then the state machine is no longer active (the NPC lies lifeless
in the environment). If the NPC defeats the player, it begins marching again
toward location X.

There’s not much to the FSM, but they are simple and easy to debug.
They are also very predictable, but it’s possible to add transition probabilities
to give the NPC a small element of randomness.

Layered Behavior Architectures
Our previous FSM defined a very simple agent that had two things on its
mind, marching and attacking. What was most important to the NPC was
attacking, but while no player was in its field-of-view, it was quite happy to
march back and forth. But what happens if our NPC has more things to worry
about. If the NPC’s health is low, it should head to the infirmary. If the NPC is
low on ammo, it should head to the armory to reload. If more than one player
appears to attack, should it fight, or rush to the guard house to pull the alarm?
These aren’t entirely complex, but the NPC now needs to engage in some
thought to determine the most appropriate action for the given scenario.

One way to handle this conflict in action selection is Rodney Brooks’
subsumption architecture. This architecture confines responsibilities to
isolated layers, but allows the layers to subsume one another if the need
arises. Let’s look at our simple NPC again to see how we might map the new
refined behaviors into subsumption (see Figure 4.19).

FIGURE 4.19: Behavior layers for the simple NPC.

132 Artificial Intelligence

Figure 4.19 illustrates one example of our NPC’s requirements to a
layered architecture. These levels should be viewed in relative importance.
At level one, our NPC performs his guard duty, dutifully marching along his
route. If the player comes into view, the NPC switches to the attack layer
to rid the environment of the pesky player. From Brookes’ architecture, the
Attack layer subsumed (took priority over) the March layer. If no players
are in the field-of-view, and the NPC needs to be healed or replenish his
ammunition, the sustain layer takes over to perform those actions. Finally, the
NPC will turn to the survive layer if more than one player is seen in the field-
of-view. As the constraints are met within the layers, the NPC will default to
the lowest layer. Therefore, once the player is disposed of, and the ammo and
health are returned, the NPC will return to the march in level one.

Within each of these layers, individual FSMs can be used to implement
the relevant behavior. In this way, entirely new state machines are consulted
based on the current behavior layer for the NPC.

NOTE An interesting analogy to NPCs in video games is the field of Intelligent
Agents. We’ll explore the field of Intelligent Software Agents in
Chapter 11.

Other Action-Selection Mechanisms
We’ll discuss other relevant algorithms that could be used to select an action
for an NPC in the following chapters. Neural networks are an interesting
example of behavior selection (classification), as are planning algorithms
and numerous other machine-learning algorithms (reinforcement learning,
to name one). The machine-learning algorithms are of particular interest as
they can instill the ability for the NPC to learn and behave in new ways given
previous encounters with the player.

NOTE In a typical game, a game engine provides the base platform for graphics
and fundamental game-play. The NPC behaviors are commonly
implemented using high-level scripts, with a script interpreter
implemented within the game engine. This provides a great amount of
flexibility, where the game engine is implemented in a high-level language
such as C or C++ for efficiency, and the NPC behaviors are implemented
in a scripting language for flexibility.

Team AI
In many games, there’s not just a single NPC soldier that we’re fighting
against, but an entire army that must work together in harmony with a single

AI and Games 133

or handful of goals in mind. The control can exist at a number of levels within
a hierarchy (see Figure 4.20), from the squad leader directing troops to flank
an enemy in the field using real-time battlefield information, to the general
managing his entire army to implement the higher-level military strategies.

Managing an overall army can entail a large number of problems, from
scheduling and production, to resource allocation, to the overall strategy and
tactics of the force in the field.

The problem here can be simplified greatly by minimizing the number
of levels or organization. First, the individual soldiers simply follow orders,
and unless they are routed, can fight to the death. These individual units
can be programmed using finite state machines, or other simple mechanisms
for behavior.

TIP Following orders is a requirement, but there’s also something to be said
for autonomy at the soldier level, taking advantage of a local situation
to improve the chances of a global win.

The problem to solve then is the higher-level control of the entire force. This
can be subdivided as well, especially when forces are split for independent
goals. At the highest level is the Strategic AI. This layer of the AI has the

FIGURE 4.20: Organizational structure of a simplified army.

134 Artificial Intelligence

global view of the battlefield, troop strengths, available resources, etc. Next is
the Tactical AI whose job is to implement the strategy provided from above.
At the lowest rung is the individual soldier, on whose collective shoulders
that overall strategy relies.

NOTE For this discussion, we’ll focus on Team AI that opposes a human player,
but much of this can also be applied to Team AI that cooperatively
supports the player, though this can be considerably more difficult. For
example, working cooperatively with the player requires that the NPC
help, but also stay out of the player’s way.

Goals and Plans
An interesting mechanism for high-level control over a hierarchy of military
units is in defining a goal, and then creating a plan to reach that goal. Also
necessary is the need to reformulate a plan, when it eventually fails.

Let’s first discuss the planning vernacular and then explore how it can
be applied to team AI. First, there’s the goal. A goal can be an end-goal
(for the end of the game) or an intermediate goal that moves us closer to
an end-game situation. Formally, a goal is a condition that is desired to be
satisfied. Example goals include taking an enemy position, destroying a
bridge, flanking an enemy, etc. To reach a goal, we must perform a series of

FIGURE 4.21: The plan and its elements.

AI and Games 135

actions, which are independent steps within a plan. Each action potentially
has a prerequisite that must be met in order for the action to be performed.
Example actions include moving a set of NPC units to a location, attacking
the enemy, planting a charge, etc. The plan, then, is a set of actions that when
performed in the given order, achieve a goal (see Figure 4.21). The method
by which a plan is formulated is through the use of a planner.

As an example, let’s say we have two NPCs that desire to attack a player
that is firing from a covered position. An effective attack is for one NPC
to provide covering fire at the player, while the other NPC moves to a
flanking position to be in a better position to attack the player. This could
be represented simply as shown in Figure 4.22.
The goal of the plan is to eliminate the player that’s in a covered position
(meaning the player is shielded from fire from the NPC’s current position).
To eliminate the player, one NPC provides covering fire on the player so
that another NPC can move to a flanking position to attack the player. Once
this NPC is in a position to fire, the other NPC rushes the player’s position.
Implicit in the plan is cooperation, and through a strict ordering of the

FIGURE 4.22: Sample plan to eliminate a player in a covered Position.

136 Artificial Intelligence

actions, coordination. Later, we’ll see how planning is achieved (and like
much of AI, it’s fundamentally a search problem).

NOTE Implicit in planning are preconditions (or prerequisites) that must be
met in order for the plan to be valid. Consider the plan in Figure 4.22 if
only one NPC is present. What happens if NPC_1 is eliminated while on
the move to its flanking position? Preconditions must be met for a plan
to be valid, and if at any time actions in a plan cannot be performed, the
plan cannot continue. Therefore, in dynamic environments, planning and
replanning go hand-in-hand.

Real-Time Strategy AI
A final interesting use of AI is in the development of real-time strategy
games. Real-Time Strategy AI differs from Team AI in that we will deal not
only with the militaristic aspects of the game, but also the economic aspects.
For example, in a real-time strategy game, elements of the civilization must
engage in resource gathering as part of a higher-level goal of building an
army to defeat an opponent.

For example, in the beginning of a real-time strategy game, the focus
is societal and military buildup. This involves creating new citizens to build
the economy. Once the economy reaches a certain level, a military buildup
can occur to attack and defeat an enemy.

The conditions described could be embedded within the game engine
itself, but for flexibility, could be implemented separately permitting ease
of modification without having to rebuild the game engine. One possibility
that’s been used in the past is Rule-Based Systems (or RBS).

Rule-Based Programming
Rule-based systems are an effective way to encode expert knowledge about
game play into a strategy game. Rule-based systems are so interesting
that a standards committee has been formed to study their use in games.
[IGDA 2005]

NOTE We’ll explore rule-based programming as part of the review of knowledge
representation in Chapter 6.

A rule-based system is made up of two memories, one that holds facts,
and another that holds a set of rules that exist to determine the behavior. A
rule-matching algorithm is applied to the facts, and those rules that match
facts are saved into the conflict-set. This set of rules is then reviewed and

AI and Games 137

one rule picked to fire in a process called conflict resolution. The rule is then
applied and the working memory is updated.

NOTE Selecting a rule to fire from a list of rules that have matched can use a
number of algorithms. One could select at random, the last rule to match,
or the rule that’s most specific (had the largest number of conditions).

FIGURE 4.23: Typical flow of a rule-based system.

138 Artificial Intelligence

Now that we’ve explored the process, let’s look at the anatomy of facts
and rules. A fact is an atomic element of knowledge that can be used in
conjunction with other facts to reason using rules. Facts can take on a
variety of forms; one of the most common is the S-expression (or Symbolic
Expression), which simply is a way of structuring the data. Consider the
following four facts in our simple knowledge base:

 (opponent-1 size large)
 (opponent-2 size small)
 (army size large)

Regarding our game world, these facts tell us that the first opponent is
large in size, the second opponent is small, and our army is also considered
large. Before looking at some rules given our small knowledge base, let’s
review the structure of a rule.

Rules are made up of two things, antecedents and consequents. If you
think about a rule as an if/then construct, then the ‘if’ is the antecedent, and
the ‘then’ is the consequent. Consider the following simple comparison:

 if ((opponent.size <= SMALL_SIZE) &&
 (army.size >= LARGE_SIZE)) {
 attack_opponent();
 }

This conditional simply says that if the opponent’s military size is small,
and ours is large, we’ll attack them. A simple rule that encodes this behavior
could be implemented as follows:

 (rule “Attack Opponent Based Upon Size”
 (?opponent size small)
 (army size large)
 ==>
 (army attack ?opponent))

Note that the ‘?opponent’ element will match any opponent in the
working memory, and when it matches one, we’ll use this same opponent
when attacking. Once this rule fires, our working memory will exist as:
 (opponent-1 size large)
 (opponent-2 size small)
 (army size large)
 (army attack opponent-1)

AI and Games 139

This new fact would drive behavior within the game engine to formulate
a plan to attack the enemy. The RBS could also remove facts as driven by
consequents to reflect the dynamic environment of the game.

TIP To deal with sizes, the RBS can ‘fuzzify’ values from ranges to distinct
sets. For example, the size used in the previous examples could
identify the range [0..4999] as small, [5000..9999] as medium, and
[10000..50000] as large. This reduces the complexity of the inputs and
simplifies the rules base.

An RBS is a useful method for encoding knowledge into a game that
can be used to drive behaviors, especially high-level behaviors in matters
of strategy. It’s also advantageous because it allows the strategy element to
be decoupled from the game engine and permits later tweaking by game
developers.

CHAPTER SUMMARY

This chapter provided a broad spectrum of techniques used in game AI, from
classical games, to modern video games. In classical games such as Chess and
Checkers, and even information imperfect games such as Poker, the minimax
game-tree search algorithm with alpha-beta pruning can be found. In these
games, the goal of developers is to build an opponent that can defeat world-
class players. In contrast, the goal in video games is to build opponents that
are challenging to play, but not perfect. Even with this limitation in mind,
various AI technologies can be found in modern games, from neural networks,
to rule-based systems and decision trees, to embed game opponents that are
both challenging and adaptive to the human’s level of play.

REFERENCES

[AI Horizon] Available online at:
http://www.aihorizon.com/essays/chessai/boardrep.htm
[AI Chess] Available online at:
http://www.cs.cornell.edu/boom/2004sp/ProjectArch/Chess/algorithms.

html
[Archer 1999] Archer, A.F. “A Modern Treatment of the 15 Puzzle,”

American Math. 106:, 793-799, 1999.

140 Artificial Intelligence

[Anderson 2005] Anderson, Gunnar. “Writing an Othello program,” Available
online at:

http://www.radagast.se/othello.
[Chellapilla, Fogel 2000] Chellapilla, Kumar and Fogel, David B. “Anaconda

Defeats Hoyle 6-0: A Case Study Competing an Evolved Checkers
Program against Commercially Available Software (2000).” Proceedings
of the 2000 Congress on Evolutionary Computation CEC00.

[IGDA 2005] “Working Group on Rule-based Systems,” AI Interface
Standards Committee, The 2005 AIISC Report, 2005. Available
online at:

http://www.igda.org/ai/report-2005/rbs.html
[Johnson 1997] Johnson, George. “To Test a Powerful Computer, Play an

Ancient Game.” Introduction to Computation and Cognition. Available
online at:

http://www.rci.rutgers.edu/%7Ecfs/472_html/Intro/NYT_Intro/ChessMatch/
ToTest.html

[Loki 2003] Jonathan Schaeffer, Darse Billings, Lourdes Pena, Duane
Szafron. “Learning to Play Strong Poker.” 2003.

[Lu 1993] Lu, Chien-Ping Paul. “Parallel Search of Narrow Game Trees.”
Master’s thesis, University of Alberta, Department of Computing
Science, Edmonton, Canada, 1993.

[McCarthy 1990] Available online at:
http://www-db.stanford.edu/pub/voy/museum/samuel.html
[Samuel 1959] Samuel, A. L. “Some Studies in Machine Learning using

the Game of Checkers,” IBM Journal of Research and Development,
1959.

[Shannon 1950] J. Schaeffer “1989 World Computer Chess Championship,”
Computers, Chess and Cognition, Springer-Verlag, New York, 1990.

[Sutton/Barto 1998] Sutton, Richard S., and Barto, Andrew G. “Reinforcement
Learning: An Introduction.” MIT Press, 1998.

RESOURCES

Bruce Moreland’s Chess Programming Topics. Available online at:
http://www.seanet.com/~brucemo/topics/topics.htm
[Chinook] Available online at:
http://www.cs.ualberta.ca/%7Echinook/
The Intelligent Go Foundation. Available online at:
http://intelligentgo.org/en/computer-go/overview.html

AI and Games 141

Bouzy, Bruno and Cazenave, Tristan. “Computer Go: an AI Oriented
Survey.” Universite Paris.

Brooks, Rodney. “A Robust Layered Control System for A Mobile Robot,”
IEEE Journal of Robotics and Automation RA-2, April 1986.

Tesauro, Gerald. “Temporal Difference Learning and TD-Gammon.”
Available online at:

http://www.research.ibm.com/massive/tdl.html
TD-learning, Neural Networks, and Backgammon. Available online at:
http://www.cs.cornell.edu/boom/2001sp/Tsinteris/gammon.htm
[Sheppard 2002] Sheppard, Brian. “World-championship-caliber

Scrabble,”
Artificial Intelligence 134: (2002), 241-275.

EXERCISES

1. What is meant by adversarial search, and how does it differ from
traditional tree search?

2. What is ply in game-tree search?
3. Given the game tree shown in Figure 4.24, what is the value at the root

node?
4. Minimax can search to the leaves of the tree, or to a predefined depth.

What are the consequences of ending a search at a predefined depth?

FIGURE 4.24: Sample game tree for minimax search.

142 Artificial Intelligence

5. Given the game tree shown in Figure 4.25, what is the value at the root
node and which nodes are pruned from the search?

6. What was the first successful game-playing program that used self-play
to learn an effective strategy?

7. Explain what is meant by perfect-information and imperfect-information
games. Give a few examples of each, and define which type they are.

8. Define some of the similarities and differences for building a game-
playing AI for Checkers and Chess.

9. What are some of the major differences between building AI for classical
games and video games?

FIGURE 4.25: Sample game tree for minimax search with alpha-beta pruning.

C h a p t e r

Knowledge Representation (KR), as the name implies, is the theory
and practice of representing knowledge for computer systems. By
that we mean concise representations for knowledge in a form that’s

directly manipulatable by software. This is an important distinction because
representing knowledge is only useful if there’s some way to manipulate the
knowledge and infer from it.

INTRODUCTION

From the perspective of Strong AI, KR is concerned with the cognitive
science behind representing knowledge. How, for example, do people
store and manipulate information? Many of the early representation
schemes resulted from this research, such as frames and semantic
networks.

This chapter will explore the various schemes for the representation of
knowledge, from the early representation methods to present-day methods
such as the Semantic Web. We’ll also explore some of the mechanisms
for the communication of knowledge, as would be used in multi-agent
systems.

KNOWLEDGE
REPRESENTATION5

144 Artificial Intelligence

TYPES OF KNOWLEDGE

While a large taxonomy of the varying types of knowledge, could be created
we’ll focus on two of the most important, declarative and procedural.

Declarative (or descriptive) knowledge is the type of knowledge that
is expressed as declarations of propositions (or factual knowledge). On the
other hand, procedural knowledge is expressed as the knowledge of achieving
some goal (for example, how to perform a given task). Procedural knowledge
is commonly represented using productions, and is very easy to use but
difficult to manipulate. Declarative knowledge can be represented as logic,
and is simpler to manipulate, but is more flexible and has the potential to be
used in ways beyond the original intent.

NOTE In Chapter 11, we’ll investigate intelligent agent architectures, some
of which operate on declarative knowledge (such as Prodigy), where
others utilize procedural knowledge (such as the Procedural Reasoning
System).

Other types of knowledge exist, for example, analogous knowledge
(associations between knowledge) and meta-knowledge (knowledge about
knowledge). We’ll explore these types of knowledge as well.

THE ROLE OF KNOWLEDGE

From the context of AI, representing knowledge is focused on using that
knowledge to solve problems, and the implication that knowledge is more
than just factual information. Therefore, the manner in which the knowledge
is stored is important. For example, we can store knowledge in a human
readable form and use it (such as this book), but knowledge stored in this
form is not readily useful by AI. Therefore, the knowledge must be stored
in a way that makes it possible for AI to search it, and if necessary, infer new
knowledge from it.

The primary goal of knowledge representation is to enable an intelligent
entity (program) with a knowledge base to allow it to make intelligent
decisions about its environment. This could embody an embodied agent
to know that fire is hot (and it should be avoided), or that water in certain
cases can be used to douse a fire to make it passable. It could also be used
to reason that repeated attempts to log in to a secure address is potentially
an attempt to hack a device, and that the peer address associated with this
activity could be monitored on other activities.

Knowledge Representation 145

SEMANTIC NETWORKS

Semantic networks are a useful way to describe relationships between a
numbers of objects. This is similar to an important feature of human memory,
where there exists a large number of relations. Consider the concept of
free association. This technique was developed by Sigmund Freud, where
the patient continually relates concepts given a starting seed concept. The
technique assumed that memories are arranged in an associative network,
which is why thinking of one concept can lead to many others. The idea
behind free association is that during the process, the patient will eventually
stumble across an important memory.

Consider the example shown in Figure 5.1. This simple semantic network
contains a number of facts and relationships between that knowledge. Typical
semantic networks use the “IS_A” and “AKO” (A Kind Of) relation to link
knowledge. As shown here, we’ve updated the relationships to provide more
meaning to the network. The rectangles in the network represent objects,
and the arcs represent relationships. Here we can see that two capital cities
are shown, and are capitals on the same continent. One capital is of a state of
the United States, while another is of Venezuela. Simple relations also show
that two cities of New Mexico are Albuquerque and Santa Fe.

FIGURE 5.1: A simple semantic network with a small number of facts and relations.

146 Artificial Intelligence

The interesting characteristic of semantic networks is that they have the
ability to represent a large number of relationships between a large numbers
of objects. They can also be formed in a variety of ways, with varying types
of relationships. The construction of the semantic network is driven by the
particular application.

TIP An interesting example of a semantic network is the Unified Modeling
Language, or UML. UML is a specification for object modeling in a
graphical notation. It’s a useful mechanism to visualize relationships of
large and complex systems, and includes the ability to translate from a
graphical form (abstract model) to a software form.

FRAMES

Frames, as introduced by Marvin Minsky, are another representation
technique that evolved from semantic networks (frames can be thought of
as an implementation of semantic networks). But compared to semantic
networks, frames are structured and follow a more object-oriented abstraction
with greater structure. The frame-based knowledge representation is based
around the concept of a frame, which represents a collection of slots that can
be filled by values or links to other frames (see Figure 5.2).

An example use of frames is shown in Figure 5.3. This example includes
a number of different frames, and different types of frames. The frames that
are colored gray in Figure 5.3 are what are called generic frames. These
frames are frames that describe a class of objects. The single frame which is
not colored is called an instance frame. This frame is an instance of a generic
frame. Note also the use of inheritance in this example. The Archer generic
frame defines a number of slots that are inherited by generic frames of its
class. For example, the Longbowman generic frame inherits the slots of the
Archer generic frame. Therefore, while the weapon slot is not defined in the
Longbowman frame, it inherits this slot and value from the Archer frame.

Similarly, ‘john’ is an instance of the Longbowman frame, and inherits
the ‘weapon’ slot and value as
well. Note also the redefinition
fo the ‘defense’ slot value.
While a frame may define
a default value for this slot,
it may be overridden by the
instance frame.

FIGURE 5.2: The structure of a frame.

Knowledge Representation 147

Finally, in this example, we also relate generic frames through
comparison. We define that an instance of an Archer is strong against an
instance of the Pikeman frame.

What makes frames different than semantic networks are the active
components that cause side effects to occur when frames are created,
manipulated, or removed. There are even elements that control actions for
slot-level manipulations. These can be thought of as triggers, but are also
referred to as Demons. Adding triggers to a frame representation language is
called procedural attachement and is a way to include inferential capabilities
into the frame representation (see Table 5.1).

TABLE 5.1: Procedural attachments for use in frames.

Demon Action
if_new Triggered when a new frame is added.

FIGURE 5.3: A set of frames for a strategy game.

148 Artificial Intelligence

if_added Triggered when a new value is placed into a slot.
if_removed Triggered when a value is removed from a slot.
if_replaced Triggered when a value is replaced in a slot.
if_needed Triggered when a value must be present in an instance

frame.

An example of this is shown in Listing 5.1. In this example, we define
some of the frames shown in Figure 5.3. With frames (in iProlog), we can
define ranges for some of the needed parameters (such as defense), and if
the value falls outside of this range, indicate this issue to console. This allows
the frames to not only include their own metadata, but also their own self-
checking to ensure that the frames are correct and consistent.

LISTING 5.1: Frame examples with iProlog.

Archer ako object with
 weapon: bow;
 armor: light;
 strong-against: Pikeman;
 weak-against: Heavy-cavalry;

Longbowman ako Archer with
 origin: britain;
 attack: 6;
 range 0..9
 defense: 2;
 range 0..9
 help if new value > 9 then
 printf(new value, “defense too large.”
john isa Longbowman with
 if_removed print(“No longer...”)!
 age: 28;
 range 1..70
 defense 3;

An extension of the frame concept is what are called scripts. A script is
a type of frame that is used to describe a timeline. For example, a script can
be used to describe the elements of a task that require multiple steps to be
performed in a certain order.

Knowledge Representation 149

PROPOSITIONAL LOGIC

Propositional Logic, also known as sentential logic, is a formal system in
which knowledge is represented as propositions. Further, these propositions
can be joined in various ways using logical operators. These expressions can
then be interpreted as truth-preserving inference rules that can be used to
derive new knowledge from the old, or test the existing knowledge.

First, let’s introduce the proposition. A proposition is a statement,
or a simple declarative sentence. For example, “lobster is expensive” is a
proposition. Note that a definition of truth is not assigned to this proposition;
it can be either true or false. In terms of binary logic, this

proposition could be false in Massachusetts, but true in Colorado. But a
proposition always has a truth value. So, for any proposition, we can define
the true-value based on a truth table (see Figure 5.4). This simply says that
for any given proposition, it can be either true or false.

We can also negate our proposition to transform it into the opposite truth
value. For example, if P (our proposition) is “lobster is expensive,” then ~P
is “lobster is not expensive.” This is represented in a truth table as shown
in Figure 5.5.

Propositions can also be combined to create compound propositions. The
first, called a conjunction, is true only if both of the conjuncts are true (P and
Q). The second called a disjunction, is true if at least one of the disjuncts are
true (P or Q). The truth tables for these are shown in Figure 5.6. These are
obviously the AND and OR truth tables from Boolean logic.
The power of propositional logic comes into play using the conditional forms.
The two most basic forms are called Modus Ponens and Modus Tollens.
Modus Ponens is defined as:

FIGURE 5.4: Truth table for a
proposition.

FIGURE 5.5: Truth table for negation of
a proposition.

150 Artificial Intelligence

P, (P->Q), infer Q
which simply means that given two propositions (P and Q), if P is true

then Q is true. In English, let’s say that P is the proposition “the light is on”
and Q is the proposition “the switch is on.” The conditional here can be
defined as:

if “the light is on” then “the switch is on”
So, if “the light is on” is true, the implication is that “the light is on.” Note

here that the inverse is not true. Just because “the switch is on,” doesn’t mean
that “the light is on.” This is a piece of knowledge that gives us some insight
into the state of the switch of which we know the state of the light.

In other words, using this rule, we have a way to syntactically obtain new
knowledge from the old.

NOTE In these examples, we can think of P as the antecedent, and Q as the
consequent. Using the if/then form, the conditional portion of the claim
is the antecedent and the claim following the ‘then’ is the consequent.

FIGURE 5.6: True table for conjunction and disjunction of two propositions.

FIGURE 5.7: Truth table for Modus
Ponens.

FIGURE 5.8: Truth table for Modus
Tollens.

Knowledge Representation 151

The truth table for Modus Ponens is shown in Figure 5.7.
Modus Tollens takes the contradictory approach of Modus Ponens. With

Modus Tollens, we assume that Q is false and then infer that the P must be
false. Modus Tollens is defined as:

P, (P->Q), not Q, therefore not P.
Returning to our switch and light example, we can say “the switch is not

on,” therefore “the light is not on.” The formal name for this method is proof by
contrapositive. The truth table for Modus Tollens is provided in Figure 5.8.

TIP To help make sense of the names, Modus Ponens is Latin for “mode that
affirms,” while Modus Tollens is Latin for the “mode that denies.”

A famous inference rule from propositional logic is the hypothetical
syllogism. This has the form:

((P->Q) ^ (Q->R), therefore (P->R)
In this example, P is the major premise, Q is the minor premise. Both P

and Q have one common term with the conclusion, P->R. The most famous
use of this rule, and the ideal illustration, is provided below:

Major Premise (P): All men are mortal.
Minor Premise (Q): Socrates is a man.
Conclusion: Socrates is mortal.
Note in this example that both P and Q share a common term (men/

man) and the Conclusion shares a term from each (Socrates from Q, and
mortal from P).

Propositional logic includes a number of additional inference rules
(beyond Modus Ponens and Modus Tollens). These inferences rules can be
used to infer knowledge from existing knowledge (or deduce conclusions
from an existing set of true premises).

Deductive Reasoning with Propositional Logic
In deductive reasoning, the conclusion is reached from a previously known set
of premises. If the premises are true, then the conclusion must also be true.

Let’s now explore a couple of examples of deductive reasoning using
propositional logic. As deductive reasoning is dependent on the set of
premises, let’s investigate these first.
1) If it’s raining, the ground is wet.
2) If the ground is wet, the ground is slippery.

The two facts (knowledge about the environment) are Premise 1 and
Premise 2. These are also inference rules that will be used in deduction.
Now we introduce another premise that it is raining.

152 Artificial Intelligence

3) It’s raining.

Now, let’s prove that it’s slippery. First, using Modus Ponens with
Premise 1 and Premise 3, we can deduce that the ground is wet:

4) The ground is wet. (Modus Ponens: Premise 1, Premise 3)

Again, using Modus Ponens with Premise 3 and 4, we can prove that
it’s slippery:

5) The ground is slippery. (Modus Ponens: Premise 3, Premise 4)

Note that in this example, the hypothetical syllogism would work as well,
proving that the ground is slippery in a single step.

Limitations of Propositional Logic
While propositional logic is useful, it cannot represent general-purpose logic
in a compact and succinct way. For example, a formula with N variables
has 2**N different interpretations. It also doesn’t support changes in the
knowledge base easily.

Truth values of propositions can also be problematic, for example; consider
the compound proposition below. This is considered true (using Modus Ponens
where P -> Q is true when P is false and Q is false, see Figure 5.7).

If dogs can fly, then cats can fly.
Both statements are obviously false, and further, there’s no connection

between the two. But from the standpoint of propositional logic, they are
syntactically correct. A major problem with propositional logic is that entire
propositions are represented as a single symbol. In the next section, we’ll
look at another logic representation that permits finer control and a more
accurate representation of an environment.

FIRST-ORDER LOGIC (PREDICATE LOGIC)

In the previous section, propositional logic was explored. One issue with this
type of logic is that it’s not very expressive. For example, when we declare
a proposition such as:

The ground is wet.
it’s not clear which ground we’re referring to. Nor can we determine

what liquid is making the ground wet. Propositional logic lacks the ability
to talk about specifics.

In this section, we’ll explore predicate calculus (otherwise known as First-
Order Logic, or FOL). Using FOL, we can use both predicates and variables to
add greater expressiveness as well as more generalization to our knowledge.

Knowledge Representation 153

In FOL, knowledge is built up from constants (the objects of the
knowledge), a set of predicates (relationships between the knowledge), and
some number of functions (indirect references to other knowledge).

Atomic Sentences
A constant refers to a single object in our domain. A sample set of constants
include:

marc, elise, bicycle, scooter, the-stranger, colorado
A predicate expresses a relationship between objects, or defines

properties of those objects. A few examples of relationships and properties
are defined below:

owns, rides, knows,
person, sunny, book, two-wheeled
With our constants and predicates defined, we can now use the predicates

to define relationships and properties of the constants (also called Atomic
sentences). First, we define that both Marc and Elise are ‘Persons.’ The
‘Person’ is a property for the objects (Marc and Elise).

Person(marc)
Person(elise)
The above may appear as a function, with Person as the function and

Marc or Elise as the argument. But in this context, Person(x) is a unary
relation that simply means that Marc and Elise fall under the category of
Person. Now we define that Marc and Elise both know each other. We use
the knows predicate to define this relationship. Note that predicates have
arity, which refers to the number of arguments. The ‘Person’ predicate has
an arity if one where the predicate ‘knows’ has an arity of two.

Knows(marc, elise)
Knows(elise, marc)
We can then extend our domain with a number of other atomic

sentences, shown and defined below:
Rides(marc, bicycle) - Marc rides a bicycle.
Rides(elise, scooter) - Elise rides a scooter.
Two-Wheeled(bicycle) - A Bicycle is two-wheeled.
Book(the-stranger) - The-Stranger is a book.
Owns(elise, Book(the-stranger)) - Elise owns a book called The

Stranger.
Finally, a function allows us to transform a constant into another constant.

For example, the sister_of function is demonstrated below:
Knows(marc, sister_of(sean)) -Marc knows Sean’s sister.

154 Artificial Intelligence

Compound Sentences
Recall from propositional logic that we can apply Boolean operators to
build more complex sentences. In this way, we can take two or more atomic
sentences and with connectives, build a compound sentence. A sample set
of connectives is shown below:

∧ AND
∨ OR
¬ NOT
⇒ Logical Conditional (then)
⇔ Logical Biconditional
Examples of compound sentences are shown below:
Knows(marc, elise) ∧ Knows(elise, marc)
- Marc and Elise know one another.
Knows(marc, elise) ∧ ¬Knows(elise, marc)
- Marc knows Elise, and Elise does not know Marc.
Rides(marc, scooter) ∨ Rides(marc, bicycle)
- Marc rides a scooter or Marc rides a bicycle.
We can also build conditionals using the logical conditional connective,

for example:
Knows(marc, elise) ⇒ Knows(elise, marc)
- If Marc knows Elise, then Elise knows Marc.
This can also be written as a biconditional, which changes the meaning

slightly. The biconditional, a ⇔ b simply means “b if a and a if b,” or “b
implies a and a implies b.”

Knows(marc, elise) ⇔ Knows(elise, marc)
- Marc knows Elise if Elise knows Marc.

NOTE Another way to think about the biconditional is from the construction of
two conditionals in the form of a conjunction, or:

(a ⇒ b) ∧ (b ⇒ a)

 This implies that both are true or both are false.

Variables
So far, we’ve explored sentences where all of the information was present,
but to be useful, we need the ability to construct abstract sentences that don’t
specify specific objects. This can be done using variables. For example:

 Knows(x, elise) ⇒ Person(x)
 - If x Knows Elise, then x is a Person.

Knowledge Representation 155

If we also knew that: ‘Knows(marc, elise)’ then we could deduce that
Marc is a person (Person(marc)).

Quantifiers
Let’s now bring it together with quantifiers. A quantifier is used to determine
the quantity of a variable. In first-order logic, there are two quantifiers, the
universal quantifier (∀) and the existential quantifier (∃). The universal
quantifier is used to indicate that a sentence should hold when anything is
substituted for the variable. The existential quantifier indicates that there
is something that can be substituted for the variable such that the sentence
holds. Let’s look at an example of each.

 ∃ x. Person(x)
 - There exists x, that is a Person.
 ∀ x. ∃ x. Person(x) ∧ (Knows(x, elise) ∨ Knows (x, marc))
 - For all people, there exists someone that Knows Marc or Elise.
 ∀ x. ∃ x. Knows(x, elise) ⇒ Person(x)
 - For any x, if there is someone x that Knows Elise, then x is a Person.
Now that we have a basic understanding of first-order logic, let’s explore

FOL further with Prolog.

TIP Chapter 13 provides an introduction to the languages of AI, including
Prolog.

First-Order Logic and Prolog
Prolog is actually based on a version of FOL with some subtle differences
that we’ll explore. Prolog is in essence a language for the representation of
knowledge. It allows the definition of facts (or clauses) and also rules (which
are also clauses, but have bodies). Let’s begin with a quick introduction to
Prolog and follow with a few examples to demonstrate both its knowledge
representation and reasoning abilities.

TIP A Prolog environment is made up of a number of elements, but three
of the important items are the knowledge base (rules and facts), the
inference engine, and the interpreter (the interface to the inference engine
and knowledge base).

Simple Example
Let’s start with an example that was first explored with propositional logic.
Consider the argument:

156 Artificial Intelligence

All men are mortal.
Socrates is a man.
Therefore, Socrates is mortal.

We can translate everything but the conclusion into predicate logic as
follows:

∀ x Man(x) ⇒ Mortal(x)
Man(Socrates)

So for all X where X is a Man, then X is also a Mortal. We’ve provided the
predicate indicating that Socrates is a Man, therefore Socrates is also Mortal.
Now let’s see how this is translated into Prolog. First, we’ll define the rule:

mortal(X) :-
man(X).

Note that in Prolog, the rule is defined differently than the FOL argument
(as a Horn clause). To the Prolog theorem prover, this can be read as “to show
mortal(X), solve man(X).” The rule can also be read “mortal(X) if man(X).”
Note the period at the end of the rule indicates the end of the sentence.

Next, we provide our fact (Socrates is a man):

man(socrates).

Note that this is identical to defining a rule for a fact, which could be
specified as:

man(Socrates) :- true.

All of the information has now been defined. A query can now be issued
to Prolog to test the conclusion. Two methods are shown below. The first
simply tests the conclusion, and the second is a query for those objects that
satisfy the predicate:

| ?- mortal(Socrates).
yes
| ?- mortal(X)
X = socrates
yes

Knowledge Representation 157

Note in the second example that we’ve requested that Prolog match
for the predicate (for what objects does the expression evaluate to true?).
It returns with the X variable instantiated to Socrates (the expected
result).

NOTE In the early 1980s, Japan began the Fifth Generation Computer
Systems project. The goal of this project was the development of a
“fifth generation” super-computer built for massive parallelism with
AI as its primary application. The core language for the computer was
Prolog, but as Prolog at the time did not support concurrency, other
languages were developed in its place. While the project was under
development, technology around the world evolved in different directions
(microprocessors and software). The project did not meet with success,
but did produce five parallel machines and a variety of applications.
[Feigenbaum 1983]

Information Retrieval and KR
Prolog is often viewed as a way to intelligently store and retrieve information,
but can do so in a way that makes it more useful than what is commonly
available in a traditional relational database system. Let’s begin with an
example of using Prolog to represent a small amount of knowledge and then
explore a few rules to make sense of the knowledge.

The first step is to define the domain of knowledge, or the facts for
which the later rules will utilize. This example will use a set of simple facts
about the Solar System, beginning with those planets that orbit the sun. A
common predicate will be used called orbits, which will be used not only
to describe the planets (objects that orbit the sun) but also to define the
satellites that orbit the planets (see Listing 5.1). Note in Listing 5.1 that the
planets are first defined (those that orbit the sun). This is followed by each
of the planets. Each planet that has satellites uses the orbits predicate to
identify the satellites that orbit each of the planets (only a sample are shown
in Listing 5.1). Finally, the gaseous_planet predicate is used to define the
gaseous giants in the solar system.

LISTING 5.1: A knowledge base of facts about the Solar System.

orbits(sun, mercury).
orbits(sun, venus).
orbits(sun, earth).
orbits(sun, mars).

158 Artificial Intelligence

orbits(sun, jupiter).
orbits(sun, saturn).
orbits(sun, uranus).
orbits(sun, neptune).
orbits(earth, the_moon).
orbits(mars, phobos).
orbits(mars, deimos).
orbits(jupiter, metis).
orbits(jupiter, adrastea).
…
orbits(saturn, pan).
orbits(saturn, atlas).
…
orbits(uranus, cordelia).
orbits(uranus, ophelia).
…
orbits(neptune, naiad).
orbits(neptune, thalassa).
…
gaseous_planet(jupiter).
gaseous_planet(saturn).
gaseous_planet(uranus).
gaseous_planet(neptune).

With this set of facts, a set of rules can now be defined to embed
additional knowledge into the database as well as support a small amount of
reasoning. First, recall that a planet is defined as a major object that orbits
the sun. This rule can use the orbits predicate with the sun to identify those
items that are planets (and not satellites).
planet(P) :-
 orbits(sun, P).

As shown, any object (from our knowledge base) that orbits the sun is
a planet. With this definition, we can easily define a rule for satellites. A
satellite is simply an object that orbits a planet.
satellite(S) :-
 orbits(P, S), planet(P).

This predicate uses a conjunction which first uses the satellite object (S)
to determine which objects (P) with the orbits predicate are satisfied. If this
predicate produces a P object, and it’s a planet (using the planet predicate),
then the S is a satellite.

Knowledge Representation 159

The next rule separates the gas giant planets (gaseous planets) from the
terrestrial planets. Note that in the end of Listing 5.1, the gaseous planets are
defined using the gaseous_planet predicate. This is used as shown below in
the negated form (\+) in conjunction with the planet predicate, to determine
if an object is a terrestrial planet.
terrestrial_planet(P) :-
 planet(P) , \+ gaseous_planet(P).

Finally, with the satellite data that’s provided, it’s very simple to
determine whether the object has no satellites. Given the planet object
(which is validated with the planet predicate), this is used in conjunction
with the orbits predicate to determine if no results are returned with the
negation (\+).
no_moons(P) :-
 planet(P) , \+ orbits(P, S).

Having a predicate that identifies that a planet has no satellites (no_
moons), it’s very simple to negate this to identify whether a planet has
satellites (has_moons).
has_moons(P) :-
 \+ no_moons(P).

This example illustrates an interesting property of knowledge
representation and that of human accumulation of knowledge as well.
Knowledge can be built on other knowledge. Given a set, and a distinction
between a portion of that set, classifications can be further defined and
refined from an initially small set of knowledge. For example, knowing that a
planet orbits the sun, we know that all other objects that orbit an object other
than the sun are satellites. A satellite is a moon of an object, so it’s simple to
determine those objects that have moons and those that don’t. This property
can also be a curse because as the relationships grow between the data, any
error can have wide effects over the entire knowledge base.

Representing and Reasoning about an Environment.
In addition to simple reasoning with a database, Prolog can be used to
represent an environment and to reason about it. Let’s now explore a very
simple map that identifies a set of locations and then look at a few functions
that provide Prolog with the ability to traverse the map. Note in Figure 5.9
that our map is really nothing more than a simple graph. The connections
in the map are bidirectional (so that you can get from Lyons to Longmont,
and also from Longmont to Lyons).

Recall from Chapter 2 that in a graph, there exists a set of edges. An edge
is a connection between two vertices on the graph. So the first item in our

160 Artificial Intelligence

knowledge base are the edges in the graph (which cities connect to which
other cities). For this, we’ll use a predicate called edge, which indicates
an edge between the two objects (see Listing 5.2). Note here that only one
direction is shown, as we’ll let Prolog know about the bidirectional usage
when we define the rules.

LISTING 5.2: Defining the edges of our simple map for Prolog.

edge(lyons, fort_collins).
edge(lyons, longmont).
edge(lyons, boulder).
edge(boulder, longmont).
edge(boulder, denver).
edge(longmont, lyons).
edge(longmont, boulder).
edge(longmont, fort_collins).
edge(longmont, denver).
edge(fort_collins, denver).

With this set of facts defined, we can perform some queries with
Prolog. For example, we can provide a city, and then query which cities are
connected with the predicate:
| ?- edge(longmont, Y).
Y = lyons ? ;

FIGURE 5.9: Map represented as a simple bidirectional graph.

Knowledge Representation 161

Y = boulder ? ;
Y = fort_collins ? ;
Y = denver
yes
| ?-

We could also use the predicate in the form edge(X, longmont), but
since we don’t detail the bidirectional nature of our graph, this isn’t as useful.

Next, a rule is defined to determine the connectedness of two cities. We’ll
call this rule connect, and it will return true if the cities are connected on the
map by an edge, or false if they are not connected (see Listing 5.3). Note how
this rule is constructed. We use the predicate edge to query whether an edge
has been defined, but since we don’t encode each direction in the facts, we
can test both cases here to ensure that we catch a fact that indicates that the
edge exists. Recall that the semicolon is a Boolean OR operation, so if one or
the other is true, then we return true (that an edge, and connection exists).

LISTING 5.3: Defining a rule to test whether an edge exists.

connected(X, Y) :-
 edge(X, Y) ; edge(Y, X).

Now let’s explore a set of rules that can be used to determine one or
more paths between cities in our simple map. We’ll call the rule path, and it
uses two other rules; traverse and reverse. Rule traverse is a recursive rule
that searches for a path between a starting and ending city (labeled X and
Y). It also maintains a Path variable, which is the query by which the rule is
defined. Once traverse has found a path, the reverse rule is used to reverse
the order of the path found to return it to the user (see Listing 5.4). Note the
use of [X] in the traverse rule. The brackets indicate that a list is being built,
and the contents of the list is defined as X, or the first city in the path.

LISTING 5.4: Rules to recursively determine paths.

path(X, Y, Path) :-
 traverse(X, Y, [X], Q),
 reverse(Q, Path).

Two high-level rules will be created to traverse the graph. The first (shown
in Listing 5.5) is the special case of a path between just two cities. In this case,

162 Artificial Intelligence

the connected predicate is used to determine this condition and no recursive
calls are performed. Note that in the traverse call, the path is constructed with
Y (end city) as the head and the path as the tail. This is done because the list
is built in the order of the most recently visited city. The initial city is the last
element in the list, and the most recently visited is the first item. When the
reverse is used, the list will appear normally in output (first to last city).

LISTING 5.5: First rule for traverse.

traverse(X, Y, P, [Y|P]) :-
 connected(X,Y).
The second more complex rule creates a recursive call after a number of tests
(preconditions). First, the connected predicate is used to return the cities
connected to the current city (X). This step determines the next possible
steps in the path, for which there may be numerous. Each is returned as a
list constructed separately (separate calls to traverse for separate paths). The
next city to visit is called Z, and the next test is to ensure that the next city
is not our destination (Z\==Y).

Finally, we use the member function to test whether the current city is
part of the current path (since we won’t visit a city more than once). If these
tests pass, then we make a recursive call to traverse with Z as the current city
(next to visit), and Y as the destination. The path is updated, adding Z to the
city path. The calls then continue (for each path), until one or more of the
tests fail, upon which the recursive calls stop and the call chain is unwound
(returned to the main caller). (See Listing 5.6.)

LISTING 5.6: Second recursive rule for traverse.

traverse(X, Y, V, Path) :-
 connected(X,Z), Z\==Y, \+member(Z,V),
 traverse(Z, Y, [Z|V], Path).

A query can now be performed to determine the available paths from
a city to another city. An example of this process using Prolog is shown in
Listing 5.7. Note that all permutations of the paths are returned.

LISTING 5.7: A test query of the map knowledge base.

| ?- path(lyons, denver, P).
P = [lyons,fort_collins,denver] ? ;
P = [lyons,fort_collins,longmont,denver] ? ;

Knowledge Representation 163

P = [lyons,fort_collins,longmont,boulder,denver] ? ;
P = [lyons,fort_collins,longmont,boulder,denver] ? ;
P = [lyons,longmont,denver] ? ;
P = [lyons,longmont,boulder,denver] ? ;
P = [lyons,longmont,fort_collins,denver] ? ;
P = [lyons,longmont,boulder,denver] ? ;
P = [lyons,boulder,denver] ? ;
P = [lyons,boulder,longmont,denver] ? ;
P = [lyons,boulder,longmont,fort_collins,denver] ? ;
P = [lyons,boulder,longmont,denver] ? ;
P = [lyons,boulder,longmont,fort_collins,denver] ? ;
P = [lyons,longmont,denver] ? ;
P = [lyons,longmont,boulder,denver] ? ;
P = [lyons,longmont,fort_collins,denver] ? ;
P = [lyons,longmont,boulder,denver] ? ;
(10 ms) no
| ?-

SEMANTIC WEB

The Semantic Web is the name behind an effort to change the way that
the web is defined and interpreted. Today, the Internet is made up of hosts
and content that is predominantly defined through the Hyper-Text Markup
Language (or HTML). This language provides a way to add texture to web
pages, so that instead of simply being text documents, other information
can be included such as audio or graphical information. But HTML simply
provides a way to beautify content so that it can be rendered in a device in
an independent way.

A simple example of HTML is shown in Listing 5.8. This example
defines a simple web page that includes a title (that is placed on the
header of the browser) and a body that simply emits two paragraphs.
Each paragraph in this example defines an author and a title that they’ve
authored. Using the paragraph HTML tag (<p>), these lines are separated
by a single line.

LISTING 5.8: A simple example of HTML.

<html>
 <head>

164 Artificial Intelligence

 <title>Author List</title>
 </head>
 <body>
 <p>John Doe Article A</p>
 <p>Jane Doe Article B</p>
 </body>
</html>

So from Listing 5.8, we see that it’s relatively easy to create a web page
that can be viewed by any standard web browser. While this is useful, it’s
only useful from a human viewing perspective. The browser understands
how to render the information given the markup, but it knows nothing of
the content. If we’re to build software agents that can read web pages and
understand their content, something else is required. This is where RDF,
or Resource Description Framework, can be applied.

RDF allows the definition of metadata within the markup, called
statements. Each statement in RDF contains three structural parts, a subject,
predicate, and object (see Listing 5.9). Also provided in this example is the
namespace (coded xmlns), which provides a disambiguous space of names
defined by a Uniform Resource Locator (or URL, a web address). The
namespace provides a clarification of the terms used within the RDF.

LISTING 5.9: A simple example of RDF.

<rdf:RDF
 xmlns:rdf=”http://www.w3.org/2006/09/test-rdf-syntax-ns#”
 xmlns=”http://schemas.mtjones.com/rdftest/”>
 <rdf:Description=”http://mtjones.com/rdf”>
 <publications>
 <rdf:Description ID=”mtjones.com”>
 <article>
 <author>John Doe</author>
 <title>Article A</article>
 </article>
 <article>
 <author>Jane Doe</author>
 <title>Article B</article>
 </article>
 </rdf:Description>
 </publications>

Knowledge Representation 165

 </rdf:Description>
</rdf:RDF>

What’s important from this example is that the data is provided in a
format that makes it simple to parse and understand the elements of the data.
This is because the data is marked with the meaning of the data (metadata).
Note that article defines an author and title of an article (as defined by the
author tag and the title tag). In this way, an RDF parser can embody an
application (or software agent) with the ability to understand the data that’s
been provided.

COMPUTATIONAL KNOWLEDGE DISCOVERY

Computational Knowledge Discovery systems provide an interesting
perspective on creativity and human knowledge creation. Many of these
systems rely on the use of heuristics to constrain the search as well as
the recursive application of a small set of discovery methods. They also
commonly rely on the use of simple forms (of the initial knowledge) to aid
in the discovery process. [Wagman 2000] Two of the most famous systems
are BACON and the Automatic

Mathematician (AM).
The topic at hand differs from other machine learning techniques based

on their methods for discovering knowledge. Machine-learning or data
mining methods, produce knowledge in a variety of forms, such as decision
trees. Knowledge (or Scientific) Discovery methods use formalisms such as
equations producing other equations to represent the discovered knowledge.
But each method looks at the initial data and the relationships of that data
using a heuristic search to produce new knowledge.

One problem with computational knowledge discovery is that its use
requires post-processing by a human to filter and interpret the resulting
knowledge. From this perspective, computational knowledge discovery is
better described as assisted knowledge discovery, as a human is commonly
required to interpret and apply the results. But even with this drawback,
computational knowledge discovery has produced new knowledge in many
scientific fields (leading to publications in refereed literature).

The BACON System
BACON is actually a series of discovery systems developed over a number
of years. One aspect of BACON is its ability to discover simple physical laws

166 Artificial Intelligence

given the relationships between two variables. For example, using the simple
general methods provided by BACON, two variables can be reviewed for their
relationship. If one variable (X) increases and the other variable (Y) increases,
then the INCREASING heuristic can be applied, causing BACON to analyze
their ratio (X/Y). If one variable increases while the other decreases, then the
DECREASING heurstic can be employed (causing BACON to analyze their
product, XY). Finally, if the value X remains constant (or nearly constant),
BACON can hypothesize that X maintains this value.

Note that while BACON is provided a series of data (of two variables), it
has the capacity to create new data based on the predefined rules (providing
ratios, products, and constants). BACON uses these new series as well in
its attempt to analyze the data. While these rules are very simple, BACON
used them to successfully rediscover Kepler’s third law of planetary motion
(see Eq 5.1, where d is the planet’s distance from the Sun, p is its period,
and k is a constant).

 (Eq 5.1)

Other variants of BACON employ even more advanced discovery
procedures, but each follows a similar model of increasing complexity (more
than two variables, numeric and symbolic variables, etc.).

TIP The role of BACON is the construction of equations given a set of data
using a variety of heuristics (fitting equations to data).

Automatic Mathematician (AM)
The Automatic Mathematician (or AM) is a mathematical discovery system
with significant differences from BACON. AM was designed by Doug Lenat
to discover new concepts in elementary mathematics and set theory. But
rather than searching for a solution to a problem, or a predefined goal, AM
simply follows “interesting” heuristics and generates new examples looking
for regularities. When regularities are found, conjectures can be created.

When the AM is started, it’s provided with a few facts about its domain
(simple math concepts) using the frame knowledge representation technique.
For example, AM could understand the concept of prime numbers. Given
these concepts and rules of thumb, AM then applies these concepts based on
their worth (the more interesting a rule, the more likely it is to be used).

AM uses a set of general methods to create new mathematical concepts
(such as creating the inverse of an existing relation, or specializing by

Knowledge Representation 167

restricting the domain of a concept). The underlying model used by AM
was small LISP programs, which represented a variety of mathematical
concepts. New LISP programs, were generated and modified to represent
new concepts (based on their interpretation with a LISP interpreter).

AM did not discover the concepts on its own, but relied on a human
interpreter to review the data produced to understand what it found. AM
did rediscover numerous mathematical concepts, such as prime numbers
and Goldbach’s conjecture but instead of identifying these characteristics,
it instead has been criticized as providing the data to make the discovery
with human review.

NOTE Doug Lenat followed the development of AM with another discovery
system called EURISKO. This development, instead of searching
for mathematical concepts, focused instead on the search for useful
heuristics.

ONTOLOGY

An Ontology is a core concept in modern knowledge representation, though
the ideas behind it have been in existence since the beginning of KR. An
ontology from the perspective of AI is a model that represents a set of concepts
within a specific domain as well as the relationships between those concepts.

Recall the example of the semantic network in Figure 5.1. This is an
ontology for the domain of places and capitals. The ‘is-a’ type of relationship
defines a hierarchical taxonomy that defines how the objects relate to one
another.

TIP Note that Figure 5.1 can also be defined as a set of Meronymy relations,
as it defines how the objects combine to form composite objects (cities to
states to countries to continents).

An interesting use of an ontology is in the form of a language as a means
to encode an ontology for the purposes of communicating knowledge
between two entities (agents). This is explored in the next section.

COMMUNICATION OF KNOWLEDGE

Having a vast repository of knowledge is most useful if it can be shared and
used from a variety of perspectives. Being able to share knowledge allows

168 Artificial Intelligence

multiple disparate agents to cooperatively use the available knowledge, and
modify the knowledge (such as is done in blackboard architectures).

NOTE You can learn more about knowledge communication and sharing with
agents in Chapter 14 “Agent Architectures.” These are commonly called
“Agent Communication Languages,” or ACLs.

Examples of protocols that enable sharing of knowledge between agents
include the Web Ontology Language (OWL) used in the Semantic Web, the
Knowledge Query and Manipulation Language (KQML), and the Agent
Communication Language (ACL).

COMMON SENSE

Computer systems that include some form of AI for a given problem domain
can still rightly be considered unintelligent because they lack some of the
most fundamental knowledge called common sense. For example:

• Objects fall toward Earth (due to gravity) and not up away from the
Earth.

• If you get near a fire, you could be burned.
• It’s dangerous to fly a kite in a lightning storm.

To enable reasoning at a common-sense level, a common-sense
knowledge base is proposed that contains common-sense knowledge that
most people possess. This knowledge base is constructed in a way that an
application can use it to create inferences (to reason). Examples of the type
of knowledge that is represented includes behavior of items, effects of actions
(yelling at someone may make them angry), and preconditions of actions (one
puts their socks on before their shoes). Many other topics could be covered
such as the properties of objects (fire is hot), and descriptions of human
behaviors (if someone is crying, then they may be sad).

An interesting example of a common-sense project is called Cyc.
This project was created by Doug Lenat (who also created the Automatic
Mathematician). The Cyc knowledge base includes over a million concepts
and rules, which are defined in a language based on predicate calculus
(similar to the LISP programming language). Examples of basic knowledge
encoded in Cyc include:
 (#$capitalCity #$Colorado #$Denver)

which encodes “Denver is the capital city of Colorado.”
 (#$genls #$Men #$Mortal)

Knowledge Representation 169

which represents “All men are mortal.” The Cyc knowledge base is
partitioned into a number of collections of knowledge called microtheories.
A microtheory is a contradiction-free of concepts and facts about a
particular domain of knowledge (like an ontology). Microtheories can
be related to one another and are organized into a hierarchy, supporting
inheritance.

The development of Cyc and its inference engine continues, but the
major work focus is primarily in knowledge engineering or hand-encoding
knowledge and rules to represent basic common-sense knowledge.

CHAPTER SUMMARY

Knowledge representation focuses on the mechanisms by which information
can be stored and processed in a way to make the information useful as
knowledge. This chapter presented some of the more important mechanisms
for knowledge representation, such as semantic networks and frames, and also
methods that enable not only storage of knowledge, but also processing, such
as propositional logic and first-order (or predicate) logic. Finally, applications
of knowledge representation were explored including computational scientific
discovery, and common-sense reasoning with the Cyc project.

REFERENCES

[Feigenbaum 1983] Feigenbaum, Edward A., McCorduck, Pamela “The
Fifth Generation: Artificial Intelligence and Japan’s Computer Challenge
to the World.” 1983.

[Wagman 2000] Wagman, Morton. “Scientific Discovery Processes in
Humans and Computers: Theory and Research in Psychology and
Artificial Intelligence,” Praeger Publishers, 2000.

RESOURCES

Brachman, Ronald J., “What IS-A is and isn’t. An Analysis of Taxonomic Links
in Semantic Networks.” IEEE Computer, 16: (10), October, 1983.

Langley, P. “BACON.1: A general discovery system.” In Proceedings of the
second biennial conference of the Canadian Society for Computational
Studies of Intelligence,” 173-180, 1978.

170 Artificial Intelligence

Lenat, D.B. “AM: An artificial intelligence approach to discovery in
mathematics as heuristic search,” Ph.D. Theses, AIM-286, STAN-CS-
76-570, Stanford University, AI Lab, Stanford, 1976.

Lenat, D. B., and Brown, J.S. “Why AM and EURISKO appear to work.”
Artificial Intelligence 23(3):269-294, 1984.

Post, Emil “Introduction to a General Theory of Propositions,” American
Journal of Mathematics 43: 163-185.

Freud, Sigmund “The Interpretation of Dreams,” Macmillan, 1913.
Object Management Group, “UML Specification,” 2007.
Available online at: http://www.omg.org/technology/documents/modeling_

spec_catalog.htm
Woods, W. “What’s in a Link: Foundations for Semantic Nets,” Representation

and Understanding: Studies in Cognitive Science, Academic Press, 1975.

EXERCISES

1. Define knowledge representation in your own words. What are its most
important characteristics?

2. Define two types of knowledge and their differences.
3. Consider a family tree, and represent this using a semantic network.
4. Frames include what is called a procedural attachment that can be

used to trigger functions for various types of events. Describe these
attachments and demonstrate how they can be used.

5. Define Modus Ponens and Modus Tollens and provide an example of each.
6. Define the universal and existential quantifier used in predicate logic.
7. Represent each of the following sentences in first-order logic:
 a. A whale is a mammal.
 b. Jane loves John.
 c. John knows Jane’s father.
 d. If it’s raining, then the ground is wet.
 e. If the switch is on and the light is off then the light-bulb is broken.
 f. All computers have a processor.
8. Describe the advantages of predicate logic over propositional logic.
9. Represent the sentence in 7.d in Prolog.
10. Describe the purpose behind the Semantic Web. What is its

representation and how does it help?

C h a p t e r 6 MACHINE
LEARNING

Machine learning, as the name implies, focuses on algorithms and
methods that allow a computer to learn. Another way to think
about this is from the perspective of learning by example. Given a

set of data, machine learning can learn about the data and their relationships,
producing information. In this chapter, machine learning will be investigated
including a number of machine-learning algorithms. Algorithms to be
explored include decision trees, Markov models, nearest neighbor learning,
and others.

MACHINE-LEARNING ALGORITHMS

There exist numerous types of machine-learning algorithms. Some of
the more popular approaches include supervised learning, unsupervised
learning, and probabilistic learning.

Supervised learning algorithms imply that a teacher is present to identify
when a result is right or wrong. The input data contains both a predictor
(independent variable) and target (dependent variable) whose value is to be
estimated. Through the process of supervised learning, the algorithm predicts
the value of the target variable based on the predictor variables. Examples

172 Artificial Intelligence

of supervised learning algorithms include perceptrons, backpropagation,
and decision trees.

Unsupervised learning algorithms imply that learning occurs
unsupervised, or without a teacher. In this case, there is no target variable,
but instead relationships in the data that are exploited for classification (for
example, patterns in the data). Examples of unsupervised learning include
Hebbian Learning, Vector Quantization, and Adaptive Resonance Theory
(ART).

TIP Supervised and unsupervised learning alrogithms are explored in the
neural network chapters (Chapters 8 and 9), in addition to the examples
explored here.

Finally, probabilistic approaches to learning is a useful method in
modern AI. This approach works on the principle that assigning probabilities
to events can be done based on prior probabilities and observed data. This is
useful because in theory this method can arrive at optimal decisions.

Supervised Learning
Supervised learning algorithms use training data that has been classified
(has a target value for each training vector). The purpose of the supervised
learning algorithm is to create a prediction function using the training data
that will generalize for unseen training vectors to classify them correctly.

In this section, decision-tree learning is explored to construct a decision
tree from observed behavior.

Learning with Decision Trees
One of the most intuitive and practical methods for supervised learning is
the decision tree. A decision tree is the result of a classification process in
which the source data is reduced into a predictor tree that represents a set
of if/then/else rules. As an example, consider an observer that watched a
FPS player and recorded their actions when confronted with an enemy. The
result is shown in Table 6.1

Table 6.1: Observed actions of a player in a first-person-shooter game.

Weapon Ammo Health Behavior
Gun Full Low Fight
Gun Low Full Evade
Knife Low Full Fight
Knife Low Low Evade

Machine Learning 173

A simple example of a decision tree, created from the observed data in
Table 6.1, is shown in Figure 6.1.

As shown in Figure 6.1 (and Table 6.1), this player has three predictor
variables. These are Weapon (the weapon currently carried by the player),
Ammo (the amount of ammunition carried by the player), and finally, Health
(the level of health of the player). The interior nodes of the decision tree are
the features, and the arcs out of the feature nodes are feature values. Each
leaf in the tree is a category (or class). The breakdown of this decision tree
results in a simple conditional expression shown in Figure 6.2.

This condition expression (representing the decision tree) defines that
if the player has a gun with full ammo, it will fight. If the player has a knife
and full health, it will fight. Otherwise, the player will evade. This is clearly
shown in the simple conditional in Figure 6.2.

It’s easy to see how the decision tree can be constructed from the data
in Table 6.1, but with much larger data sets with many predictor variables,
the task is considerably more difficult. The ID3 (Iterative Dichotomizer 3)
algorithm automates this task through a form of top-down greedy search
through the decision-tree space.

TIP Decision-tree learning is a common technique used in data mining. Data
mining is a larger field that studies the extraction of useful information
from data sets. Data mining is a popular technique in financial analysis
and also finds use in identifying fraud.

FIGURE 6.1: A simple decision tree for an FPS player.

FIGURE 6.2: Conditional expression resulting from the simple decision tree.

174 Artificial Intelligence

Using a decision tree is simply defined as starting at the root and taking the
path through the tree whose feature values represent those of a given example.
When the leaf of the tree is reached, the example has been classified.

Creating a Decision Tree
Creating a decision tree from a set of examples is a straightforward process.
But the goal is to create a simple decision tree that is consistent with the
training data. Simple can be ambiguous, but simpler decision trees tend to
be more reliable and generalize better.

Creating a decision tree is a recursive process over the features of the
data set, but it always begins with the determination of the root of the tree.
To choose which feature to begin building the tree, the statistical property
of information gain is used. The feature with the highest information gain is
selected which specifies the feature most useful for classification.

Information gain is based on another idea from information theory called
entropy, which measures the amount of information behind the feature.
Entropy is defined in Eq 6.1.

 Eq 6.1

Given a sample set (S), the sum is taken of the proportions of S that
belong to class I. If all samples of S belong to the same class I, then entropy
is 0. Entropy of 1.0 defines that the sample set (for class I) is completely
random.

To calculate entropy for the Behavior listed in Table 6.1, we would apply
Eq 6.1 as follows:

 E(S) = -(2/5)Log2(2/5) + -(3/5)Log2(3/5)
 E(S) = 0.528771 + 0.442179 = 0.970951

With the entropy calculated for the target (Behavior), the next step is
to choose the feature with the highest information gain. To calculate the
information gain for a feature, Eq 6.2 is used.

 Eq 6.2

Information gain identifies how much influence the given feature has
over predicting the resulting category (in this case, Behavior). An example
of calculating the information gain of feature Ammo is demonstrated as:

 Gain(Sweapon) = E(S) - (2/4)*Entropy(Sgun) - (2/4)*Entropy(Sknife)

Machine Learning 175

The entropy of a value of a given attribute is calculated based on the
target feature. For example, the Weapon is value(Gun) in two of four
examples. For the examples where Weapon has a value of Gun, the targets
are split between Fight and Evade (1/2 for each). Therefore, the entropy
for value of Gun is:

 Entropy(Sgun) = -(1/2)Log2(1/2) - (1/2)Log2(1/2)
 Entropy(Sgun) = 0.5 - 0.5 = 0.0

For examples where the Weapon has the value Knife, it’s split as well
(half have Knife, and when the example is Knife, the target Behavior is split
between Fight and Evade, or 1/2).

 Entropy(Sknife) = -(1/2)Log2(1/2) - (1/2)Log2(1/2)
 Entropy(Sknife) = 0.5 - 0.5 = 0.0

So returning to the gain calculation for Weapon, the result is:

 Gain(Sweapon) = 0.970951 - (2/4)*(0.0) - (2/4)*(0.0)
 Gain(Sweapon) = 0.970951 - 0.0 - 0.0 = 0.970951

Next, the information gain for both Ammo and Health is calculated:

 Gain(Sammo) = E(S) - (1/4)*Entropy(Sfull) - (3/4)Entropy(Slow)
 Entropy(Sfull) = -(1/1)Log2(1/1) - (0/1)Log2(0/1)
 Entropy(Sfull) = 0
 Entropy(Slow) = -(1/3)Log2(1/3) - (2/3)Log2(2/3)
 Entropy(Slow) = 0.528321 - 0.389975 = 0.138346
 Gain(Sammo) = 0.970951 - (1/4)*0 - (3/4)*0.138346
 Gain(Sammo) = 0.970951 - 0 - 0.103759 = 0.867192
 Gain(SHealth) = E(S) - (2/4)*Entropy(Sfull) - (2/4)Entropy(Slow)
 Entropy(Sfull) = -(1/2)Log2(1/2) - (1/2)Log2(1/2)
 Entropy(Sfull) = 0.5 - 0.5 = 0.0
 Entropy(Slow) = -(1/2)Log2(1/2) - (1/2)Log2(1/2)
 Entropy(Slow) = 0.5 - 0.5 = 0.0
 Gain(Shealth) = 0.970951 - (2/4)*0.0 - (2/4)*.0.
 Gain(Shealth) = 0.970951 - 0.0 - 0.0 = 0.970951

The resulting gains are then:

 Gain(Sweapon) = 0.970951 - 0.0 - 0.0 = 0.970951
 Gain(Sammo) = 0.970951 - 0 - 0.103759 = 0.867192
 Gain(Shealth) = 0.970951 - 0.0 - 0.0 = 0.970951

For a tie-breaker, we simply select the first largest information gain and
use that as the largest. This yields Weapon as the feature to represent the

176 Artificial Intelligence

root of the tree. The algorithm then continues, with the bifurcation of the
data set into two sets, split by the selected feature and feature values, and
the process continues to build the remainder of the tree (see Figure 6.3).

The process continues as above on the two legs of the tree. The entropy
is calculated, and the information gain on each remaining feature to
determine which to use to continue to develop the tree. One possible result
was originally shown in Figure 6.1.

Characteristics of Decision-Tree Learning
As explored earlier, the ID3 algorithm uses a greedy form of search. This
means that the algorithm picks the best attribute at each step, and does not
return to re-evaluate earlier attribute choices. This can be problematic, as
greedy doesn’t necessarily mean optimal. The result can be a sub-optimal or
unbalanced tree that does not yield the best segregation of features.

Decision treees that are large or are created from an small amount of
training data tend to overfit (or over-generalize). In general, while larger
decision trees are more consistent with the training data, smaller trees tend
to generalize better. One way to manage this problem is to prune the training
data to a smaller subset to avoid over-fitting.

The advantages of decision trees is that they are very fast (tend to
classify in fewer decisions than the features of the data set) and are also easy
to interpret. Most importantly, since a decision tree is inherently human-
readable, it’s very easy to understand how the classification works.

Unsupervised Learning
Recall that supervised learning learns from data that is preclassified (each
training vector includes the target class). Unsupervised learning differs in
that no target variable exists. All variables are treated as inputs, and therefore
unsupervised learning is used to find patterns in the data. This allows the
data to be reduced and segmented into its representative classes.

FIGURE 6.3: Bifurcation of the data set given a root feature decision.

Machine Learning 177

Markov Models
A useful example of a Markov model is the Markov chain, named after its
creator, Andrey Markov. A Markov chain is a kind of probabilistic state
machine that that can be easily trained given a set of training data. Each state
can probabilistically lead to other states, but prior states have no relevance
to subsequent state transitions (only the current state).

What makes Markov chains interesting is that they can be very easily
created from observations. Take, for example, the idea of the smart home.
The home monitors the actions of the occupant during the time that the
occupant is home. Every evening, the occupant sets the alarm for 6 am
(Sunday through Thursday). At 6 am, after the alarm sounds, the monitor
notices that the bathroom light is turned on. Through observation, we
capture the following over a week’s training:

 Weekday, 6 am alarm, bathroom-light-on
 Weekend, no alarm, bathroom-light-off

With this data (five samples of weekday, two samples of weekend),
it’s visible that on weekdays, the alarm results in the observation that the
bathroom light comes on with a probability of 1.0. With this data, the Smart
Home could turn on the bathroom light when it sees the precursor event of
the alarm going off.

This idea can be applied to a large variety of problems in the domain of
prediction, clustering and classification. In the next section, the Markov chain
is used to train character probability state machines to generate random
words. These words are generated from a probabilistic state machine using
regular words for training.

Word-Form Learning with Markov Chains
A simple Markov chain can be used to generate reasonable syntactically

correct words using known words for training. To build random, but
reasonable words the probability of letters following other letters is used.
For example, if the word “the” were used as a training example four points
of data can be collected. These are:

 the word begins with the letter ‘t’
 the letter ‘h’ follows the letter ‘t’
 the letter ‘e’ follows the letter ‘h’
 the letter ‘e’ ends the word.

If we analyze a number of words this way, we can identify the frequency that
letters start words, end words, and follow other letters. A table representation

178 Artificial Intelligence

is used to identify the beginning letter (rows) followed by the subsequent letter
(columns). As an example, consider the word ‘as’ being analyzed. To start, the
cell indicated by transition a->s is incremented (row ‘a’, column ‘s’). Then the
transition s->‘end’ is incremented (shown as row ‘s’, column ‘\0’).

Consider the training sample consisting of the words:

 mast, tame, same, teams,
 team, meat, steam, and stem.

The product of analyzing these words is shown in Figure 6.4. For each
word, the letter transitions are counted to arrive at the matrix representation.
Note also that the sum of the rows is calculated (this is used later for word
generation). The number of times a given letter occurred first is also counted
(again, used in word generation).

Now that the matrix exists, how would a random word be created
from this representation? For this, the counts are used as probabilities
to determine which letter to use given a previously selected letter. To
accomplish this, a random number is generated using the sum value as the
bounds (the maximum random number that can be used). With this random
value, roulette wheel selection is used to determine which letter from a row
to use (depicted graphically in Figure 6.5 for row ‘m’).

TIP Roulette wheel selection views the available options as a roulette wheel.
Elements with zero probability of selection do not appear. Those with non-
zero probability occupy a space on the wheel proportional to their frequency.
For example, with a sum of 9, letter a is selected 2/9 of the time, or P(0.22).

FIGURE 6.4: The resulting letter transition matrix.

Machine Learning 179

For roulette wheel selection, a random value is selected which serves as the
limit. A random starting point is selected (in this example, the first cell) and a
count is incremented given the cell’s contents (see Figure 6.6). If the count is
greater than or equal to random value, then the letter is selected. Otherwise,
the wheel continues and the next slot is accumulated. This process continues
until the count value is the same or greater than the random value. When
this test is satisfied, the letter is selected (in this case, ‘e’ is selected to follow
the letter ‘m’). The process would then continue for the letter ‘e,’ until the
terminal character was selected (‘\0’) indicating that the word is complete.
This follows the sample data, which indicates that the letter ‘e’ follows the
letter ‘m’ 3/8’s of the time or P(0.375)).

What’s useful about this algorithm is that letters with higher frequencies
(meaning higher numbers of occurrences in the training samples) are
selected with a greater probability than letters with lower occurrences.
This allows word generation (in this case) to probabilistically follow the
training set.

Word Generation with Markov Chains
To generate a new random word, the first step is to define which letter to use
first. For this, the vector (called ‘count of first letter’ in Figure 6.4) is used.
A letter is selected randomly (per the earlier discussion using roulette wheel
selection). With the first letter selected, we emit this letter, and then select
the next letter using the current letter’s row in the matrix (see Figure 6.4).
Next letter selection was explored in Figure 6.6. When the letter selected is
the NULL (or \0) character, the word is complete.

This can be demonstrated by hand using the representation matrix in Figure
6.4. In Table 6.2, the random value and resulting letter selected is shown.

FIGURE 6.5: The roulette wheel
selection approach.

FIGURE 6.6: Probabilistically selecting
a letter.

180 Artificial Intelligence

Table 6.2: Sample iteration of word generation.
Random Value Action
 7 Iterate ‘first letter vector,’ select ‘m’
 1 Iterate matrix row ‘m,’ select ‘a’
 2 Iterate matrix row ‘a,’ select ‘t’
 5 Iterate matrix row ‘t,’ select ‘e’
 6 Iterate matrix row ‘e,’ select \0 (NULL)

The result is the generation of the random word ‘mate’ (not part of the training
set). In the next section, the code to implement this capability is explored.

Markov Chain Implementation
The implementation of the Markov chain for random word construction
requires two basic components. The first is the training element which reads
the training file (called the corpus) and builds the matrix representation
of the letter ‘state machine.’ The second element is the word generation
element which uses the matrix representation to generate random words.

O

N THE CD

 The complete implementation of the Markov-Chain demonstration can
be found on the CD-ROM at ./software/ch6/markov.c.

The matrix is represented using a simple two-dimensional array as:

#define ROWS 28
#define COLS 28
unsigned int matrix[ROWS][COLS];

Indexes (row and column) 0 through 25 represent the letters ‘a’ through
‘z.’ Index 26 (row and column) represents the newline (end of word). Column
27 represents the sum of the particular row. Finally, row 27 represents the
count of the given letter appearing as the first letter (see Figure 6.4).

Building the letter matrix (as illustrated in Figure 6.4) is a simple
process that relies on a very simple state machine. The first state, called
START_LTR_STATE, exists to identify that a single letter has been received
and that another letter is required to increment a cell. In this state, when
a character is received, the count of the first-letter-vector is incremented
(which identifies how many times this character is the first in a word). After
an initial character is received, the next state is entered called the NEXT_
LTR_STATE. In this state, the transition counts are incremented (how
often one character leads to another). When the next character received is

Machine Learning 181

a terminal character (such as space, punctuation, etc.), this data is recorded
(character at the end of a word), and then the state machine transitions back
to the FIRST_LTR_STATE. This process is shown in Figure 6.7.

The state machine is implemented in function read_corpus shown in
Listing 6.1. The function simply reads each line from the defined file, and
uses the state machine to maintain letter transition counts in the matrix.

LISTING 6.1: Creating the matrix representation from the training data.

int read_corpus(char *filename)
{
 FILE *fp;
 char line[MAX_LINE+1];
 int i, state = START_LTR_STATE;
 char ch, prev_char;
 /* Open and test the corpus file */
 fp = fopen(filename, “r”);
 if (fp == NULL) return -1;
 /* Loop through each line of the file */
 while (fgets(line, MAX_LINE, fp) != (char *)0) {
 /* Loop through the line */
 for (i = 0 ; ((i < MAX_LINE) && (line[i] != 0)) ; i++) {
 ch = tolower(line[i]);
 /* State machine for character handling */
 switch(state) {
 case START_LTR_STATE:
 /* We’re on the initial letter, save it if non-terminal */
 if (!is_terminal(ch)) {

FIGURE 6.7: Recording a word’s data with the parsing state machine.

182 Artificial Intelligence

 prev_char = ch;
 matrix[FIRST_LETTER][to_idx(ch)]++;
 state = NEXT_LTR_STATE;
 }
 break;
 case NEXT_LTR_STATE:
 if (is_terminal(ch)) {
 /* If the next letter is a terminal, transition back */
 matrix[to_idx(prev_char)][26]++;
 state = START_LTR_STATE;
 } else {
 /* If the next letter is a non-terminal, increment the count */
 matrix[to_idx(prev_char)][to_idx(ch)]++;
 prev_char = ch;
 }
 break;
 }
 }
 }
 /* Fill in sum columns in the matrix */
 calculate_maximums();
 return 0;
}

When read_corpus has finished, the matrix is updated and represents the
training data. The matrix can now be used to generate random words that
mimic the structure of the words in the training data. Two functions are used
for word generation, these are generate_word and select_letter.

Function generate_word (see Listing 6.2) is the higher-level function
that selects letters to build a word. It begins by selecting a letter, but from
the vector representing the frequency of letters appearing first (FIRST_
LETTER). Each new letter (row in the matrix) is requested using the
current letter (representing the row from which to select). Once the terminal
character is selected, the word is complete and the function returns.

LISTING 6.2: Function generate_word to create a new random word.

void generate_word(void)
{
 int sel;

Machine Learning 183

 /* Select the first letter to use */
 sel = select_letter(FIRST_LETTER);
 /* Continue, selecting additional letters based upon
 * the last letter.
 */
 while (sel != END_LETTER) {
 printf(“%c”, (‘a’+sel));
 sel = select_letter(sel);
 }
 printf(“\n”);
 return;
}

The core of the word creation algorithm is the select_letter function
(see Function 6.3). This function implements the roulette wheel selection
algorithm. The algorithm begins with the row, which represents the previous
letter. This provides the row that is used to determine which letter will follow.
A random value is created (max_val), which represents the limit (where the
ball will stop in the roulette wheel). The row is then accumulated (starting
at the first cell) until the max_val is reached or exceeded. At this point,
the letter is returned. If the max_val is not reached, then the next cell is
accumulated and the process continues.

Listing 6.3: The select_letter function that probabilistically selects letters

based on the current letter.

char select_letter(int row)
{
 int max_val;
 int i=0, sum = 0;
 /* Pick the maximum value (for roulette selection) */
 max_val = RANDMAX(matrix[row][MAX_COUNTS])+1;
 /* Perform the roulette wheel */
 while (1) {
 /* Add in the current slot value */
 sum += matrix[row][i];
 /* If >= max_val, then select this letter */
 if (sum >= max_val) return i;
 /* Otherwise, skip to the next letter in the row */
 if (++i >= MAX_COUNTS) i = 0;

184 Artificial Intelligence

 }
 exit(0);
}

Generating random words from a program built from this source can
result in interesting words, and also not so interesting words. For example,
these words were generated from a sample corpus:

antinsubaized
sutosermed
eroconated
axpoged
porantide
arouded
anvilured
arketized

But more often than not, words like this can result:

rolacunficonged
phteroobund

From this perspective, extracting the more useful words from the
nonsensical words can be done with human involvement. In other words, the
application generates solution sets which are then reviewed by a human to
identify those that have value (for example, if a new company or drug name
were being searched). This is called human-assisted unsupervised learning
and results in the best approach (software for search, human review for
filtering).

Other Applications of Markov Chains
Markov chains and their variants can be found in a number of areas, including
speech recognition, speech understanding, music composition, and a number
of other areas. The simplicity of the algorithm makes it very efficient. The
system has no idea of the events for which probabilities are being defined, all
that’s learned is probability between events within a system. But even without
an understanding of the semantics behind the relationships, the system can
still react to them (such as the alarm/bathroom-light example). The approach
is also useful from the human-assisted learning perspective (with human
operators considering the importance of the relationships found).

Machine Learning 185

Nearest Neighbor Classification
One of the earliest unsupervised learning algorithms that is also one of the
simplest is called nearest neighbor classification. This algorithm classifies an
unseen pattern or concept by finding the closest pattern in the known data set.
This is what is meant by nearest neighbor. The class of the nearest neighbor in
the multi-dimensional feature space is the class of the (unseen) test vector.

An example of this is shown in Figure 6.8. At the center of the feature
space is a new sample that is yet to be classified. The distance between
the new sample and other examples in the space is calculated. The closest
example is used as the class to which this new sample should be clustered.
In this example, the closest example is one unit away, and therefore the class
of this example is used. Declaring the class based on the closest sample is
called one nearest neighbor (1NN).

Calculating the distance between two feature vectors can be accomplished
in a number of ways, but the most popular is the Euclidean measure. Another
popular function uses the Manhattan distance. The Euclidean distance is
calculated using Eq 6.3 for feature vectors p and q.

 Eq 6.3

Nearest neighbor (1NN) takes a simple but effective approach to
classification. In the next section, a simple demonstration of 1NN is explored
for animal classification.

FIGURE 6.8: Sample feature space for 1NN classification.

186 Artificial Intelligence

1NN Example
The algorithm for 1NN is easily described and implemented. With 1NN, the
sample (unclassified) feature vector is checked against all known examples.
The class for the closest example is then used as the class for the sample
feature vector.

For the example vectors, the table in Figure 6.9 is used. This contains
a number of features that in certain combinations define a type of animal.
Five types of animals are classified here using 14 example vectors and 10
attributes.

FIGURE 6.9: Example feature vectors for animal classification.

FIGURE 6.10: Distance calculation for the mystery animal to the known examples.

Machine Learning 187

As an example, consider a newly discovered animal with the attributes
shown by its feature vector (see Figure 6.10). What’s observed is that the
mystery animal lays eggs and lives in both the water and on land. The
distance of the feature vector to each known example is calculated and the
closest example used for the class (see Figure 6.11). In this case, the mystery
animal is classified as an amphibian.

The implementation for 1NN is very simple and shown in Listing 6.4. As
shown the calc_distance simply calculates the distance using each feature of
the vector. The 1NN algorithm simply walks through each example vector
and calculates the distance from the sample vector (see main). The closest
vector is then used as the class.

O

N THE CD

 The complete implementation of the 1NN demonstration can be found
on the CD-ROM at ./software/ch6/one_nn.c.

LISTING 6.4: Sample implementation of the 1NN clustering algorithm.

#define MAX_FEATURES 10
#define MAMMAL 0
#define BIRD 1
#define FISH 2
#define AMPHIBIAN 3
#define REPTILE 4
typedef struct {
 int features[MAX_FEATURES];
 int class;
} sample_t;
#define MAX_SAMPLES 14
sample_t samples[MAX_SAMPLES] = {
 /* LY LE FBM CWH WB CB HF SS LWL BWG */
 {{ 1, 0, 1, 1, 1, 0, 0, 0, 0, 0 }, MAMMAL }, /* Squirrel */
 {{ 1, 0, 1, 1, 1, 0, 0, 0, 0, 0 }, MAMMAL }, /* Cat */
 {{ 0, 1, 0, 0, 0, 1, 0, 0, 1, 0 }, AMPHIBIAN }, /* Frog */
 {{ 0, 1, 0, 0, 1, 0, 1, 0, 1, 0 }, BIRD }, /* Duck */
 {{ 1, 0, 1, 1, 0, 0, 0, 0, 0, 0 }, MAMMAL }, /* Bat */
 {{ 1, 0, 1, 1, 1, 0, 0, 0, 0, 0 }, MAMMAL }, /* Elephant */
 {{ 0, 1, 0, 0, 0, 1, 0, 1, 0, 0 }, REPTILE }, /* Alligator */
 {{ 0, 1, 0, 0, 1, 0, 1, 0, 0, 0 }, BIRD }, /* Owl */
 {{ 0, 1, 0, 0, 0, 1, 0, 1, 0, 1 }, FISH }, /* Trout */
 {{ 0, 1, 0, 0, 0, 1, 0, 1, 0, 0 }, REPTILE }, /* Turtle */

188 Artificial Intelligence

 {{ 0, 1, 0, 0, 0, 1, 0, 0, 1, 0 }, AMPHIBIAN }, /* Wtr Dragn */
 {{ 1, 0, 1, 1, 1, 0, 0, 0, 0, 0 }, MAMMAL }, /* Elk */
 {{ 0, 1, 0, 0, 0, 1, 0, 1, 0, 0 }, REPTILE }, /* Snake */
 {{ 0, 1, 0, 0, 0, 1, 0, 1, 0, 1 }, FISH } /* Salmon */
};
char *names[5]={“Mammal”, “Bird”, “Fish”, “Amphibian”, “Reptile”};
double calc_distance(int *feature_vector, int example)
{
 double distance = 0.0;
 int i;
 /* Compute the distance for each feature of the vector */
 for (i = 0 ; i < MAX_FEATURES ; i++) {
 distance += sqr((samples[example].features[i] - feature_vector[i]));
 }
 return sqrt(distance);
}
int main(void)
{
 int i, class = 0;
 double distance, min = 100.0;
 int fv[MAX_FEATURES]={ 0, 1, 0, 0, 0, 0, 0, 0, 1, 0 };
 for (i = 0 ; i < MAX_SAMPLES ; i++) {
 /* Calculate distance between the sample and example_i vector */
 distance = calc_distance(fv, i);
 /* If this is the closest vector, save it */
 if (distance < min) {
 min = distance;
 class = samples[i].class;
 }
 }
 printf(“Class is %s\n”, names[class]);
 return 0;
}

k-NN Example
A problem with 1NN classification is that it can be susceptible to noisy data.
One solution to this problem is instead of simply classifying based on the
closest neighbor, take the closest k neighbors and use the majority vote to
determine the correct class (see Figure 6.11).

Machine Learning 189

The advantage of k-NN (where k > 1) is that the probability of misclassifying
a sample is reduced because more examples can weigh in on the result. The
k portion can be taken too far, and if the k value is too large, it can also result
in misclassification. The value of k should therefore be small, but not too
large. Unrelated examples influence the vote.

The implementation for k-NN is a variation of 1-NN in that k examples
are used for classification instead of simply one.

The data representation for k-NN is identical to that one 1-NN, as shown
in Listing 6.4. What differs is how the classification occurs once the Euclidean
distances are calculated. Listing 6.5 provides the main function for k-NN
classification. As shown, each distance is calculated for the feature vector fc
(with calc_distance) and then saved in the distance array. Function count_votes
is then invoked (with the k value) to find and count the voting examples.

O

N THE CD

 The complete implementation of the k-NN demonstration can be found
on the CD-ROM at ./software/ch6/k_nn.c.

LISTING 6.5: Main function for the k-NN implementation.

int main(void)
{
 int i, class = 0;
 int fv[MAX_FEATURES]={ 0, 1, 0, 1, 0, 0, 0, 0, 1, 0 };

FIGURE 6.11: Using the closest k examples to classify a new sample.

190 Artificial Intelligence

 double distance[MAX_SAMPLES];
 int k=3;
 /* Walk through each example vector */
 for (i = 0 ; i < MAX_SAMPLES ; i++) {
 distance[i] = calc_distance(fv, i);
 }
 /* Count, Sort and Return Winning Class */
 class = count_votes(distance, k);
 printf(“Class is %s\n”, names[class]);
 return 0;
}

The calc_distance function is the same as shown in Listing 6.4. The next
function, count_votes, is used to find the closest k examples to the sample
vector and then to find the class represented by the majority of the examples.
The function begins by moving the class members from the example vectors
into a new list vector. The list is then sorted using the distance vector passed
into the function. The class votes array is then zeroed and the top k members of
the list (those closest to the unclassified sample) are counted. Finally, the class
with the most votes is returned to the main function to emit the class to which
the sample belongs (based on the majority vote of the closest k examples).

LISTING 6.6: Function to find and count the closest k example vectors.

int count_votes(double *dist, int k)
{
 int i, list[MAX_SAMPLES];
 int votes[MAX_CLASSES];
 int sorted;
 int max, class;
 /* Move classes to the new temporary list array */
 for (i = 0 ; i < MAX_SAMPLES ; i++) list[i] = samples[i].class;
 /* Sort the list in ascending order of distance */
 sorted = 0;
 while (!sorted) {
 sorted = 1;
 for (i = 0 ; i < MAX_SAMPLES-1 ; i++) {
 if (dist[i] > dist[i+1]) {
 int temp = list[i]; list[i] = list[i+1]; list[i+1] = temp;
 double tdist = dist[i]; dist[i] = dist[i+1]; dist[i+1] = tdist;

Machine Learning 191

 sorted = 0;
 }
 }
 }
 /* Count the votes */
 for (i = 0 ; i < MAX_CLASSES ; i++) votes[i] = 0;
 /* Add the vote to the particular class */
 for (i = 0 ; i < k ; i++) {
 votes[list[i]]++;
 }
 /* Count the votes and return the largest class */
 max = votes[0];
 class = 0;
 for (i = 1 ; i < MAX_CLASSES ; i++) {
 if (votes[i] > max) {
 max = votes[i];
 class = i;
 }
 }
 return class;
}

FIGURE 6.12: k-NN Example for Classification (k=3).

192 Artificial Intelligence

The k-NN algorithm is much less susceptible to noise than the 1-NN and
therefore can provide a much better classification than 1-NN. The value of
k should be large enough to yield a representative set of voting examples,
but small enough to avoid too small of a sample.

The process of k-NN is shown in Figure 6.12. The distance from each
example to the sample vector (mystery animal) is performed and the top
through chosen. In this case, the examples aren’t sorted, but instead just
selected from the list (shown in bold). In this example, two of the closest
examples are from the amphibian class and one from the bird class.

The nearest neighbor algorithm k-NN is a great algorithm for classifying
feature vectors using a set of known classified examples. Drawbacks can
include the processing time required if the example set and feature vector
are large. Its biggest advantage is its simplicity.

CHAPTER SUMMARY
While machine learning is one of the older techniques of AI, it remains useful
and effective for general learning. In this chapter, the ideas behind supervised
and unsupervised learning were explored and a collection of algorithms that
demonstrate these approaches were given. Decision trees were introduced from
the perspective of supervised learning, and also Markov chains and nearest
neighbor algorithms from the unsupervised learning perspective. All are useful
for learning and classification in a wide variety of problem domains.

RESOURCES
Anzai, Y. Pattern Recognition and Machine Learning New York, Academic

Press, 1992.
Carbonell, J. (Ed.) Machine Learning Paradigms and Methods Boston, MA

MIT Press, 1990.
Dasarthy, B. (Ed.). “Nearest Neighbor (NN) Norms: NN Pattern

Classification Techniques,” 1991.
Hastie, T. et al “The Elements of Statistical Learning,” Springer, 2001.
Mitchell, T.M. “Machine Learning,” McGraw-Hill, 1997.

EXERCISES
1. In your own words, define the core differences between supervised and

unsupervised learning.

Machine Learning 193

2. What is a common application of decision-tree learning?
3. Define entropy and its application to decision-tree learning. What can

be inferred if entropy is zero or one?
4. What issues can result from creating decision trees from training sets

that are too small or too large?
5. What other applications are useful for Markov chains?
6. In the Markov example presented in this book, only two letters are

considered to build a probability matrix. Update the sample program to
consider three letters in probability construction. How does this affect
the production of random words?

7. Nearest neighbor classification uses a feature vector to represent known
concepts. How could a first-person-shooter character (NPC) be defined
such action-selection was performed with 1NN?

8. Describe the difference between 1NN and k-NN classification.
9. What is the primary issue with 1NN classification?
10. How does k-NN classification improve on the capabilities of 1NN

classification?
11. What is the primary issue with k-NN classification?

FIGURE 6.13: k-NN Example for Classification (k=3).

C h a p t e r

Evolutionary Computation refers to a class of algorithms that utilize
simulated evolution to some degree as a means to solve a variety
of problems, from numerical optimization to symbolic logic. By

simulated evolution, we mean that the algorithms have the ability to evolve
a population of potential solutions such that weaker solutions are removed
and replaced with incrementally stronger (better) solutions. In other
words, the algorithms follow the principle of natural selection. Each of
the algorithms has some amount of biological plausibility, and is based on
evolution or the simulation of natural systems. In this chapter, we’ll explore
genetic algorithms, genetic programming, evolutionary strategies, differential
evolution, and another biologically inspired algorithm: swarm intelligence.

SHORT HISTORY OF EVOLUTIONARY COMPUTATION
It’s no surprise that evolution has been used as a metaphor for solving very
difficult problems. Evolution in itself is a mechanism of incremental search,
whereby more fit solutions to problems propagate to future generations,
and less fit solutions gradually fade away. This process of natural selection
provides a wonderful vehicle for finding solutions to difficult multivariate
optimization problems.

7 EVOLUTIONARY
COMPUTATION

196 Artifi cial Intelligence

While evolutionary algorithms have existed for quite some time, their use
has increased as modern computing systems permit the evolution of larger
populations of solutions to much more complex problems.

Evolutionary Strategies
One of the earliest uses of evolution occurred in the 1960s by Rechenberg.
Rechenberg introduced evolution strategies as a means to optimize vectors of
real-values to optimize physical systems such as airfoils. [Rechenberg 1965]
In this early evolutionary strategy, the population size was restricted to two
members, the parent and child. The child member was modifi ed in a random
way (a form of mutation), and whichever member was more fi t (parent or child)
was then allowed to propagate to the next generation as the parent. For example,
as shown in Figure 7.1, the child member is more fi t than the parent in the fi rst
generation, which results in it being the parent in the next generation.

FIGURE 7.1: Demonstrating the simple two member evolutionary strategy.

FIGURE 7.2: Evolving fi nite state machines for a simple parsing task.

Evolutionary Computation 197

Evolutionary Programming
Evolutionary Programming was also introduced and advanced in the 1960s by
Fogel. With evolutionary programming, Fogel evolved populations of finite
state machines (or automata) that solved various problems. [Fogel 1966] A
finite-state machine is a graph with state transitions based on an input symbol
and the current state (for example, many parsers are designed as finite-state
machines). Fogel’s method incrementally improved the population through
random mutation of the state transitions.

The example shown in Figure 7.2 demonstrates one of the encodings
that could be used for evolving finite-state machines. The goal is to evolve
a finite-state machine that can recognize patterns such as aabb, aabbaabb,
aabbaabbaabb, etc.

The upper left of Figure 7.2 is the finite-state machine raw encoding that
can be mutated during evolution. This particular finite-state machine results in
the state transition diagram shown in the middle right. This can be diagrammed
as shown in the lower right of Figure 7.2, the state-machine diagram.

Genetic Algorithms
John Holland introduced the idea of genetic algorithms in the 1960s as a
population-based algorithm with greater biological plausibility than previous
approaches. Where evolutionary strategies and evolutionary programming
used mutation as a way to search the solution space, Holland’s genetic
algorithm extended this with additional operators straight from biology.
Potential solutions (or chromosomes) are represented as strings of bits
instead of real values. In addition to mutation, Holland also used crossover
and inversion to navigate the solution space (see Figure 7.3).

FIGURE 7.3: Holland’s bit-string genetic algorithm.

198 Artifi cial Intelligence

Holland also studied the mathematical foundation of his algorithms, looking
more to understand them from a theoretical perspective than using them
to solve problems.

NOTE All living organisms consist of cells, where each cell contains a set
of chromosomes (strings of DNA). Each chromosome is made up of
genes, each of which can encode a trait (behavioral or physical). These
chromosomes serve as the basis for genetic algorithms, where a potential
solution is defi ned as a chromosome, and the individual elements of the
solution are the genes.

Genetic Programming
In 1990s, John Koza introduced the subfi eld called Genetic Programming.
This is considered a subfi eld because it fundamentally relies on the core
genetic algorithm created by Holland, and differs in the underlying
representation of the solutions to be evolved. Instead of using bit-strings
(as with genetic algorithms) or real-values (as is the case for evolutionary
programming or evolutionary strategies), genetic programming relies on
S-expressions (program trees) as the encoding scheme.

Consider the example shown in Figure 7.4. The population consists of
two members, A and B. Using the crossover operator, a portion of A is grafted
onto B, resulting in a new expression. Genetic programming also utilizes the
mutation operator as a way of extending the population to the search space.

FIGURE 7.4: Using the crossover operator to create new S-expressions.

Evolutionary Computation 199

TIP While Koza’s representation focused on S-expressions, linear genetic
programming has been introduced to evolve programs in standard
machine (assembly) languages.

BIOLOGICAL MOTIVATION

The evolutionary algorithms covered in this chapter are all biologically
plausible. In each case, the algorithms that we’ll explore are population-
based. Each of the algorithms operates on a population of entities,
parallelizing the ability to solve a problem.

The fi rst set of algorithms that we’ll review (genetic algorithms, genetic
programming, and evolutionary strategies) is truly evolutionary in nature.
These algorithms involve natural selection across a population of potential
solutions. Members of the population are born and eventually die, but pass
on their genetic materials through the populations in search of a satisfactory
solution. At the core of these algorithms is what’s called recombination, or
the combining and mutating of solutions that can change the material in the
population. As the members of the pool change, only those that are fi t can
move onto the next population (potentially in more fi t form). This process
is illustrated in Figure 7.5.

FIGURE 7.5: Fundamental process of population-based evolutionary algorithms.

FIGURE 7.6: Optimization by natural system (particle swarm and Ant Colony Optimization).

200 Artificial Intelligence

The second set of algorithms that we’ll explore is capable of solving a
variety of problems using nature as a guide. The first algorithm, in the field
of swarm intelligence, uses a population of particles that swarm with each
other over a fitness landscape to solve various problems such as optimization.
The best particle is used as the center of the swarm, with other particles
swarming around it (looking for better solutions).

The second algorithm, Ant Colony Optimization, simulates a colony of
ants and uses simulated pheromones to find solutions to various graph-related
problems (as shown in Figure 7.6, where the pheromone trail identifies the
shortest path through the graph).

GENETIC ALGORITHMS (GA)

Let’s begin our discussion of evolutionary algorithms with the most popular
and most flexible algorithm, the Genetic Algorithm. The genetic algorithm
isn’t really a single algorithm, but a collection of algorithms and techniques
that can be used to solve a variety of problems in a number of different
problem domains. For example, many consider genetic algorithms a
technique for numerical optimization, but genetic algorithms can be used
for much more (as we’ll see later in the sample application).

The ability of the genetic algorithm to solve wide-ranging problems
is derived from the method by which the solution is represented in the
population. As we saw in the introduction, solutions can be represented as
bit-strings (with an underlying representation), real-values, as well as more
abstract entities such special encodings of LISP S-expressions. The genetic
algorithm can be applied to many problems, and is limited primarily to the
developer’s ability to efficiently represent a solution. We’ll see a number of
possible solution encodings for Genetic Algorithms, Genetic Programming,
and Evolutionary Strategies.

Genetic Algorithm Overview
The GA is a collection of algorithm recipes that can be used to evolve
solutions to a range of different types of problems. We call it a recipe because
there are a large number of variations of the GA that can be used. These
variations are typically selected based on the type of problem to be solved.

Let’s start with a discussion of the basic flow of the GA, and then we’ll
dig into the details and explore which variants are most useful. Note that
the GA is called a population-based technique because instead of operating
on a single potential solution, it uses a population of potential solutions.

Evolutionary Computation 201

The larger the population, the greater the diversity of the members of the
population, and the larger the area searched by the population.

One attempt to understand why genetic algorithms work is called the
Building-Block Hypothesis (BBH). This specifi es, for binary GA, that the
crossover operation (splitting two chromosomes and then swapping the tails)
improves the solution by exploiting partial solutions (or building blocks) in
the original chromosome. One can think of this as genetic repair, where fi t
building blocks are combined together to produce higher fi tness solutions.
Additionally, using fi tness-proportionate selection (higher fi t members are
selected more often), less fi t members and their corresponding building
blocks, die out thus increasing the overall fi tness of the population.

The overall genetic algorithm can be defi ned by the simple process
shown in Figure 7.7. First, a pool of random potential solutions is created
that serves as the fi rst generation. For the best results, this pool should
have adequate diversity (fi lled with members that differ more than they are
similar). Next, the fi tness of each member is computed. The fi tness here is
a measure of how well each potential solution solves the problem at hand.
The higher the fi tness, the better the solution in relation to others.

FIGURE 7.7: Simple fl ow of the genetic algorithm.

202 Artificial Intelligence

Next, members of the population are selected based on some algorithm.
The two simplest approaches are roulette wheel selection, and elitist selection
(see Figure 7.8). Roulette wheel selection is a probabilistic algorithm that
selects members of the population proportionate with their fitness (the
higher fit the member, the more likely it will be selected). In elitist selection,
the higher fitness members of the population are selected, forcing the lesser
fit members to die off.

Using roulette wheel selection (using the data from Figure 7.8), one
likely selection result would be that two of Member A would be selected,
and one each of Members C and D. Since Member A is of higher fitness that
the other members, it has the privilege of propagating more chromosomes
to the next population. Elitist selection in this model (shown in Figure 7.8)
simply takes the upper 50% of the population’s members (most fit), and then
distributes these to the next generation.

Returning now to our GA flow, from the selection process, we have a
number of members that have the right to propagate their genetic material
to the next population. The next step is to recombine these members’
material to form the members of the next generation. Commonly, parents
are selected two at a time from the set of individuals that are permitted to
propagate (from the selection process). Given two parents, two children

FIGURE 7.8: Two of the simpler GA selection models.

FIGURE 7.9: Illustrating the crossover operators in genetic recombination.

Evolutionary Computation 203

are created in the new generation with slight alternations courtesy of the
recombination process (with a given probability that the genetic operator can
occur). Figures 7.9 and 7.10 illustrate four of the genetic operators.

Figure 7.9 illustrates the crossover genetic operators. Using crossover,
the parents are combined by picking a crossover point, and then swapping
the tails of the two parents to produce the two children. Another variant of
crossover creates two crossover points, swapping the genetic materials in
two places.

Figure 7.10 covers the mutation operator and also the inversion operator.
Each of these operators were the original genetic operators from Holland’s
original work. The mutation operator simply mutates (or flips) a bit. Note
that in real-valued chromosomes, a slight change to the value can also be
performed as mutation (small increment or decrement of the value). The
inversion operator takes a piece of the chromosome, and inverts it. In this
case, the range of bits are flipped.

Finally, we’ve discussed the process of the GA, but not how it terminates.
There are a number of ways that we can terminate the process. The most
obvious is to end when a solution is found, or one that meets the designer’s
criteria. But from the algorithm’s perspective, we also need to account for
the population, and its ability to find a solution.

Another termination criterion, potentially returning a suboptimal
solution, is when the population lacks diversity, and therefore the inability to
adequately search the solution space. When the members of the population
become similar, there’s a loss in the ability to search. To combat this, we
terminate the algorithm early by detecting if the average fitness of the
population is near the maximum fitness of any member of the population
(for example, if the average fitness is greater than 0.99 times the maximum
fitness). Once the population becomes too similar, the members have focused
on similar areas of the search space, and are therefore incapable of branching
out to new areas in search of more fit individuals.

FIGURE 7.10: Illustrating the mutation and inversion genetic operators.

204 Artificial Intelligence

TIP The issue of lack of diversity in genetic algorithms results in premature
convergence, as the members converge on a local maximum, not having
found the global maximum. Early termination is one solution, but others
include algorithm restart if this situation is detected.

Genetic Algorithm Implementation
Let’s now explore an implementation of a genetic algorithm to solve the
Towers of Hanoi problem. This problem involves three pegs, with three
unique-sized discs, and the goal of moving the discs from one peg to another.
The constraint exists that a disc can be moved to a peg only if the peg is
empty, or if the disc currently on the peg is larger than the peg to be moved
(see Figure 7.11).

The first problem to solve is how to represent the sequence of moves to
solve the problem in a form that can be evolved by the genetic algorithm.
The first thing to consider is that there are only a handful of moves that are
possible (though these may not always be legal, depending on the current
configuration). If we number the pegs from zero to two, we can think about

FIGURE 7.11: Legal moves for the Towers of Hanoi with initial and goal states.

FIGURE 7.12: Move sequence representation for the Towers of Hanoi problem.

Evolutionary Computation 205

the solution space as a sequence of moves whereby the move encodes the
source peg and the destination peg.

From Figure 7.12, the first move ‘02’ represents a move of the disc from
peg 0 to peg 2. The next move ‘01’ moves the disc from peg 0 to peg 1. The
sequence of moves shown in Figure 7.12 can be shown visually as illustrated
in Figure 7.13. The top configuration represents the initial configuration of
the problem, and subsequent moves show how the configuration changes
with each move (the grey disc is the last moved).

Let’s now dig into the source that provides this representation (see Listing
7.1). The chromosome for the GA is sequence of moves, and each gene is a
single move. We’ll represent the moves very simply as integer numbers from
0 to 5. We’ll decode the move number to the peg to/from command using
the moves array. This allows us to avoid a direct representation, and provide
a simpler format to the GA to evolve.

The Towers of Hanoi simulation is provided by the pegs array. This
contains three structures representing the pegs, and up to three discs (with
the number of discs currently on the peg defined by count). The solution is
represented by the type solution_t. This contains the sequence of moves (plan),
the number of active moves (op_count), and the current fitness evaluation.

FIGURE 7.13: Illustrating the moves provided in the solution sequence in Figure 7.12.

206 Artificial Intelligence

Listing 7.1: Representing the solution space for the Towers of Hanoi.

#define A_TO_B 0x01
#define A_TO_C 0x02
#define B_TO_A 0x10
#define B_TO_C 0x12
#define C_TO_A 0x20
#define C_TO_B 0x21
#define MAX_OPERATIONS 6
char moves[MAX_OPERATIONS]={
 A_TO_B, A_TO_C, B_TO_A, B_TO_C, C_TO_A, C_TO_B };
typedef struct {
 char peg[3];
 int count;
} peg_t;
peg_t pegs[3];
#define NUM_OPERATIONS 12
typedef struct {
 int op_count;
 unsigned char plan[NUM_OPERATIONS+1];
 double fitness;
} solution_t;

The population of the GA is split into two parts. We’ll keep an array of
solutions as the current population, and another array as the next generation
of solutions. The current and next generation cycle between each other as
the algorithm is performed (next becomes current, etc.).

#define POPULATION_SIZE 200
solution_t solutions[2][POPULATION_SIZE];

Let’s now look at the main loop for the GA, and then discuss the major functions
that provide the process of evolution. We begin by randomly initializing the
population of possible solutions with a call to initialize_population, and then
calculate the fitness of each member (by testing each plan against a simulation
of the Towers of Hanoi) using compute_population_fitness. We then enter
the loop that invokes the core of the GA. The function perform_ga does a
single cycle through the population, selecting the members to move on, and
recombining them in the next generation. The fitness of each member is
calculated again, and the fundamental statistics are emitted (minimum fitness,
average fitness, and maximum fitness of the entire population).

Evolutionary Computation 207

This process continues while there’s adequate diversity in the population
(checking the average fitness against the maximum) and we haven’t yet found
a solution (a perfect solution being a fitness of 75.0).

Listing 7.2: A snippet from the main loop for the genetic algorithm.

 RANDINIT();
 initialize_population(cur);
 compute_population_fitness(cur);
 while ((avg < (0.999 * max)) && (max < 75.0)) {
 cur = perform_ga(cur);
 compute_population_fitness(cur);
 if (((generation++) % 500) == 0) {
 printf(“%6d: %g %g %g\n”, generation, min, avg, max);
 }
 }

The perform_ga function is shown in Listing 7.3, and is the core of the
genetic algorithm implementation. It performs selection and recombination
(using some support functions). The first step is identifying which index of
the solutions array we’ll use for the next generation (essentially the opposite
of the current generation). We then walk through the current population,
selecting two parents with the select_parent function. If crossover is to be
performed (randomly, per the probability of crossover), then a crossover point
is selected, and the tails swapped on the two parents (using the minimum of
the op_counts to ensure the smallest possible sequence of moves).

Note also that as the genes (individual moves) are copied from the parent to
the child, there’s a possibility of mutation with the MUTATE macro. Each child
receives the number of operations used by the parent (size of move plan).

Listing 7.3: The core of the genetic algorithm.

int perform_ga(int cur_pop)
{
 int i, j, new_pop;
 int parent_1, parent_2;
 int crossover;
 new_pop = (cur_pop == 0) ? 1 : 0;
 for (i = 0 ; i < POPULATION_SIZE ; i+=2) {
 /* i is child_1, i+1 is child_2 */

208 Artificial Intelligence

 parent_1 = select_parent(cur_pop);
 parent_2 = select_parent(cur_pop);
 if (RANDOM() < CROSSOVER_PROB) {
 crossover = RANDMAX(
 MIN(solutions[cur_pop][parent_1].op_count,
 solutions[cur_pop][parent_2].op_count));
 } else {
 crossover = NUM_OPERATIONS;
 }
 for (j = 0 ; j < NUM_OPERATIONS ; j++) {
 if (j < crossover) {
 solutions[new_pop][i].plan[j] =
 MUTATE(solutions[cur_pop][parent_1].plan[j]);
 solutions[new_pop][i+1].plan[j] =
 MUTATE(solutions[cur_pop][parent_2].plan[j]);
 } else {
 solutions[new_pop][i].plan[j] =
 MUTATE(solutions[cur_pop][parent_2].plan[j]);
 solutions[new_pop][i+1].plan[j] =
 MUTATE(solutions[cur_pop][parent_1].plan[j]);
 }
 }
 solutions[new_pop][i].op_count = solutions[cur_pop][parent_1].op_
count;
 solutions[new_pop][i+1].op_count = solutions[cur_pop][parent_2].op_
count;
 }
 return new_pop;
}

The select_parent function provides the roulette wheel selection
algorithm (see Listing 7.4). This function walks through the current
population, and tests each member with a probability function. If a random
number is selected that is less than the fitness of the member over the sum
of all members, then this member is selected as a parent and returned. The
idea is that higher fitness members are selected more often, but occasionally,
a less fit member is allowed to propagate. This is actually desirable because
it increases the diversity of the overall population. If the entire population
is checked, and no member is selected, then a random member of the
population is returned.

Evolutionary Computation 209

Listing 7.4: Selecting a parent solution with roulette wheel selection.

int select_parent(int cur_pop)
{
 int i = RANDMAX(POPULATION_SIZE);
 int count = POPULATION_SIZE;
 double select=0.0;
 while (count--) {
 select = solutions[cur_pop][i].fitness;
 if (RANDOM() < (select / sum)) return i;
 if (++i >= POPULATION_SIZE) i = 0;
 }
 return(RANDMAX(POPULATION_SIZE));
}

Finally, let’s look at the fitness function (compute_fitness). This
function is used by compute_population_fitness, which simply performs
compute_fitness on the entire population, and collects the necessary
statistics. The basic flow of this function is first to initialize the Towers
of Hanoi simulation (pegs, peg contents, and disc counts). The member
solution is then iterated executing each command, and performing the disc
move that’s specified. If the move is illegal (no disc on the source peg, or
attempting to move a large disc over a smaller disc), then an illegal_moves
counter is incremented, but the move is not performed to maintain a valid
pegs configuration.

When all moves from the solution have been iterated, the fitness is
calculated and returned. In this example, we calculate the fitness by giving
a score of 25 for each disc that’s on the correct peg. We then subtract from
this the number of illegal moves that were attempted. The purpose of this is
to evolve solutions that are optimal (no illegal moves attempted).

Listing 7.5: Calculating the fitness of a potential solution.

double compute_fitness(int cur_pop, int member, int trace)
{
 int i, from, to, disc=3;
 int illegal_moves = 0;
 int move;
 double fitness;
 /* Initialize the pegs */
 for (i = 0 ; i < 3 ; i++) {

210 Artificial Intelligence

 pegs[0].peg[i] = disc--;
 pegs[1].peg[i] = 0;
 pegs[2].peg[i] = 0;
 }
 pegs[0].count = 3;
 pegs[1].count = 0;
 pegs[2].count = 0;
 for (i = 0 ; i < solutions[cur_pop][member].op_count ; i++) {
 /* Get the actual move from the moves array */
 move = moves[solutions[cur_pop][member].plan[i]];
 /* Find the source peg */
 from = (move >> 4) & 0xf;
 if (pegs[from].count == 0) {
 illegal_moves++;
 } else {
 /* Find the destination peg */
 to = move & 0xf;
 /* Ensure it’s a legal move */
 if ((pegs[to].count == 0) ||
 (pegs[from].peg[pegs[from].count-1] <
 pegs[to].peg[pegs[to].count-1])) {
 /* Perform the move, update the pegs configuration */
 pegs[from].count--;
 pegs[to].peg[pegs[to].count] = pegs[from].peg[pegs[from].count];
 pegs[from].peg[pegs[from].count] = 0;
 pegs[to].count++;
 } else {
 illegal_moves++;
 }
 }
 }
 /* Calculate the fitness */
 fitness = (double)(pegs[2].count*25) - (double)illegal_moves;
 if (fitness < 0.0) fitness = 0.0;
 return fitness;
}

Let’s now look at the application in action. Listing 7.6 shows the output
of the application (using a mutation probability of 0.01 and a crossover
probability of 0.07).

Evolutionary Computation 211

O
N THE CD

 The genetic algorithm implementation can be found on the CD-ROM at
./software/ch7/ga.c.

Listing 7.6: Sample output of the genetic algorithm of the Towers of Hanoi

problem.

$./ga.exe
 1: 0 17.155 48
 501: 20 46.1 49
1001: 0 44.195 49
1501: 0 44.345 48
1578: 0 45.68 75
Trace : 02 01 21 02 10 12 02

The complete optimal solution to the Towers of Hanoi problem is
shown in Figure 7.14. The least number of moves that solve this problem
is seven. The visual execution of this plan is shown in Figure 7.14 (the
optimal solution). In some cases, the algorithm will find a suboptimal plan.
Commonly this occurs when a lack of diversity exists in the population. This
is an expected problem with the GA, requiring either multiple runs, or an
automatic restart when this situation is detected.

FIGURE 7.14: The optimal solution to the Towers of Hanoi for three discs.

212 Artificial Intelligence

GENETIC PROGRAMMING (GP)

As we discussed in the early part of this chapter, genetic programming
is the biologically-inspired evolution of computer programs that solve a
predefined task. For this reason, GP is nothing more than a genetic algorithm
applied to the problem program evolution. Early GP systems utilized LISP
S-expressions (as shown in Figure 7.4), but more recently, linear genetic
programming systems have been used to evolve instruction sequences to
solve user-defined programming tasks. [Banzhaf 1998]

Evolving complete programs with GP is computationally very expensive,
and the results have been limited, but GP does have a place in the evolution
of program fragments. For example, the evolution of individual functions
that have very specific inputs and outputs and whose behavior can be easily
defined for fitness evaluation by GP. To evolve a function, the desired output
must be easily measurable in order to understand the fitness landscape of
the function in order to incrementally evolve it.

NOTE GP has also been applied to the evolution of physical hardware using
programmable logic. This is an interesting area of research, but due to
the inability to understand the complexity of the resulting design, met
with limited success.

Genetic Programming Algorithm
The genetic programming algorithm uses the same fundamental flow as
the traditional genetic algorithm. The population of potential solutions is
initialized randomly and then their fitness computed (through a simulation
of executed instructions with the stack). Selection of members that
can propagate into the next generation can then occur through fitness-
proportionate selection. With this method, the higher fit the individual, the

FIGURE 7.15: Sample instruction set encoding for the linear genetic programming example.

Evolutionary Computation 213

higher the probability that they will be selected for recombination in the
next generation.

The chromosome, or program to be evolved, is made up of genes, or
individual instructions. The chromosome can also be of different lengths,
assigned at creation, and then inherited during the evolution. We’ll use a simple
instruction set defi ned for the particular problem, as shown in Figure 7.15.

With this minimal number of instructions, we’ll support computing a
number of different types of functions (such as volume and area equations
for two-and three-dimensional objects). Each of the instructions operates on
the stack, either pushing a number to the stack, or manipulating the stack
in some way.

Continuing with the GP algorithm, once two parents are selected,
solutions are recombined with some small probability using the crossover
and mutation operations. This process is shown below in Figure 7.16.

From Figure 7.16, we see how two unrelated programs can combine to
produce a program to compute the area of a circle (child 1).

NOTE The architecture simulated here for GP is called a “zero-address”
architecture. What makes this architecture unique is that it is a stack-
focused architecture – there are no registers available. All arguments
and processing occurs on the stack. This makes the instruction set very
simple, which is ideal for evolving instruction sequences for complex
operations.

Let’s look at one fi nal example to fully understand the operation of these
linear programs using a stack machine (see Figure 7.17). In this example,
we have a simple four-instruction program (that computes the cube of the

FIGURE 7.16: Demonstrating the crossover genetic operator on two simple linear programs.

214 Artifi cial Intelligence

value at the top of the stack). The top of the fi gure represents the initial state
before the program is executed. The instructions are shown at the right,
with a pointer to the instruction last executed (with the instruction shown
in bold). The stack is shown in the initial confi guration with the value to be
cubed (and a pointer to the next element that can be written).

The DUP instruction takes the top element of the stack and duplicates
it (so that the fi rst two elements of the stack will be the same). The MUL
instruction multiples the fi rst two elements of the stack, and then pushes the
result back onto the stack (but consuming the initial two values). The result
when all instructions have been executed is the cube of the initial value,
stored at the top of the stack.

Remember that the representation is very important, and much care
should be taken when designing it for the problem at hand. Since we’ll
be executing many of these programs during the evaluation phase of the
algorithm (large population, many verifi cation iterations), it must be simple
and effi cient. Let’s now dig into the implementation to see how it works.

FIGURE 7.17: Example instruction sequence and stack for the ‘cube’ program.

Evolutionary Computation 215

Genetic Programming Implementation
Let’s investigate an implementation of linear genetic programming to evolve
the instruction sequence to solve a specific volume equation. Much of the
implementation is shared with our existing genetic algorithm source, so we’ll
focus here on the core differences in the implementation (the chromosome
representation, and the fitness calculation function).

The chromosome (potential program solution) is represented by the
structure programs_t. This contains the number of instructions in the
program (op_count) and the program itself (program). The fitness is the
current fitness measure of the program (of op_count instructions). The two
populations of program solutions is represented as the two-dimensional
programs array. It’s two dimensional because we need to represent the
current and next generation (for the entire population size).

O

N THE CD

 The full genetic programming implementation can be found on the CD-
ROM at ./software/ch7/gp.c.

Finally, in Listing 7.7, is the list of legal instructions. Figure 7.15 shows
the meanings of these instructions, and Figure 7.17 illustrates their use in
a sample program.

Listing 7.7: Program and population representation for the linear genetic

programming example.

#define NUM_INSTRUCTIONS 20
typedef struct {
 int op_count;
 unsigned char program[NUM_INSTRUCTIONS];
 double fitness;
} programs_t;
#define POPULATION_SIZE 2000
programs_t programs[2][POPULATION_SIZE];
#define PUSH_PI 0
#define PUSH_2 1
#define PUSH_3 2
#define DUP 3
#define SWAP 4
#define MUL 5
#define DIV 6
#define ADD 7
#define MAX_OPERATIONS 8

216 Artificial Intelligence

TIP When defining an instruction set for genetic programming, design the
instruction set around the problem, if possible. Specify the instructions
that can contribute to the solution, rather than increasing the complexity
with a large number of instructions that simply cloud the solution
space.

Now let’s look at the differences from our previous genetic algorithm
example. The first difference is the method by which parent chromosomes
are selected for recombination. In the previous example, we used roulette
wheel selection, but in this example, we’ll modify select_parent to provide
a form of elitist selection (see Listing 7.8). We start at a random member
and then work through the entire population looking for a member whose
fitness is more than the average. When one is found, we simply return it (no
probabilistic selection, other than beginning in a random location).

One advantage to this approach is that we can set the crossover and
mutation probabilities high (to cover more of the search space) without much
concern about losing existing good solutions.

Listing 7.8: Choosing parents using an elitist selection algorithm.

int select_parent(int cur_pop)
{
 int i = RANDMAX(POPULATION_SIZE);
 int count = POPULATION_SIZE;
 double select=0.0;
 /* Step through each of the population’s members */
 while (count--) {
 select = programs[cur_pop][i].fitness;
 /* Select this parent if its fitness is more than the average */
 if (select >= avg) return i;
 /* Check the next member of the population */
 if (++i >= POPULATION_SIZE) i = 0;
 }
 /* Nothing found greater than the average, return a random member */
 return(RANDMAX(POPULATION_SIZE));
}

Finally, let’s look at the fitness function. This function provides the
simulation for the simple instruction set. Also within this function is the
stack object from which the instructions will operate (see Figure 7.9). This

Evolutionary Computation 217

function very simply operates as a virtual machine. It loops through the
instructions, executing them given the data available on the stack. If the
instruction is deemed illegal (overflows or underflows the stack), then the
instruction is simply ignored, and we move on to the next instruction.

NOTE Note that the loop iterates through the current program multiple times,
to ensure it solves the equation for multiple sample values. We begin
by pushing a random value onto the stack, and then executing each
instruction serially. When the program is complete, we check the result
and calculate a fitness value. This is based on there being one value left
on the stack, and correctly calculating our sample equation (Eq 7.1).

Listing 7.9: Fitness function for the linear genetic programming example.

double compute_fitness(int cur_pop, int member)
{
 int i, instruction;
 int iteration = MAX_ITERATIONS;
 double fitness=0.0;
 double expected, d;
 stack_t stack;
 while (iteration--) {
 d = (double)RANDMAX(100)+RANDOM();
 expected = (PI * (d * d * d)) / 4.0;
 stack.index = 0;
 PUSH(stack, d);
 for (i = 0 ; i < programs[cur_pop][member].op_count ; i++) {
 /* Get the actual move from the moves array */
 instruction = programs[cur_pop][member].program[i];
 switch(instruction) {
 case PUSH_PI:
 if (!IS_FULL(stack)) {
 PUSH(stack,PI);
 }
 break;
 case PUSH_2:
 if (!IS_FULL(stack)) {
 PUSH(stack,2.0);
 }
 break;

218 Artificial Intelligence

 case PUSH_3:
 if (!IS_FULL(stack)) {
 PUSH(stack,3.0);
 }
 break;
 case DUP:
 if (!IS_EMPTY(stack)) {
 double temp = POP(stack);
 PUSH(stack, temp);
 PUSH(stack, temp);
 }
 break;
 case SWAP:
 if (stack.index >= 2) {
 double temp1 = POP(stack);
 double temp2 = POP(stack);
 PUSH(stack,temp1); PUSH(stack,temp2);
 }
 break;
 case MUL:
 if (stack.index >= 2) {
 double temp1 = POP(stack);
 double temp2 = POP(stack);
 PUSH(stack, (temp1*temp2));
 }
 break;
 case DIV:
 if (stack.index >= 2) {
 double temp1 = POP(stack);
 double temp2 = POP(stack);
 PUSH(stack, (temp1/temp2));
 }
 break;
 case ADD:
 if (stack.index >= 2) {
 double temp1 = POP(stack);
 double temp2 = POP(stack);
 PUSH(stack, (temp1+temp2));
 }
 break;

Evolutionary Computation 219

 default:
 assert(0);
 }
 }
 /* Calculate the fitness */
 fitness += (1.0 / (double)stack.index);
 if (stack.stk[0] == expected) {
 fitness += 30.0;
 if (stack.index == 1) fitness += 10.0;
 }
 }
 fitness = fitness / (double)MAX_ITERATIONS;
 return fitness;
}

The evaluation function that we’re trying to solve in Listing 7.9 is the
volume of a sphere (see Eq 7.1). There’s a single variable for the equation,
d, or the diameter of the sphere. This value is pushed onto the stack and the
result should be a single value V (as defined by Eq 7.1).

 (Eq 7.1)

Considering the equation, and some knowledge of the operation of the
stack machine, one simple hand-crafted solution to the problem is:

PUSH 2, PUSH 3, MUL, SWAP, DUP, DUP, MUL, MUL, PUSH PI, MUL, DIV

which is a reasonable solution to the problem, but evolution doesn’t
know anything about the equation, and does a better job of finding solutions
(squeezing one instruction away). Here are a number of other solutions that
were evolved by the linear genetic programmer:

DUP, DUP, PUSH 2, PUSH 3, MUL, PUSH PI, DIV, MUL, MUL, MUL

DUP, SWAP, DUP, PUSH PI, MUL, MUL, PUSH 3, PUSH 2, MUL, DIV,
SWAP, DIV

DUP, DUP, MUL, MUL, PUSH 2, DIV, PUSH 3, MUL, PUSH PI, DIV

DUP, DUP, PUSH 3, DUP, SWAP, ADD, DIV, DIV, PUSH PI, DIV, MUL

220 Artificial Intelligence

Note in the second example, that there’s a superfluous instruction
(SWAP, shown in italics). This instruction doesn’t help in solving the
equation, but it doesn’t hurt either. The presence of this instruction has some
biological plausibility, which should be mentioned. Molecular biologists have
discovered what’s called ‘junk’ DNA (or non-functional sequences of DNA)
that are called introns. Researchers in genetic algorithms have actually found
that the introduction of introns can actually improve the ability of genetic
algorithms to solve complex problems. [Levenick 1991]

Genetic programming, in this case, linear genetic programming, is a
useful metaphor for the evolution of instruction sequences for simple to
moderately complex functions. It’s not only useful to evolve highly optimized
functions for specific problems, but can also be useful to study new and novel
ways to solve problems.

EVOLUTIONARY STRATEGIES (ES)

Evolutionary Strategies (ES) are one of the oldest of the evolutionary
algorithms, and remain quite useful. It’s very similar to the genetic algorithm,
but instead of focusing on binary strings (as did the original genetic algorithm),
evolutionary strategies focus on the optimization of real-value parameters.

The evolutionary strategies algorithm was developed (in parallel to
genetic algorithms) during the 1960s at the Technical University of Berlin
(TUB), Germany by Rechenberg and Schwefel. Evolutionary strategies were
initially designed to solve fluid dynamics problems through simulations. Their
initial experiments utilized a population of one (parent + offspring, choosing
the best to propagate further), since the optimization was done manually,
without access to a computer to simulate the experiments. Even with this
simple approach (which later evolved into a population-based technique)
their results were successful.

FIGURE 7.18: Schwefel’s method for nozzle optimization using evolutionary strategies.

Evolutionary Computation 221

As the evolutionary strategy continued to be developed, it was successfully
used by Schwefel to optimize the shape of a supersonic two-phase fl ashing
nozzle. [EvoNews 1999] To optimize the shape of nozzles, Schwefel used
an encoding that defi ned the diameter of the nozzle at various points across
the tube (see Figure 7.18).

The original evolutionary strategy used a single parent, and produced a
single child. This is called a (1 + 1) strategy (one parent produces a single
offspring). In general terms, these strategies are defi ned as , where
parents are selected and offspring result. In this strategy, the population
of members all compete for survival. Another approach is referred
to as , where parents are selected and offspring result. Only the

 offspring compete in the next generation, the parents are completely
replaced in the next generation.

Evolutionary Strategies Algorithm
One of the unique aspects of the evolutionary strategies algorithm, and what
makes the algorithm useful today, is that it’s relatively simple to implement.
Traditionally, the algorithm isn’t as simple to understand as the genetic algorithm,
but the approach that will be explored here will provide the basic concepts, and
a couple of mutation simplifi cations proposed by Schwefel himself.

FIGURE 7.19: The fundamental evolutionary strategies algorithm.

222 Artificial Intelligence

The flow of the evolutionary strategies algorithm is shown in Figure
7.19. We’ll first walk through the high-level flow and then explore the details.
The process begins with the initialization of the population. Each of the
members of the population consists of a vector of real-values that represent
the problem itself.

NOTE The evolutionary strategies algorithm is called a phenotypic algorithm,
where the genetic algorithm is a genotypic algorithm. A phenotypic
algorithm represents parameters of the system as the solution, where a
genotypic algorithm represents an abstraction of the solution. Take for
example, the modeling of the behavior of a system. In the phenotypic
approach, the solutions would represent the parameter of the behavior
itself, but in the genotypic approach, the solution would represent an
intermediate representation of the behavior.

The next step is producing the next generation by selecting parent
solutions and generation offspring. We’ll explore the simplest case of
selection in ES where each parent has the potential to move into the next
generation. Each parent is selected and an offspring generated given a
mutation. The parent and child are then compared, and whichever has the
better fitness is moved to the next generation. This process continues for
each member of the current population. The algorithm can then terminate
(if a solution is discovered), or continue for some number of generations.

Let’s now explore what it means to mutate a parent to create an offspring.
When we create random numbers (for example, with our RANDOM()
function), the number is just as likely to be small as it is large (uniformly
distributed). What we really want is primarily small random numbers, with
an occasional larger random number. This allows the small random numbers
to “tweak” the solution, with the larger random numbers for extending
the solution in the fitness landscape. These types of random numbers are
called normally distributed with an expectation rate of zero. To produce
these random numbers, we first calculate two uniformly distributed random
numbers (u1 and u2), and then use Eq 7.2 and 7.3 to produce the normally
distributed random numbers.

 (Eq 7.2)

 (Eq 7.3)

One advantageous modification to our mutation scheme is to further
limit the size of the changes that occur over time (similar to what occurs

Evolutionary Computation 223

in simulated annealing). To support this, we can use the current iteration
(itercur) and max iteration (itermax) to identify a multiplier, as shown in
Equation 7.4).

 (Eq 7.4)

Evolutionary Strategies Implementation
Let’s now have a look at an implementation of evolutionary strategies for
a function optimization problem. The goal of this problem is to find the
parameters that maximize the function (result in the greatest value). We’ll use
the function shown in Eq 7.5, which is shown graphically in Figure 7.20.

 (Eq 7.5)

Let’s begin with a description of the fundamental structures that will
be used by the evolutionary strategies algorithm. The two core elements of
the evolutionary strategies is the size of the population, and the number of
iterations that will occur (which is equivalent to the number of generations to
be created). The solution_t typedef specifies the arguments (x and y) and the
result (fitness). We’ll create a two-dimensional array of these solution_t types,
with the first dimension used to define the generation (which operates in a
ping-pong fashion), and the second dimension used to define the members
of the population.

Listing 7.10: Fundamental structures for the evolutionary strategies algorithm.

#define MAX_POPULATION 50
#define MAX_ITERATIONS 20

FIGURE 7.20: Plot of the sample function to be maximized by the evolutionary strategy.

224 Artificial Intelligence

typedef struct {
 double x;
 double y;
 double fitness;
} solution_t;
solution_t solutions[2][MAX_POPULATION];

The main loop for the evolutionary strategy is shown in Listing 7.11.
We initialize the population with a random set of solutions using initialize_
population, and then calculate the population’s fitness with compute_
population_fitness. We then iterate the maximum number iterations
previously defined by MAX_ITERATIONS. A call to select_and_recombine
creates the next generation of solutions, after which, we switch the current
population (as defined by cur_pop) to the next. After evaluating the fitness
of the entire population (via compute_population_fitness), we continue the
process until the maximum number of iterations is reached.

Listing 7.11: The main loop for the evolutionary strategy

int main(void)
{
 int cur_pop = 0;
 int i = 0;
 RANDINIT();
 initialize_population(cur_pop);
 compute_population_fitness(cur_pop);
 for (i = 0 ; i < MAX_ITERATIONS ; i++) {
 select_and_recombine(cur_pop, i);
 cur_pop = (cur_pop == 0) ? 1 : 0;
 compute_population_fitness(cur_pop);
 printf(“%g %g %g\n”, min, avg, max);
 }
 find_and_emit_best(cur_pop);
 return 0;
}

The core of the evolutionary strategy is in the selection and recombination
of candidate solutions (see the function select_and_recombine, Listing 7.12).
This function first determines which population index is the next generation
(new_pop) and the current multiplier, which is used to scale any changes

Evolutionary Computation 225

in the mutation (see Eq 7.4). We then walk through the entire current
population (as passed in, pop).

For each member of the current population, we begin by generating
our normally distributed random numbers (using Eqs 7.2 and 7.3). We
then mutate the parent to create the offspring into the next generation
(in an elitist fashion). If the offspring is not as fit as the parent, then the
parent solution is copied to the next generation (overwriting the generated
offspring). This process continues for each member of the existing
generation.

Listing 7.12: Creating the next generation of the population.

void select_and_recombine(int pop, int iteration)
{
 int i, new_pop;
 double multiplier;
 double u1, u2, z1, z2, fitness;
 /* Figure out which population index is the next generation */
 new_pop = (pop == 0) ? 1 : 0;
 /* Equation 7.4 */
 multiplier = ((double)MAX_ITERATIONS - (double)iteration) /
 (double)MAX_ITERATIONS;
 for (i = 0 ; i < MAX_POPULATION ; i++) {
 u1 = RANDOM(); u2 = RANDOM();
 /* Equation 7.2 */
 z1 = (sqrt(-2.0 * log(u1)) * sin((2.0 * PI * u2))) * multiplier;
 /* Equation 7.3 */
 z2 = (sqrt(-2.0 * log(u1)) * cos((2.0 * PI * u2))) * multiplier;
 /* Create the child as the mutated parent */
 solutions[new_pop][i].x = bound(solutions[pop][i].x + z1);
 solutions[new_pop][i].y = bound(solutions[pop][i].y + z2);
 fitness = compute_fitness(&solutions[new_pop][i]);
 /* If the child is less fit than parent, move the parent to child */
 if (fitness < solutions[pop][i].fitness) {
 solutions[new_pop][i].x = solutions[pop][i].x;
 solutions[new_pop][i].y = solutions[pop][i].y;
 }
 }
 return;
}

226 Artificial Intelligence

Note in Listing 7.12, the bound function is used to bound the values
from -20 to 20 for both x and y.

Finally, we present the function to calculate the fitness of a given candidate
solution. Using Eq 7.5, the function is evaluated, stored, and returned.

Listing 7.13: Computing the fitness of a candidate solution.

double compute_fitness(solution_t *sol_p)
{
 double x,y;
 double fitness;
 /* Cache the arguments to simplify the equation */
 x = sol_p->x;
 y = sol_p->y;
 /* Equation 7.5 */
 fitness =
 sol_p->fitness =
 (sin(x)/x) * (sin(y)/y) * (double)10.0;
 return fitness;
}

O

N THE CD

 The evolutionary strategies algorithm implementation can be found on
the CD-ROM at ./software/ch7/es.c.

Let’s now look at the algorithm in action. Note that the program will emit
the fitness values (minimum, average, and maximum), for each generation.
As can be seen in Listing 7.14, six generations are all that are required to get
to within 90% of the maximum. The algorithm then tunes for 14 generations
(to get within 99.9% of the maximum). Note that in the results, steps are
taken in maximum fitness, where the maximum fitness appears dormant,
and then a higher fit member is found. This has been observed in a number
of evolutionary algorithms, and tied biologically to what’s called punctuated
equilibrium.

In the theory of punctuated equilibrium (from evolutionary biology), it has
been found that reproducing species often show no evolutionary change through
their lifetime. But when evolutionary change does occur, its effects are clearly
seen in the ability of the new species to survive and adapt to its environment.

Listing 7.14: Sample execution of the evolutionary strategies algorithm.

$./es
-1.86534 0.221798 3.15964

Evolutionary Computation 227

-1.57037 0.360016 3.15964
-0.194702 0.805424 8.64
-0.0959031 0.961668 8.64
-0.0959031 1.15622 8.7512
-0.0959031 1.24244 9.06489
-0.00876197 1.35238 9.69174
-0.00179016 1.3965 9.96464
-0.00179016 1.50873 9.96464
0.049577 1.54039 9.96464
0.049577 1.59179 9.96464
0.0596969 1.62029 9.96464
0.0596969 1.65329 9.98932
0.0596969 1.70359 9.98932
0.0596969 1.71321 9.98932
0.0596969 1.7309 9.98932
0.0596969 1.74583 9.98932
0.0596969 1.75184 9.98932
0.0596969 1.75429 9.98932
0.0596969 1.75759 9.99414
Best is [0.0561596, -0.0190792] = 9.99414
$

DIFFERENTIAL EVOLUTION (DE)

Differential Evolution (DE) is a more recent stochastic population-based
evolutionary method (introduced by Storn and Price in 1996). It follows
the standard evolutionary algorithm flow (mutation, recombine, select),
but has some significant differences in how mutation and recombination is
performed.

The fundamental idea behind DE is the use of vector differences
(choosing two randomly selected vectors, and then taking their difference
as a means to perturb the vector and probe the search space). The vector
difference is then added to a third randomly selected vector, making the
approach self-organizing.

DE also includes two tunable parameters, F (the weighting factor)
and CR (the crossover probability). The weighting factor is applied to the
difference vector. The crossover probability specifies the probability that
multi-point crossover will occur for the initial vector and the resulting
target vector.

228 Artificial Intelligence

Differential Evolution Algorithm
The Differential Evolution algorithm is simple, but has some additional
complexities in the number of activities that occur for recombination. Let’s
start with a big picture of the DE algorithm, and then explore the details of
mutation and recombination.

The high-level flow for DE is shown in Figure 7.21. This is the
fundamental evolutionary algorithm flow, but the details differ for mutation,
recombination, and replacement.

There are a number of variations for DE, but we’ll focus here on the
nominal approach. After initialization, each of the members of the population
undergoes mutation and recombination. Once recombination occurs, the
new member is compared to the old member, and whichever fitness is better
is moved to the next generation (replacement policy).

With our member in the current generation (xi,G) we select three
uniformly random members from the current generation that are unique
(xi,G != xr1,G != xr2,G != xr3,G). Using these member vectors, we create what’s
known as a mutant vector, or donor vector, (vi,G+1) in the next generation using
the weighted difference of two of the vectors (r2 and r3) summed with the
third vector (r1). This is shown in Eq 7.6.

(vi,G + 1 = xr1,G + F(xr2,G – xr3,G) (Eq 7.6)

FIGURE 7.21: High-level flow of the differential evolution algorithm with noted differences for DE.

Evolutionary Computation 229

This new mutant vector has completed the mutation stage and is now ready
for recombination. This process is shown graphically in Figure 7.22.

In this stage, we’ll perform a multi-point crossover of the mutant vector
(vi,G+1) with our original vector from the current generation (xi,G). This
constitutes using elements from our mutant vector with the original member
for fi tness evaluation. This process is shown in Eq 7.7.

uj,i,G + 1={f (rand ≤ CR) than (vj,i,G + 1)
f (rand > CR) than (vj,i,G) (Eq 7.7)

The crossover process is performed on each element of the vector, with
the resulting vector candidate being provided to the replacement process
(see Figure 7.23). The current member and mutant are randomly permitted
to contribute to the new vector. In the end, whichever vector has the greater

FIGURE 7.22: Mutation process in differential evolution.

FIGURE 7.23: The DE crossover and replacement process.

230 Artificial Intelligence

fitness (new vector, or vector from the current generation) is permitted into
the next generation.

Let’s now explore a sample implementation of DE for function
maximization. For comparative purposes, we’ll use the function shown in
Figure 7.20.

Differential Evolution Implementation
Let’s begin with a discussion of how the DE objects will be represented in a
program (see Listing 7.15). The fundamental vector type (vec_t) will be used
to represent the vectors of real-values to be optimized. This is integrated into
our member object (member_t), which also includes the fitness measure.

NOTE Note that the population is two-dimensional in size. The first dimension
represents the generation (two are used because we’ll implement a ping-
pong generation, where at any one time, the index represents the current
generation, and the opposite index represents the next generation).

We also maintain a best member_t that keeps the best member found
so far (for housekeeping purposes).

We also define the tunable parameters here, F (the mutation factor)
and CR (the crossover probability). These parameters can be tuned for the
particular problem at hand, but are reasonable at their current levels for this
optimization problem.

Listing 7.15: DE types and symbolics.

#define MAX_ELEMENTS 2
typedef double vec_t[MAX_ELEMENTS];
#define MAX_POPULATION 10
#define MAX_ITERATIONS 100
typedef struct {
 vec_t args;
 double fitness;
} member_t;
member_t population[2][MAX_POPULATION];
member_t best = {{0.0,0.0},0.0};
#define F ((double)0.5)
#define CR ((double)0.8)

The main loop for DE is shown in Listing 7.16. This function implements
the outer loop to the DE algorithm. It begins by initializing the current

Evolutionary Computation 231

population (cur_pop), and then initializing the random number generator.
The population is then initialized with a call to init_population, which not
only initializes the vectors for each member, but also computes their initial
fitness values (with a call to compute_fitness).

With initialization complete, we enter the DE algorithm. We’ll provide
no exit criteria, and instead simply execute the algorithm for some maximum
number of iterations (MAX_ITERATIONS). Each iteration consists of
performing the DE core algorithm (select_and_recombine) and then
emitting the best member found so far (as stored in the best structure).

Listing 7.16: The DE main loop.

int main()
{
 int i;
 int cur_pop = 0;
 RANDINIT();
 init_population(cur_pop);
 for (i = 0 ; i < MAX_ITERATIONS ; i++) {
 cur_pop = select_and_recombine(cur_pop);
 printf(“Best fitness = %g\n”, best.fitness);
 }
 return 0;
}

The core of the DE algorithm is implemented in the select_and_
recombine function (see Listing 7.17). We begin by determining the index of
the next generation (next_pop) and then initializing the best structure fitness
to zero (in order to find the current best member in the population).

The next step is to iterate through each of the members of the population
to create a new candidate solution. We cache the current index to the next
generation member (mutant) to increase the readability of the code. Next,
we create three random numbers (r1, r2, and r3) which are all unique, and
differ from each other and the current member index (i).

The mutant vector is created next using Eq 7.6. Using the three
members from the current population (as defined by our three random
numbers), the mutant vector is created. With Eq 7.7, the crossover process
is performed using the current member from the current generation, and
the mutant vector. When complete, the fitness is computed with a call to
compute_fitness.

232 Artificial Intelligence

At this point, we have a mutant vector with its fitness calculated. We
compare the fitness of the mutant with the fitness of the current member,
and whichever are greater moves into the next generation (the replacement
process). We follow this with some housekeeping to keep track of the best
vector found so far (emitted in the main function).

Listing 7.17: The DE process of mutation, recombination, and replacement.

int select_and_recombine(int pop)
{
 int next_pop = (pop == 0) ? 1 : 0;
 int i, j;
 member_t *mutant;
 int r1, r2, r3;
 best.fitness = 0.0;
 for (i = 0 ; i < MAX_POPULATION ; i++) {
 /* Cache the target vector in the next generation */
 mutant = &population[next_pop][i];
 /* Calculate three random numbers (r1, r2, r3) which are all
 * unique.
 */
 do {
 r1 = RANDMAX(MAX_POPULATION);
 } while (r1 == i);
 do {
 r2 = RANDMAX(MAX_POPULATION);
 r3 = RANDMAX(MAX_POPULATION);
 } while ((r3 == r2) || (r3 == r1) || (r2 == r1) ||
 (r3 == i) || (r2 == i));
 /* Given the candidate member, and our random members, form a
 * ‘mutant member’ (Equation 7.6).
 */
 for (j = 0 ; j < MAX_ELEMENTS ; j++) {
 mutant->args[j] = population[pop][r1].args[j] +
 (F * (population[pop][r2].args[j] -
 population[pop][r3].args[j]));
 }
 /* Perform crossover of ‘mutant’ vector with the current generation
 * member (Equation 7.7)
 */

Evolutionary Computation 233

 for (j = 0 ; j < MAX_ELEMENTS ; j++) {
 if (RANDOM() < CR) mutant->args[j] = population[pop][i].args[j];
 }
 mutant->fitness = compute_fitness(mutant);
 /* If the original member has a greater fitness than the mutant, copy
 * the original member over the mutant in the next generation.
 */
 if (population[pop][i].fitness > mutant->fitness) {
 for (j = 0 ; j < MAX_ELEMENTS ; j++) {
 mutant->args[j] = population[pop][i].args[j];
 }
 mutant->fitness = population[pop][i].fitness;
 }
 /* Housekeeping -- save the best member */
 if (mutant->fitness > best.fitness) {
 for (j = 0 ; j < MAX_ELEMENTS ; j++) {
 best.args[j] = mutant->args[j];
 }
 best.fitness = mutant->fitness;
 }
 }
 return next_pop;
}

Finally, the compute_fitness function is used to calculate the fitness
of a member of the population. The pointer to the current member is passed
in (of type member_t), and the coordinates are extracted to enhance
readability. We bound the coordinates to the constraints of the function
(the area that we intend to maximize) and then use Eq 7.5 to calculate and
return the fitness.

Listing 7.18: Calculating the fitness of a DE member.

double compute_fitness(member_t *member_p)
{
 double x,y;
 double fitness;
 /* Cache the coordinates to simply the function. */
 x = member_p->args[0];
 y = member_p->args[1];

234 Artificial Intelligence

 /* Bound the location of the particle */
 if ((x < -10.0) || (x > 10.0) ||
 (y < -10.0) || (y > 10.0)) fitness = 0.0;
 else {
 /* Equation 7.5 */
 fitness =
 (sin(x)/x) * (sin(y)/y) * (double)10.0;
 }
 return fitness;
}

O

N THE CD

 The differential evolution algorithm implementation can be found on the
CD-ROM at ./software/ch7/de.c.

The algorithm does a very good job of quickly converging on a solution.
Listing 7.19 shows a sample run of the DE implementation. In a very short
time, the algorithm moves from poor solutions to an almost optimal solution
(10.0).

Listing 7.19: Sample run of the DE implementation.

$./de.exe
Best fitness = 0.662495
Best fitness = 0.662495
Best fitness = 0.963951
Best fitness = 3.66963
Best fitness = 4.8184
Best fitness = 4.8184
Best fitness = 5.54331
Best fitness = 5.54331
Best fitness = 7.48501
Best fitness = 7.48501
Best fitness = 9.78371
Best fitness = 9.78371
Best fitness = 9.97505
Best fitness = 9.97505
Best fitness = 9.97505
Best fitness = 9.99429
Best fitness = 9.99429
Best fitness = 9.99429
Best fitness = 9.99429

Evolutionary Computation 235

Best fitness = 9.99568
Best fitness = 9.99646
Best fitness = 9.99646
Best fitness = 9.9981
Best fitness = 9.9981
Best fitness = 9.9981
Best fitness = 9.99837
Best fitness = 9.99974
Best fitness = 9.99974
Best fitness = 9.99984
Best fitness = 9.99984
Best fitness = 9.99998
Best fitness = 9.99998
Best fitness = 9.99998
Best fitness = 9.99998
$

The prior run is shown plotted in Figure 7.24. As shown, the algorithm
is quickly able to converge and then fine-tune the result to the near optimal
solution.

While there’s not yet a proof of convergence for the DE algorithm, it
has been shown to be effective on a wide range of optimization problems.
The original authors also found in a study that the DE algorithm was more
efficient than both the genetic algorithm and simulated annealing.

FIGURE 7.24: Best fitness plot for the differential evolution implementation (population size 100).

236 Artificial Intelligence

PARTICLE SWARM OPTIMIZATION (PSO)

The last population-based algorithm that we’ll explore in this chapter is
called Particle Swarm Optimization (or PSO). PSO simulates a collection of
particles that swarm with one another within an N-dimensional space (where
N is the size of the solution vector). A very simple set of equations is used
to implement a flocking behavior, which gives the particles some amount of
freedom to search the N-dimensional search space, but also some constraints
to exhibit flocking behavior by tracking the particle that has the current best
performance.

A particle within the swarm exists as an object that contains a vector
(with the same dimensionality as the solution space), a velocity (for each
element of the dimensionality vector, resulting in the vector velocity), the
fitness (for the current vector), and a vector representing the best position
found so far (see Figure 7.25).

Particles in the swarm are influenced by two unique factors. The first is
the best position (vector) of the particle itself, and the second is the global
best position found by any particle in the swarm. Therefore, a particle is
influenced by its best position, and also the best position of the swarm. The
amount of influence of each is controllable, as we’ll see in the discussion of
the algorithm itself.

Let’s now dig into the PSO algorithm, to understand how particles
swarm, and the equations for swarm influence.

Particle Swarm Algorithm
The particle swarm optimization algorithm is very simple to understand, but
is also quite effective for a variety of optimization problems. This section
will explore the PSO algorithm in sufficient detail to implement a general
function maximizer.

FIGURE 7.25: Anatomy of a particle in a larger storm.

Evolutionary Computation 237

The use of particle swarms as an optimization technique is recent
compared to the other evolutionary algorithms discussed thus far. The social
behavior of birds flocking and fish schooling inspired Eberhart and Kennedy
to create what they refer to as swarm intelligence.

The basic flow of the PSO is as follows. First, a population of random
vectors and velocities are created as the swarm of particles. Initially, these
particles are randomly placed, and each move in random directions, but as
the algorithm is performed, swarming behavior emerges as the particles
probe the multi-dimensional surface.

With our random set of particles, the fitness of each is evaluated and
stored as the current fitness. We also keep track of a global best particle that
has the best overall fitness. This particle, to some extent, is the center of
the swarm. Note that we also keep track of the personal best vector for the
particle, which is stored as the best position (see Figure 7.20). At this point,
termination criteria could be applied. If a satisfactory solution is found, or
some maximum number of iterations has been performed, the algorithm
could exit, emitting the current global best solution found so far.

If the algorithm has not yet reached its termination criteria, the velocity
of the particles is updated, and then each particle’s position is updated (given
its current position and current velocity). The process then continues by
evaluating each particle’s fitness, and checking our termination criteria.

Calculating the next position of an N-dimensional particle is shown in Eq
7.8. Each vector element (Xn) of particle (P) accumulates the velocity element
(Vn) scaled by the time interval (t) over which the particle is to be moved.

 (Eq 7.8)

Recall that we also update the velocity after the particle is moved. As
shown in Eq 7.9, there are two independent influences over the change in
velocity, the current global best particle (defined as GXn), and the personal
best for this particle (PBXn). For each term, there exists what’s called an
acceleration constant (c1, c2), which is used to determine how much influence
the global or personal best solution has over the velocity equation.

To add some variability to the equation, we also include two uniform
random numbers (R1, R2), which apply to the terms. How these uniform
random numbers are generated provides some emphasis to one term over
another (global vs personal best). The goal is to probe the solution space
with greater variability.

Pvn = Pvn +(C1* R1* (Gxn - Pxn)) + (c2 * R2 * (PBvn - Pxn)) (Eq 7.9)

238 Artificial Intelligence

Using these very simple equations (Eq 7.8 for particle movement and
Eq 7.9 for velocity adjustment), the PSO algorithm is able to minimize
or maximize functions with an efficiency similar to genetic algorithms or
evolutionary strategies.

Particle Swarm Implementation
As shown in the algorithm discussion, the implementation of particle swarm
optimization is simple. Let’s begin our discussion with a description of the
representation of particles and the swarm in software.

In this implementation, we’ll encode a solution as a two-dimensional
object, with the fitness defined as the function of the vector arguments
(two in this example, representing the x and y arguments). For the fitness
function, we’ll use the function shown in Figure 7.20 (as demonstrated by
the evolutionary strategies algorithm).

Listing 7.20 provides the fundamental types and symbolics for the
particle swarm optimization implementation. The most fundamental type
is the vec_t, which defines our vector (in this example, it specifies an x and
y coordinate). This vector type is used to represent the coordinate position
(coord), the current velocity, and the personal best vector coordinates
(best_coord). Structure particle_t collects these together as a single object
to represent the entire particle. The particle swarm (of number MAX_
PARTICLES) is represented by the array particles. The particle_t type is
also used to represent the current global best (gbest).

Listing 7.20: Particle swarm types and symbolics.

typedef struct {
 double x;
 double y;
} vec_t;
typedef struct {
 vec_t coord;
 vec_t velocity;
 double fitness;
 vec_t best_coord;
 double fitness_best;
} particle_t;
#define MAX_PARTICLES 10
#define MAX_ITERATIONS 30

Evolutionary Computation 239

particle_t particles[MAX_PARTICLES];
particle_t gbest;

The flow of the particle swarm algorithm is implemented in the main
function (see Listing 7.21). This initializes and seeds the random number
generator (RANDINIT) and the initializes the particle population with
random locations and velocities. The loop then iterates for the maximum
number of iterations (MAX_ITERATIONS). For each iteration, each particle
in the swarm is updated through a call to update_particle. After all particles
in the swarm are updated, the current global best particle (gbest) is emitted
so that the swarm’s progress can be tracked.

Listing 7.21: The particle swarm optimization main loop.

int main()
{
 int i, j;
 RANDINIT();
 init_population();
 for (i = 0 ; i < MAX_ITERATIONS ; i++) {
 for (j = 0 ; j < MAX_PARTICLES ; j++) {
 update_particle(&particles[j]);
 }
 printf(“Current Best: %g/%g = %g\n”,
 gbest.coord.x, gbest.coord.y, gbest.fitness);
 }
 return 0;
}

The core of the particle swarm optimization algorithm is provided in the
update_particle function (see Listing 7.22). The function provides a number
of capabilities, but begins with the update of the particle’s position using Eq
7.6. With the particle’s change in location, we calculate the new fitness of
the particle with a call to compute_fitness. Next, using Eq 7.7, the velocity
vector for the particle is updated (given the particle’s personal best position
and the position of the global best position).

Finally, the function performs some housekeeping to maintain the best
positions. We first check to see if the fitness for the particle is better than the
personal best fitness. If it is, we store this within the particle. If the particle’s
personal best has been updated, we check to see if it’s better than the global
best position. If so, we store this into the gbest particle.

240 Artificial Intelligence

Listing 7.22: Updating particle positions and velocities.

void update_particle(particle_t *particle_p)
{
 /* Update the particle’s position (Equation 7.8) */
 particle_p->coord.x += (particle_p->velocity.x * dt);
 particle_p->coord.y += (particle_p->velocity.y * dt);
 /* Evaluate the particle’s fitness */
 particle_p->fitness = compute_fitness(&particle_p->coord);
 /* Update the velocity vector (Equation 7.9) */
 particle_p->velocity.x +=
 ((c1 * RANDOM() * (gbest.coord.x - particle_p->coord.x)) +
 (c2 * RANDOM() * (particle_p->best_coord.x - particle_p->coord.x))
);
 particle_p->velocity.y +=
 ((c1 * RANDOM() * (gbest.coord.y - particle_p->coord.y)) +
 (c2 * RANDOM() * (particle_p->best_coord.y - particle_p->coord.y))
);
 /* If the fitness is better than the personal best, then save it. */
 if (particle_p->fitness > particle_p->fitness_best) {
 particle_p->fitness_best = particle_p->fitness;
 particle_p->best_coord.x = particle_p->coord.x;
 particle_p->best_coord.y = particle_p->coord.y;
 /* If the fitness is better than the global best, then save it. */
 if (particle_p->fitness_best > gbest.fitness) {
 gbest.fitness = particle_p->fitness_best;
 gbest.coord.x = particle_p->coord.x;
 gbest.coord.y = particle_p->coord.y;
 }
 }
 return;
}

The fitness function (compute_fitness) accepts a vector input,
and extracts the elements of the vector for use in Eq 7.5 (see the previous
discussion on the evolutionary strategies algorithm). Note that the bounds of
the function are set to -10 to 10 for both axes. In the event the position falls
outside of this box, a zero fitness is returned (see Listing 7.23).

Evolutionary Computation 241

Listing 7.23: Calculating the fitness of a particle.

double compute_fitness(vec_t *vec_p)
{
 double x,y;
 double fitness;
 /* Cache the coordinates to simply the function. */
 x = vec_p->x;
 y = vec_p->y;
 /* Bound the location of the particle */
 if ((x < -10.0) || (x > 10.0) ||
 (y < -10.0) || (y > 10.0)) fitness = 0.0;
 else {
 /* Equation 7.5 */
 fitness =
 (sin(x)/x) * (sin(y)/y) * (double)10.0;
 }
 return fitness;
}

O

N THE CD

 The particle swarm optimization algorithm implementation can be found
on the CD-ROM at ./software/ch7/ps.c.

Let’s now look at the implementation in action. The implementation
emits the current global best particle as it iterates (see Listing 7.24).

Listing 7.24: Sample output of the particle swarm implementation.

$./ps
Current Best: -9.13847 -1.40457 0.216992
Current Best: 0.9244 1.22842 6.62169
Current Best: 0.0934527 1.17927 7.82673
Current Best: 0.10666 1.17463 7.83906
Current Best: 0.119866 1.16999 7.85087
Current Best: 0.133073 1.16535 7.86217
Current Best: 0.14628 1.16071 7.87295
Current Best: 0.159487 1.15607 7.8832
Current Best: 0.172693 1.15143 7.89293
...
Current Best: -0.0890025 0.0432563 9.98369
Current Best: -0.0890025 0.0432563 9.98369

242 Artificial Intelligence

Current Best: 0.016041 -0.0338574 9.99766
Current Best: 0.016041 -0.0338574 9.99766
Current Best: 0.0043322 -0.00436827 9.99994
$

As shown in Figure 7.26, the global best fitness converges very
quickly to a solution (at around 70 iterations). The particle swarm is
able to find a good solution rather quickly, but then tends to orbit this
position due to its high velocity. But as the velocity equations slow down
the particle swarm, the particles are able to fine-tune in order to find a
better solution.

FIGURE 7.26: Global best particle fitness showing quick convergence and then solution tuning
with slowing velocities.

FIGURE 7.27: Objective function with the global best particles overlaid.

Evolutionary Computation 243

We can better visualize this process by looking at the objective function
surface with the global best particles overlaid (see Figure 7.27). In this figure,
we see the fitness of the function surface (the lighter the color, the better
the fitness). The particle shows a very quick convergence onto a reasonable
solution, and then fine-tunes at this peak to find the best solution. Note that
what’s shown here is the global best particle (found by the entire swarm of
particles), and not the swarm of particles themselves.

The algorithm can be tuned by the two acceleration parameters (c1 and
c2). These parameters determine how much influence the personal best
vector and the global best vector have over the particle’s trajectory. Recall
that the velocity equation is used to change the velocity toward the particle’s
best position, or the global best position. This acceleration also includes a
random element, to support probing the surface of the objective function in
the hopes of escaping local minima.

Particle swarm optimization is another useful optimization method that
is very biologically plausible. Like most other evolutionary methods, the PSO

FIGURE 7.28: Demonstration of evolution process from chromosome to PLD.

244 Artificial Intelligence

relies on a population of candidate solutions to find the best solution. As can
be seen from the sample implementation, PSO is simple, computationally
inexpensive, and effective for function optimization.

EVOLVABLE HARDWARE

The use of evolutionary algorithms to generate hardware has been used in a
similar way as GP is used to evolve software. Hardware evolution ranges from
simple circuit design (such as for analog filters), or more complex products
such as evolving the architecture for Programmable Logic Arrays (PLA, or
Programmable Logic Device, PLD).

Evolving hardware solutions has been restricted to toy problems, but
research in this area is promising. Nevertheless, hardware evolution does
have its problems. For example, evolving circuits to problems tends to result
in solutions that are difficult or impossible to understand. Evolution has no
understanding of aesthetics or readability, and evolution commonly finds
shortcuts that make their understanding difficult. The circuits found through
evolution may not always be tolerant of noise or temperature, making their
deployment difficult. In the end, using designs that are evolved commonly
requires greater testing to ensure that all variability has been explored in
the resulting design.

CHAPTER SUMMARY

While evolutionary algorithms are not new, you’ll find continued research
and even new algorithms being developed today (for example, differential
evolution and swarm intelligence). Evolutionary algorithms borrow
concepts from Darwinian natural selection as a means to evolve solutions
to problems, choosing from more fit individuals to propagate to future
generations. In this chapter we explored a number of evolutionary and
biologically-inspired algorithms. After an introduction to evolutionary
algorithms, we presented the genetic algorithm which is at the core of
most evolutionary algorithms. Next, we explored genetic programming,
an evolutionary means to generate code sequences. We then reviewed
one of the original evolutionary methods, evolutionary strategies. Next,
we reviewed the new method of differential evolution, and finished with a
review of particle swarm optimization (a biologically plausible optimization
method).

Evolutionary Computation 245

REFERENCES

[Banzhaf 1998] Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.,
Genetic Programming: An Introduction: On the Automatic Evolution of
Computer Programs and Its Applications, Morgan Kaufmann, 1998.

[EvoNews 1999] “Professor Hans-Paul Schwefel talks to EvoNews.” 1999.
Available online at: http://evonet.lri.fr/evoweb/news_events/news_features/

article.php?id=5
[Fogel 1966] Fogel, L.J., Owens, A.J., Walsh, M.J. Artificial Intelligence

through Simulated Evolution. Wiley, New York, 1966.
[Levenick 1991] Levenick, James R. “Inserting Introns Improves Genetic

Algorithm Success Rate: Taking a Cue from Biology.” Proceedings on the
Fourth International Conference on Genetic Algorithms, 1991.

[Rechenberg 1965] Rechenberg, I. “Cybernetic solution path of an
experimental problem.” Technical Report Library translation No. 1122,
Royal Aircraft Establishment, Farnborough, Hants., UK, 1965.

RESOURCES

Higuchi, Testuya; Liu, Yong; Yao, Xin (Eds.) Evolvable Hardware, Genetic
and Evolutionary Computation Springer, 2006.

Iba, Hitoshi; Iwata, Masaya; Higuchi, Testuya “Machine Learning Approach
to Gate-Level Evolvable Hardware,” 1996.

Koza, J.R. (1990), Genetic Programming: A Paradigm for Genetically
Breeding Populations of Computer Programs to Solve Problems,
Stanford University Computer Science Department technical report
STAN-CS-90-1314.

Particle Swarm Optimization website
Available online at: http://www.swarmintelligence.org/
[Price, et al 1997] Price, K., and Storn, R. “Differential Evolution,” Dr.

Dobb’s Journal, pp 18-24, 1997.

EXERCISES

1. Describe the first use of an evolutionary algorithm and how it worked.
2. Describe three of the evolutionary algorithms, and compare and

contrast them.
3. Describe the fundamental flow of the genetic algorithm (each of the

phases).

246 Artificial Intelligence

4. Describe the building-block hypothesis as defined for genetic algorithms.
5. Describe the differences between roulette wheel selection and elitist

selection.
6. Describe the mutation and crossover operators for the genetic algorithm.

What effect do they provide in the local search space?
7. Describe the inversion operator introduced by Holland.
8. What is a termination criteria?
9. Define premature convergence and then ways to combat it.
10. What other sequence-planning problems could be applied to the genetic

algorithm? Describe one, and then discuss how you would implement
this for evolution with the GA.

11. How was the genetic programming algorithm initially used (what kinds
of programs were evolved)?

12. What are the fundamental problems with genetic programming?
13. The implementation of genetic programming in this book focused on a

simple (zero address) instruction set. What value exists for simplifying
the instruction set, and what problems could result with a larger more
complex set?

14. Why does GP implementation perform the candidate program multiple
times to record a fitness value?

15. The GP implementation found numerous solutions to the candidate
problem (even with the simple instruction set). What does this say about
the viability of this algorithm?

16. What is the basic difference between the evolutionary strategies
algorithm and the genetic algorithm?

17. What problem was the early evolutionary strategies algorithm applied to
with success?

18. Describe the basic differences between a phenotypic algorithm and a
genotypic algorithm.

19. What is a uniformly distributed random number?
20. Describe the process of punctuated equilibrium.
21. Describe the basic process of the differential evolution algorithm. What

are the processes of mutation, crossover, and replacement?
22. What effect do the F and CR tunable parameters have on the differential

evolution algorithm?
23. In your own words, describe the basic process of the particle swarm

optimization algorithm.
24. What is the definition of a particle in a particle swarm algorithm?
25. For a given particle in a swarm, define the two influences that specify

how it should move in the solution space.

Evolutionary Computation 247

26. The velocity update equations for the particle swarm optimization
algorithm included two random numbers. What affect do these random
numbers have?

27. What affect do the two acceleration constants (c1 and c2) have on the
particle swarm velocity equation?

28. What is evolvable hardware, and what are the primary issues that it
faces?

C h a p t e r 8

Neural networks are biologically motivated computing structures
that are conceptually modeled after the brain. The neural
network is made up of a highly connected network of individual

computing elements (mimicking neurons) that collectively can be used
to solve interesting and difficult problems. Once trained, neural networks
can generalize to solve different problems that have similar characteristics.
This chapter will introduce the basics of neural networks and introduce a
number of supervised learning algorithms. In Chapter 11, we’ll continue our
exploration of neural networks and review some variants that can be used
to solve different types of problems and in particular, those of unsupervised
learning algorithms.

SHORT HISTORY OF NEURAL NETWORKS

The story of neural networks is interesting because, like AI itself, it’s one
of grand visions, eventual disappointment, and finally, silent adoption. In
1943, McCulloch and Pitts developed a neural network model based on
their understanding of neurology, but the models were typically limited to
formal logic simulations (simulating binary operations). In the early 1950s,

NEURAL
NETWORKS I

250 Artificial Intelligence

researchers in neural networks worked toward neural network models with
the support of neuroscientists.

But it wasn’t until the late 1950s that promising models began to emerge.
The Perceptron model, developed by Rosenblatt, was built for the purpose of
understanding human memory and learning. The basic perceptron consisted
of an input layer (for the stimulus) and an output layer (result) that was fully
interconnected. Each connection was assigned a weight that was applied to
the input stimulus (to which it was connected on the input layer). By adjusting
the weights of the connections, a desired output could be formed for a given
input. This allowed the perceptron to learn to recognize input patterns.

In the 1960s, another learning model emerged from Widrow and Hoff
of Stanford University called ADALINE, or Adaptive Linear Element. This
particular algorithm used least-mean-squares for adjusting the weights of
the network, but this particular model could be implemented in the physical
world using analog electronic components.

In 1969, the growing popularity of neural networks was brought to a halt.
Marvin Minsky and Seymour Papert wrote a book entitled “Perceptrons”
in which limitations of single-layer perceptrons were discussed, but then
generalized to more powerful multi-layer models. The result was severe
reductions in neural network research funding, and a corresponding
reduction in the effort applied to the field. Luckily, several researchers
continued to investigate neural network models, and successfully defined
new models and methods for learning. In 1974, Paul Werbos developed the
backpropagation algorithm, which permitted successful learning in multi-
layer neural networks.

Since the 1970s, research and successful results in neural network
design have attracted scientists back to the field. Many theoretical papers
and practical treatments of neural networks have emerged, and neural
networks can now be found outside of the lab and in real applications such
as pattern recognition and classification. To support large neural networks,
integrated circuits have been developed to speed the operation and training
in production applications.

BIOLOGICAL MOTIVATION

In 1943, McCulloch and Pitts used their understanding of neurology to build
a new information processing structure. The processing element of a neural
network is modeled after a neuron, which is viewed as the fundamental
processing element in our own brains.

Neural Networks I 251

The neuron is a simple processing device that has inputs (known as
dendrites) and outputs (known as axons). The axon splits at its end into
thousands of branches, each potentially infl uencing other neurons at a synapse
(a small gap that separates axons and dendrites). When a neuron receives
excitatory inputs that exceed its inhibitory inputs, a signal is transmitted
down its axon to other neurons. This process continues in other neurons,
creating a massively parallel network of neurons in an excited or inhibited
state. Learning can then be defi ned as the altering of the synaptic junctions
that change the manner in which one neuron is infl uenced by others.

NOTE While neural networks are modeled after our understanding of the way in
which our brain works, surprisingly little is known about how our brains
actually function. Through various types of inspection, we can see our
brain in operation, but because of the massive number of neurons and
interconnections between these neurons, how it works remains a mystery
(though many theories exist).

FUNDAMENTALS OF NEURAL NETWORKS
Let’s begin with an exploration of neural networks applications, fundamental
concepts behind neural networks, and then begin an investigation into a
number of network models and learning algorithms.

You can fi nd neural networks in a large variety of applications, from
classifi cation tasks (such as credit-risk assessment), data-processing tasks
(adaptive signal processing), and approximation of arbitrary functions
(time-series modeling and prediction). In this chapter, we’ll explore neural
networks for classifi cation (character recognition and data classifi cation).

FIGURE 8.1: The neuron cell with inputs (dendrites) and outputs (axons).

252 Artificial Intelligence

A neural network is made up of one or more neurons, which is the basic
processing element. A neuron has one or more inputs (dendrites), each of
which are individualy weighted. A neuron has one or more outputs (axons)
that are weighted when connecting to other neurons. The neuron itself
includes a function that incorporates its inputs (via summation) and then
normalizes its output via a transfer function (see Figure 8.2).

For each input of Figure 8.2, a weight is applied. These adjusted inputs
are then summed and a transfer function is applied to determine the output.
Eq 8.1 provides the equation for this simple neuron.

 (Eq 8.1)

Single Layer Perceptrons (SLPs)
Single Layer Perceptrons (or SLPs) can be used to emulate logic functions
such as NOT, NOR, OR, AND, and NAND, but cannot be used to emulate
the XOR function (two layers of neurons are required for this function). We’ll
explore this problem shortly.

TIP Minsky and Papert documented the XOR limitation of single layer
perceptrons, which ultimately resulted in vast reduction in neural
network function during the 1970s.

A bias is also commonly applied to each neuron, which is added to the
weighted sum of the inputs prior to passing through the transfer function. A
weight is also commonly applied to the bias. The bias determines the level

FIGURE 8.2: Simple neuron with biological equivalents.

Neural Networks I 253

of incoming activations (value of weighted inputs) that are required in order
for the neuron to fire. The bias is commonly set to one, but a weight is also
present for the bias which can be tuned by the learning algorithm.

An SLP should not be confused with a single neuron. Consider the
network in Figure 8.3. This is also an SLP, because it consists of a single
layer. For problems of higher dimensionality, we must use the MLPs, or
Multi-Layer Perceptrons.

Representing SLPs is quite simple. As the inputs and weights have a
one-to-one correspondence, it’s easy to compute the output. Consider the
simple code in Listing 8.1.

Listing 8.1: Sample code illustrating SLP representation.

#define NUM_INPUTS 3
/* Note: +1 here to account for the bias input */
double weights[NUM_INPUTS+1];
double inputs[NUM_INPUTS+1];
int step_function(double input)
{
if (input > 0.0) return 1;
else return -1;
}
int calc_output(void)
{
int i;
double sum = 0.0;
/* Set the bias (could be done once at init) */

FIGURE 8.3: Examples of Single Layer Perceptrons (SLPs).

254 Artificial Intelligence

inputs[NUM_INPUTS] = 1.0;
/* Compute the output (Equation 8.1) */
for (i = 0 ; i < NUM_INPUTS+1 ; i++) {
 sum += (weights[i] * inputs[i]);
}
/* Pass the output through the step (activation) function */
return step_function(sum);
}

Multi-Layer Perceptrons (MLPs)
As Minsky and Papert revealed in their book “Perceptrons,” single layer
perceptrons have the disadvantage that they can only be used to classify
linearly separable data. But what was found a short time later is that by
stacking the single layer perceptrons into multiple layer perceptrons (see
Figure 8.4), the ability to solve any classification problem theoretically
could be realized. The MLP can model practically any function of arbitrary
complexity, where the number of inputs and number of hidden layers
determine the function complexity.

The neurons in an MLP have the same basic attributes of the SLP (bias,
etc.). But with multiple layers, the output from one layer becomes the input
to the next. The implementation for the MLP is a bit more complicated, but
remains straightforward (see Listing 8.2). Note here the use of an activation
function for both the hidden and output nodes. The sigmoid function can
be used to squash the output of the neuron to 0.0 to 1.0.

FIGURE 8.4: Example of a Multiple Layer Perceptron (MLP).

Neural Networks I 255

Listing 8.2: Sample code illustrating MLP representation.

#define NUM_INPUTS 4
#define NUM_HIDDEN_NEURONS 4
#define NUM_OUTPUT_NEURONS 3
typedef mlp_s {
 /* Inputs to the MLP (+1 for bias) */
 double inputs[NUM_INPUTS+1];
 /* Weights from Hidden to Input Layer (+1 for bias) */
 double w_h_i[NUM_HIDDEN_NEURONS+1][NUM_INPUTS+1];
/* Hidden layer */
double hidden[NUM_HIDDEN+1];
 /* Weights from Output to Hidden Layer (+1 for bias) */
 double w_o_h[NUM_OUTPUT_NEURONS][NUM_HIDDEN_
NEURONS+1];
 /* Outputs of the MLP */
 double outputs[NUM_OUTPUT_NEURONS];
} mlp_t;
void feed_forward(mlp_t *mlp)
{
int i, h, out;
/* Feed the inputs to the hidden layer through the hidden
 * to input weights.
 */
for (h = 0 ; h < NUM_HIDDEN_NEURONS ; h++) {
 mlp->hidden[h] = 0.0;
 for (i = 0 ; i < NUM_INPUT_NEURONS+1 ; i++) {
 mlp->hidden[h] += (mlp->inputs[i] * mlp->w_h_i[h][i]);
 }
 mlp->hidden[h] = sigmoid(mlp->hidden[h]);
}
/* Feed the hidden layer activations to the output layer
 * through the output to hidden weights.
 */
for(out = 0 ; out < NUM_OUTPUT_NEURONS ; out++) {
 mlp->output[out] = 0.0;
 for (h = 0 ; h < NUM_HIDDEN_NEURONS ; h++) {
 mlp->outputs[out] += (mlp->hidden[h] * mlp->w_o_h[out][h]);
 }
 mlp->outputs[out] = sigmoid(mlp->outputs[out]);

256 Artificial Intelligence

}
 return;
}

Listing 8.2 implements the MLP neural network shown in Figure 8.5.
This MLP has four input cells, four hidden cells, and three output cells. Bias
cells are implemented as input and hidden cells, but these have a constant
value of 1.0 (though the weights can be adjusted to modify their effect).

Note the flow in Listing 8.2. First, we calculate the output of the hidden
cells (using the input cells and the weights between the hidden and input
cells), and then calculate the next layer up, which in this case is the output
cells. This process is commonly referred to as feeding the data forward, or
more simply, feedfoward.

NOTE We can think of neural networks as parallel computing systems. Each
neuron is a processing element that takes one or more inputs and generates
an output. The inputs and outputs can be thought of as messages. In MLP
architectures, the outputs can be sent to multiple other process elements
for further processing. The parallel nature of neural networks comes
into play with multiple neurons in a layer. Each of these neurons can
process their inputs at the same time, making neural networks with large
numbers of neurons in a layer faster in multi-processor architectures.

FIGURE 8.5: Graphic Network Implemented in Listing 8.2

Neural Networks I 257

Supervised vs Unsupervised Learning Algorithms
There are two basic categories of learning algorithms for neural networks:
supervised learning and unsupervised learning.

In the supervised learning paradigm, the neural network is trained with
data that has known right and wrong answers. By calculating the output
of the neural network and comparing this to the excepted output for the
given test data, we can identify the error and adjust the weights accordingly.
Examples of supervised learning algorithms include the Perceptron learning
algorithm, Least-Mean-Squares learning, and Backpropagation (each of
which will be explored in this chapter).

Unsupervised learning algorithms are those in which there’s no answer
given in the test data. What these algorithms do instead is analyze the
data in order to understand their similarities and differences. In this way,
relationships in the data can be found that may not have been apparent
before. Examples of unsupervised learning algorithms include the k-Means
clustering algorithm, Adaptive Resonance Theory (ART), and Kohonen
Self-Organizing Maps (each of which, and more, will be discussed in
Chapter 9).

Binary vs Continuous Inputs and Outputs
Neural networks can operate with a combination of input types. For example,
we can use binary inputs (-1, 1) and binary outputs. We’ll explore this in
our first two examples of SLPs. For other uses, such as audio or video
applications, we’ll need continuous inputs (such as real-valued data). It’s also
possible to use combinations, such as continuous inputs and binary outputs
(for classification problems).

Now that we have a basic understanding of neural network topologies
and learning algorithms, let’s start with an investigation of the perceptron
and understand how it can be trained for simple pattern classification.

THE PERCEPTRON

A perceptron is a single neuron neural network that was first introduced by
Frank Rosenblatt in the late 1950s. The perceptron is a simple model for
neural networks that can be used for a certain class of simple problems called
linear separable problems (otherwise called linear discriminants). These are
often used to classify whether a pattern belongs to one of two classes (see
Figure 8.6).

258 Artificial Intelligence

So given a set of inputs describing an object (sometimes called a feature
vector), a perceptron has the ability to classify the data into two classes if
the data is linearly separable. Given the set of possible inputs, the task then
is to identify the weights that correctly classify the data (linearly separate)
into two classes.

TIP Another name for the perceptron is the Threshold Logic Unit, or TLU.
The TLU is a linear discriminator that given a threshold (whether the
feature sum is greater than the threshold, or less than the threshold).

The perceptron can accurately classify the standard boolean functions,
such as AND, OR, NAND, and NOR. As shown in Figure 8.7, the AND and
OR functions can be linearly separated by a line (in the case of two inputs, or
a hyperplane for three inputs), but the XOR function is linearly inseparable.
A bias component provides the offset of the line from the origin. If no bias
existed, the line (or hyperplane) would be restricted to pass through the
origin and the weights would only control the angle of the discriminant.

FIGURE 8.7: Viewing the linear discriminant for simple boolean functions.

FIGURE 8.6: A linear discriminant can be used to classify input patterns into two classes.

Neural Networks I 259

One result of Rosenblatt’s work on perceptrons was the Mark I
perceptron at Cornell Aeronautical Laboratory. The Mark I was an analog
computer based on the perceptron that had a 20 by 20 retina and learned
to recognize letters.

Perceptron Learning Algorithm
Perceptron learning is a supervised learning algorithm and is a simple
procedure where the weights are adjusted to classify the training set. Each
sample from the training set is applied to the perceptron, and the error
(expected result minus the actual result) is used to adjust the weights. A
learning rate is also applied (small number between 0 and 1) to minimize
the changes that are applied at each step.

We’ll use the perceptron shown in Figure 8.8 to illustrate the perceptron
learning algorithm. The weights of the perceptron will initially be set to
zero. There are two inputs with two corresponding weights and also a bias
with a weight. The bias will be set to one, but the weight for the bias will
be adjusted to alter its affect. Calculating the output of the perceptron can
then be defined (Eq 8.2).

 (Eq 8.2)

The step function simply pushes the result to 1.0 if it exceeds a threshold;
otherwise, the result is -1.0.

Given a training set for our perceptron, we apply each of the elements
of the training set to the perceptron and for each sample, adjust the weights
based on the error. The error is defined as the expected result minus the
actual result. Each is adjusted using Eq 8.3 (called the Perceptron Rule).

wi = wi + aTii (Eq 8.3)

FIGURE 8.8: Simple perceptron used for binary function classification.

260 Artificial Intelligence

In this equation, (alpha) is the learning rate (small number less than
one), T is the target (or expected) result, and ii is the input value for the
current weight wi. Eq 8.3 very simply adjusts the weight by incrementing
or decrementing the weight based on the direction of the error and the
corresponding input (which is identified by multiplying the expected result
by the training input for this connection).

NOTE The perceptron learning algorithm is an example of a supervised learning
algorithm. We present a training set to our perceptron and penalize it
when it arrives at the wrong answer (an incorrect classification).

The application of the learning algorithm continues until no changes are
made to the weights because all tests are properly classified.

Perceptron Implementation
The implementation of the perceptron learning algorithm is very simple (see
Listing 8.3). In this implementation, the perceptron is trained with a training
set (a boolean function), and after calculating the error (of desired vs actual
result), the weights are adjusted per Eq 8.3. Calculating the output of the
perceptron is shown in the compute function. This function implements the
Eq 8.2. The training process continues for a maximum number of iterations,
and when complete, the truth table is emitted for the boolean function.

Listing 8.3: Perceptron learning implementation.

#define MAX_TESTS 4
training_data_t training_set[MAX_TESTS]={
 {-1.0, -1.0, -1.0},
 {-1.0, 1.0, 1.0},
 { 1.0, -1.0, 1.0},
 { 1.0, 1.0, 1.0} };
double compute(int test)
{
 double result;
 /* Equation 8.2 */
 result = ((training_set[test].a * weights[0]) +
 (training_set[test].b * weights[1]) +
 (1.0 * weights[2]));
 /* Clip the result */
 if (result > 0.0) result = 1.0;
 else result = -1.0;

Neural Networks I 261

 return result;
}
int main()
{
 int i, test;
 double output;
 int change;
 /* Initialize the weights for the perceptron */
 for (i = 0 ; i < NUM_WEIGHTS ; i++) weights[i] = 0.0;
 /* Train the perceptron with the training set */
 change = 1;
 while (change) {
 change = 0;
 for (test = 0 ; test < MAX_TESTS ; test++) {
 /* Test on the perceptron */
 output = compute(test);
 /* Perceptron Supervised Learning Algorithm */
 if ((int)training_set[test].expected != (int)output) {
 /* Use Equation 8.3 */
 weights[0] += ALPHA *
 training_set[test].expected *
 training_set[test].a;
 weights[1] += ALPHA *
 training_set[test].expected *
 training_set[test].b;
 weights[2] += ALPHA * training_set[test].expected;
 change = 1;
 }
 }
 }
 /* Check the status of the Perceptron */
 for (i = 0 ; i < MAX_TESTS ; i++) {
 printf(“ %g OR %g = %g\n”,
 training_set[i].a, training_set[i].b, compute(i));
 }
 return 0;
}

O

N THE CD

 The perceptron learning implementation can be found on the CD-ROM
at ./software/ch8/perceptron.c.

262 Artificial Intelligence

LEAST-MEAN-SQUARE (LMS) LEARNING

The LMS algorithm goes by a number of names, including the Widrow-Hoff
rule and also the Delta rule (LMS was originally introduced by Widrow and
Hoff in 1959). LMS is a fast algorithm that minimizes the Mean-Square
Error (MSE). Recall from perceptron learning that the algorithm operates
until it correctly classifies the entire training set. At this point, a solution has
been found. But just how good is the solution? Is the data linearly separated
by an optimal discriminator (as shown in Figure 8.6)?

Another approach is to train the perceptron using another termination
criterion. So instead of training the perceptron until a solution is found,
another criterion is to continue training while the MSE is greater than a
certain value. This is the basis for the LMS algorithm.

NOTE LMS learning is based on gradient descent, where the local minimum
of the error is achieved by adjusting the weights proportional to the
negative of the gradient. Additionally, the weights are adjusted with a
learning rate (ρ) to allow it to settle into a solution and avoid oscillating
around the MSE.

First, let’s explore the MSE. The MSE is simply the average of the
weighted sum of the error for N training samples (see Eq 8.4).

MSE =
∑(R – Cj)2

j=1

N

N

 (Eq 8.4)

In Eq 8.4, R is the output of the perceptron given the current set of
weights multiplied by the current test inputs (Cj).

LMS Learning Algorithm
To train the perceptron using LMS, we iterate through the test set, taking a
set of inputs, computing the output, and then using the error to adjust the
weights. This process is done either randomly for the test set, or for each
test of the set in succession.

The learning rule (see Eq 8.5) adjusts the weight based on the error
(R-C, or expected minus actual output). Once the error is calculated,
the weights are adjusted by a small amount (p) in the direction of the
input (E). This has the effect of adjusting the weights to reduce the
output error.

Neural Networks I 263

 (Eq 8.5)

One of the major differences between LMS and perceptron learning
is that LMS can operate with real-values. Recall that perceptron learning
operates solely with binary inputs.

NOTE LMS is a standard tool for adaptive signal processing and can
solve problems such as echo cancellation, noise cancellation, and
equalization.

LMS Implementation
Like the perceptron algorithm, LMS is also very simple (see Listing 8.4).
Initially, the weights vector is initialized with small random weights. The
main loop then randomly selects a test, calculates the output of the neuron,
and then calculates the error (expected result minus the actual result). Using
the error, Eq 8.5 is applied to each weight in the vector (note that weight[2]
is the bias, and its input is always 1.0). The loop then continues, where we
check the MSE to see if it has reached an acceptable value, and if so, we exit
and emit the computed truth table for the neuron.

Recall that single neuron models can only classify training data into
two sets. In this case, the AND function is separable, so the neuron can be
successfully trained. Nonseparable training sets will result in the algorithm
never converging on a solution.

Listing 8.4: LMS learning algorithm.

double weights[NUM_WEIGHTS];
#define MAX_TESTS 4
const training_data_t training_set[MAX_TESTS]={
 /* a b expected */
 {-1.0, -1.0, -1.0},
 {-1.0, 1.0, -1.0},
 { 1.0, -1.0, -1.0},
 { 1.0, 1.0, 1.0}
};
double compute_output(test)
{
 double result;
 result = ((training_set[test].a * weights[0]) +
 (training_set[test].b * weights[1]) +

264 Artificial Intelligence

 (1.0 * weights[2]));
 return (result);
}
int classify(int test)
{
 double result;
 result = compute_output(test);
 if (result > 0.0) return 1;
 else return -1;
}
double MSE(void)
{
 int test;
 double sum = 0.0;
 /* Equation 8.4 */
 for (test = 0 ; test < MAX_TESTS ; test++) {
 sum += sqr(training_set[test].expected - compute_output(test));
 }
 return (sum / (double)MAX_TESTS);
}
int main()
{
 int i, test;
 double result, error;
 RANDINIT();
 /* Pick random weights for the perceptron */
 for (i = 0 ; i < NUM_WEIGHTS ; i++) {
 weights[i] = RAND_WEIGHT;
 }
 /* Train the perceptron with the training set */
 while (MSE() > 0.26) {
 test = RANDMAX(MAX_TESTS);
 /* Compute the output (weighted sum) */
 result = compute_output(test);
 /* Calculate the error */
 error = training_set[test].expected - result;
 /* Delta Rule Learning Algorithm (Equation 8.5) */
 weights[0] += (RHO * error * training_set[test].a);
 weights[1] += (RHO * error * training_set[test].b);
 weights[2] += (RHO * error);

Neural Networks I 265

 printf(“mse = %g\n”, MSE());
 }
 for (i = 0 ; i < MAX_TESTS ; i++) {
 printf(“ %g AND %g = %d\n”,
 training_set[i].a, training_set[i].b, classify(i));
 }
 return 0;
}

TIP The early ADALINE model (single layer perceptron) used the LMS
algorithm for learning. ADALINE originally stood for “ADAptive LInear
NEuron,” but when neural network technology became unpopular, it was
changed to “ADAptive LINear Element.” [Gallant 1994]

O

N THE CD

 The Least Mean Square algorithm implementation can be found on the
CD-ROM at ./software/ch8/lms.c.

LEARNING WITH BACKPROPAGATION

Let’s now investigate what can be considered the most popular of the MLP
learning algorithms, backpropagation. The backpropagation algorithm can
be succinctly defined as follows. For a test set, propagate one test through
the MLP in order to calculate the output (or outputs). Compute the error,

FIGURE 8.9: Simple network illustrating forward propagation and backward error propagation.

266 Artificial Intelligence

which will be the difference of the expected value and the actual value.
Finally, backpropagate this error through the network by adjusting all of
the weights; starting from the weights to the output layer and ending at the
weights to the input layer (see Figure 8.9).

Like LMS learning, backpropagation adjusts the weights in an amount
proportional to the error for the given unit (hidden or output) multiplied
by the weight and its input. The training process continues until some
termination criterion, such as a predefined mean-squared error, or a
maximum number of iterations.

Backpropagation is one of the most popular learning algorithms, and is
used to train neural networks for a variety of applications. We’ll first look
at the details of the algorithm, and then explore a neural network that can
recognize numbers from a standard 5 by 7 character bitmap format.

FIGURE 8.10: A simplified flow of backpropagation.

Neural Networks I 267

Backpropagation Algorithm
The backpropagation algorithm is a typical supervised learning algorithm,
where inputs are provided and propagated forward to generate one or more
outputs. Given the output, the error is calculated using the expected output.
The error is then used to adjust the weights (see Figure 8.10). Propagating
the inputs forward was previously explored in Listing 8.2.

It’s important to note that there are two types of error functions for
backpropagation. The first error function (Eq 8.6) is used for output cells,
and the second is used only for hidden cells (Eq 8.7).

 (Eq 8.6)

 (Eq 8.7)

Note that in both equations, u is the output of the given cell, otherwise
known as its activation. Y is the expected or correct result. Finally, w
represents all of the weights (from 1 to n) connecting the hidden cell to all
inputs cells (in a fully connected network).

The activation, or transfer, function (g) to be used will be the standard
sigmoid squashing function (see Figure 8.11). While g represents the sigmoid,
g’ represents the first derivative of the sigmoid, as shown in Eq 8.8.

 (Eq 8.8)

FIGURE 8.11: The sigmoid squashing function.

268 Artificial Intelligence

At this point, given our test input and expected result, we have the error
calculated for each output and hidden node. The next step is to use this error
to adjust the corresponding weights for the node. We’ll use Eq 8.9 for this
purpose, which utilizes the error previously calculated for the node (whether
hidden or output).

wi,j = wi,j + ρEui (Eq 8.9)

For the given error (E) and activation (or cell output, ui), we multiply
by a learning rate (ρ) and add this to the current weight. The result is a
minimization of the error at this cell, while moving the output cell activation
closer to the expected output.

Backpropagation Implementation
Neural networks are a great tool for classifying a set of inputs to a set of
outputs. Let’s look at a very visual example of neural networks from the
domain of pattern recognition. Consider the bitmap character images in
Figure 8.12. We’ll train a neural network to take the cells of this image
as the input (35 independent cells) and activate one of ten output cells
representing the recognized pattern. While any of the output cells could be
activated, we’ll take the largest activation as the cell to use in a style called
winner-takes-all.

Since we could very simply implement a comparison classifier to
recognize the pattern (by looking for the specific pattern at the input), we’ll
introduce noise to the pattern when we test the neural network. This will
make the classification problem more difficult, and test the generalization
features of the neural network.

TIP Generalization is one of the greatest characteristics of neural networks.
This means that after training a neural network with a set of training data,
it can generalize its training to correctly classify data that it has not seen
before. Generalization can be trained out of a neural network by training

FIGURE 8.12: Sample bitmaps for training the number recognition neural network.

Neural Networks I 269

the network for too long with a data set. When this happens, the network
overfits the data and is not able to generalize for new unseen data.

The neural network that we’ll use is called a winner-takes-all network in
which we have a number of output nodes, and we’ll select the one that has
the largest activation. The largest activation indicates the number that was
recognized. Figure 8.13 shows the neural network that will be used for the
pattern recognition problem. The input layer consists of 35 input cells (for
each pixel in the image input), with 10 cells in the hidden layer. The output
layer consists of 10 cells, one for each potential classification. The network
is fully interconnected, with 350 connections between the input and hidden
layer, and another 350 connections between the hidden layer and output
layer (for a total of 700 weights).

For our implementation, let’s first discuss the neural network
representation (see Listing 8.5). We’ll maintain three vectors containing the
input values, current activations of the hidden layer and current activations
of the output layer. Note that we’ll also maintain an extra cell at the input
and hidden layers which will represent the bias (set to a constant 1.0). The
weights will be represented by two, two-dimensional arrays representing the
hidden layer weights and the output layer weights.

FIGURE 8.13: Neural network topology for the pattern recognition problem.

270 Artificial Intelligence
O

N THE CD

 The full source implementation for backpropagation learning can be found
on the CD-ROM at ./software/ch8/backprop.c. The following discussion
provides only the relevant functions to illustrate backpropagation
learning.

Listing 8.5: Neural network representation (inputs, activations, and weights).

#define INPUT_NEURONS 35
#define HIDDEN_NEURONS 10
#define OUTPUT_NEURONS 10
double inputs[INPUT_NEURONS+1];
double hidden[HIDDEN_NEURONS+1];
double outputs[OUTPUT_NEURONS];
double w_h_i[HIDDEN_NEURONS][INPUT_NEURONS+1];
double w_o_h[OUTPUT_NEURONS][HIDDEN_NEURONS+1];

Computing the activations of the output cells is very straightforward (see
Listing 8.6). Note the use of the sigmoid function to squash the activations
into the range 0 to 1.

Listing 8.6: Calculating the output activations with the feed_forward function.

void feed_forward(void)
{
 int i, j;
 /* Calculate outputs of the hidden layer */
 for (i = 0 ; i < HIDDEN_NEURONS ; i++) {
 hidden[i] = 0.0;
 for (j = 0 ; j < INPUT_NEURONS+1 ; j++) {
 hidden[i] += (w_h_i[i][j] * inputs[j]);
 }
 hidden[i] = sigmoid(hidden[i]);
 }
 /* Calculate outputs for the output layer */
 for (i = 0 ; i < OUTPUT_NEURONS ; i++) {
 outputs[i] = 0.0;
 for (j = 0 ; j < HIDDEN_NEURONS+1 ; j++) {
 outputs[i] += (w_o_h[i][j] * hidden[j]);
 }
 outputs[i] = sigmoid(outputs[i]);

Neural Networks I 271

 }
}

The backpropagation algorithm (shown in Listing 8.7) is just slightly more
complicated than feeding forward. Using Eq 8.6 and Eq 8.7, we calculate the
error for the output and hidden nodes. Finally, the weights are updated given
the hidden and output errors, input value, and a small learning rate.

Listing 8.7: Updating the weights given the backpropagation algorithm.

void backpropagate_error(int test)
{
 int out, hid, inp;
 double err_out[OUTPUT_NEURONS];
 double err_hid[HIDDEN_NEURONS];
 /* Compute the error for the output nodes (Equation 8.6) */
 for (out = 0 ; out < OUTPUT_NEURONS ; out++) {
 err_out[out] = ((double)tests[test].output[out] - outputs[out]) *
 sigmoid_d(outputs[out]);
 }
 /* Compute the error for the hidden nodes (Equation 8.7) */
 for (hid = 0 ; hid < HIDDEN_NEURONS ; hid++) {
 err_hid[hid] = 0.0;
 /* Include error contribution for all output nodes */
 for (out = 0 ; out < OUTPUT_NEURONS ; out++) {
 err_hid[hid] += err_out[out] * w_o_h[out][hid];
 }
 err_hid[hid] *= sigmoid_d(hidden[hid]);
 }
 /* Adjust the weights from the hidden to output layer (Equation 8.9) */
 for (out = 0 ; out < OUTPUT_NEURONS ; out++) {
 for (hid = 0 ; hid < HIDDEN_NEURONS ; hid++) {
 w_o_h[out][hid] += RHO * err_out[out] * hidden[hid];
 }
 }
 /* Adjust the weights from the input to hidden layer (Equation 8.9) */
 for (hid = 0 ; hid < HIDDEN_NEURONS ; hid++) {
 for (inp = 0 ; inp < INPUT_NEURONS+1 ; inp++) {
 w_h_i[hid][inp] += RHO * err_hid[hid] * inputs[inp];
 }

272 Artificial Intelligence

 }
 return;
}

The main function (shown in Listing 8.8) performs the neural network
training as well as the test of the trained network. The first step is initializing
the network by setting each weight to a small random value (via a call to init_
network). We then enter the training loop where a test is selected at random,
the inputs loaded from the test into the inputs vector (set_network_inputs),
and the output activation calculated (backpropagate_error). Finally, the MSE
is calculated and tested against our termination criteria.

Listing 8.8: The training and test loop (main function).

int main(void)
{
 double mse, noise_prob;
 int test, i, j;
 RANDINIT();
 init_network();
 /* Training Loop */
 do {
 /* Pick a test at random */
 test = RANDMAX(MAX_TESTS);
 /* Grab input image (with no noise) */
 set_network_inputs(test, 0.0);
 /* Feed this data set forward */
 feed_forward();
 /* Backpropagate the error */
 backpropagate_error(test);
 /* Calculate the current MSE */
 mse = calculate_mse(test);
 } while (mse > 0.001);
 /* Now, let’s test the network with increasing amounts of noise */
 test = RANDMAX(MAX_TESTS);
 /* Start with 5% noise probability, end with 25% (per pixel) */
 noise_prob = 0.05;
 for (i = 0 ; i < 5 ; i++) {
 set_network_inputs(test, noise_prob);
 feed_forward();

Neural Networks I 273

 for (j = 0 ; j < INPUT_NEURONS ; j++) {
 if ((j % 5) == 0) printf(“\n”);
 printf(“%d “, (int)inputs[j]);
 }
 printf(“\nclassified as %d\n\n”, classifier());
 noise_prob += 0.05;
 }
 return 0;
}

The final step in the main function (Listing 8.8) is the neural network
test. This test verifies the generalization capabilities of the neural network by
inducing noise into the input image. We start by selecting one of the tests (a
number to recognize) and then add increasing amounts of noise to the image.
Once the noise is added (as part of the call to set_network_inputs), the output
activations are computed (feed_forward) and then the classification emitted
(through a call to classifier). This classifier function inspects each of the output
activations, and chooses the largest one in the winner-takes-all fashion.

Figure 8.14 graphically illustrates the generalization capabilities of the
network trained using error backpropagation. In both cases, once the error
rate reaches 20%, the image is no longer recognizable.

What’s shown in main is a common pattern for neural network training
and use. Once a neural network has been trained, the weights can be saved
off and used in the given application.

TIP This approach for pattern recognition is considered brittle if you consider
the rotation of the image by a small degree. A production character
recognizer would instead use features of the image space, rather than
requiring that pixels be roughly in the correct place.

FIGURE 8.14: The pattern recognition capabilities of the multi-Layer neural network.

274 Artificial Intelligence

Tuning Backpropagation
Backpropagation is a great technique to train a neural network for a
classification task. But there are a number of things that can be done to tune
the algorithm either for better generalization, or for faster training. We’ll
explore some of these techniques here.

Training Variants
One of the problems that can be created in training is what’s called “over-
learning,” or “over-fitting.” The desire for the neural network is to provide a
correct mapping of the test data, but maintain the ability to generalize for yet
to be seen data. This is difficult to quantify, but the results of over-learning
can be very apparent in the test stage.

There are a number of things that can be done to avoid over-learning. One of
the simplest is called early-stopping. As the name suggests, we train for a limited
amount of time. Practically, we can train until the training set is correctly classified,
and ignore the MSE. In this way, we’ve not optimized the neural network to the
data set, and its generalization capabilities should remain intact.

Another method to avoid over-learning is to incorporate noise into the
training. Rather than simply provide the test set verbatim to the neural
network, small amounts of noise can be induced to maintain some amount
of flexibility in the network’s generalization capability. The addition of noise
keeps the network from being focused solely on the test data.

The network could also be trained with a subset of the available training
data. In this way, the network is initially trained with the subset, and then
tested with the remainder of the test data to ensure that it generalizes
properly. The availability of lots of training data can also help in generalization
and avoid overfitting.

Finally, one could maintain generalization capabilities by minimizing the
changes made to the network as time progresses. Minimizing the changes can be
achieved by reducing the learning rate. By reducing the changes over time, we
reduce the possibility that the network will become focused on the training set.

Ultimately, there’s no silver bullet. What can be done is to experiment
with network topologies, number of hidden layers, number of hidden nodes
per layer, learning rate, etc., to find the best combination that works for the
problem at hand.

Weight Adjustment Variants
With backpropagation, there are a number of other weight adjustment
strategies that can be applied that can speed learning or avoid becoming

Neural Networks I 275

trapped in local minima. The first involves a momentum term where a
portion of the last weight change is applied to the current weight adjustment
round. Eq 8.1 shows an updated weight adjustment variant based on Eq 8.9.
The difference is that a portion of the last weight change (identified as Δwi,j)
is accumulated using a small momentum multiplier (m), as shown in Eq 8.10.
The last weight change is stored using Eq 8.11.

wi,j = wi,j + ρEui + m∆wi,j (Eq 8.10)

∆wi,j = ρEui (Eq 8.11)

Another useful weight adjustment technique is called weight decay.
Weight decay can improve generalization in neural networks by suppressing
irrelevant components of the weight vector by choosing the smallest vector
that solves the particular problem. [Krogh 1995] Weight decay works by
slowly decaying the weights of a neural network during training. Eq 8.12 is
one method by which this can be done.

wi,j = λwi,j (Eq 8.12)

In this equation, γ is a large number (such as 0.95) so that 5% of the
weight is decayed for each iteration. In this way, large weights are penalized
by larger amounts than small weights. This is a similar method to weight
elimination (or pruning), whose goal is to remove connections between layers
that do not contribute to the network’s classification capabilities.

PROBABILISTIC NEURAL NETWORKS (PNN)

A useful neural network architecture with fundamental differences from
backpropagation is called a Probabilistic Neural Network (or PNN). This
architecture is similar to backpropagation in that it is feedforward in nature,
but differs very much in the way that learning occurs. Both backpropagation
and PNN are supervised learning algorithms, but PNN includes no weights
in its hidden layer. Instead each hidden node represents an example vector,
with the example acting as the weights to that hidden node. These are not
adjusted at all. Figure 8.15 illustrates a sample PNN.

As shown in Figure 8.15, the PNN consists of an input layer, which
represents the input pattern (or feature vector). The input layer is fully
interconnected with the hidden layer, which consists of the example vectors

276 Artificial Intelligence

(the training set for the PNN). The actual example vector serves as the
weights as applied to the input layer. Finally, an output layer represents
each of the possible classes for which the input data can be classified. Note
here that the hidden layer is not fully interconnected to the output layer.
The example nodes for a given class connect only to that class’s output node
and none other. In the example PNN, our network has four classes for which
there are two training examples each.

One other important element of the PNN is the output layer and the
determination of the class for which the input layer fits. This is done through
a winner-takes-all approach. The output class node with the largest activation
represents the winning class. While the class nodes are connected only to the
example hidden nodes for their class, the input feature vector connects to all
examples, and therefore influences their activations. It’s therefore the sum of the
example vector activations that determines the class of the input feature vector.

PNN Algorithm
Calculating the class-node activations is therefore a simple process. For each
class node, the example vector activations are summed, which are the sum of
the products of the example vector and the input vector. The hidden node
activation, shown in Eq 8.13, is simply the product of the two vectors (E is
the example vector, and F is the input feature vector).

 (Eq. 8.13)

The class output activations are then defined in Eq 8.14.,

FIGURE 8.15: Sample PNN illustrating the three layers of the network model.

Neural Networks I 277

 (Eq. 8.14)

where N is the total number of example vectors for this class, hi is the
hidden-node activation, and � is a smoothing factor. The smoothing factor is
chosen through experimentation. If the smoothing factor is too large, details
can be lost, but if the smoothing factor is too small, the classifier may not
generalize well.

What’s interesting about the PNN is that there’s no real training that
occurs since the example vectors serve as the weights to the hidden layer of
the network. Given an unknown input vector, the hidden node activations
are computed and then summed at the output (class nodes) layer. The class
node with the largest activation determines the class to which the input
feature vector belongs.

As no training is required, classifying an input vector is fast, depending
on the number of classes and example vectors that are present. It’s also very
easy to add new examples to the network. We simply add the new hidden
node, and its output is used by the particular class node. This can be done
dynamically as new classified examples are found. The PNN also generalizes
very well, even in the context of noisy data.

Let’s now look at the implementation of a PNN with a graphical example
that will illustrate its classification capabilities.

TIP Probabilistic neural networks are a form of normalized Radial-Basis
Form (RBF) neural networks, where each hidden node is a “kernel”
implementing a probability density function

PNN Implementation
Building a PNN is quite simple once the structures are in place to represent
the training dataset (which fundamentally defines the weights between the
hidden layer and the input layer). Let’s begin with a short discussion of the
dataset.

For this example, we’ll implement a two-dimensional classifier so that
we can visualize it graphically. The dataset represents points on a two-
dimensional map that have been pre-classified into three classes. Each point
is a feature vector that is represented by the example_t type.

#define DIMENSIONALITY 2
typedef structure example_s {

278 Artificial Intelligence

 int feature[DIMENSIONALITY];
} example_t;

A dataset is then defined as a collection of examples. We’ll have a dataset
per class, which is easily defined as:

#define EXAMPLES 10
typedef struct data_set_s {
example_t example[EXAMPLES];
} data_set_t;
#define CLASSES 3
data_set_t dataset[CLASSES] = {
/* Class 0 */
{ { {{13, 1}},
 {{11, 2}},
...
 {{13, 10}} } },
/* Class 1 */
{ { {{36, 4}},
 {{34, 5}},
...
 {{37, 11}} } },
/* Class 2 */
{ { {{24, 27}}.
 {{22, 29}},
...
 {{22, 38}} } }
};

We now have a collection of data points that are split into examples for
our three classes. Let’s now look at how these are used by the PNN algorithm
to classify an unseen data point.

Listing 8.9 provides the pnn_classifier function. The sole purpose
of this function is to take a feature vector (example), and identify the class
to which it belongs. The function begins with an outer loop that iterates
through each of the classes in the dataset. For each class, each of the
examples is iterated, calculating the sum of the feature vector and example
vector products.

Finally, the output array (class vector) is passed to a function called
winner_takes_all, which returns the class with the largest activation.
This is the class which the PNN classified as the example feature vector.

Neural Networks I 279

Listing 8.9: Implementation of the simple PNN classifier function.

int pnn_classifier(void)
{
 int c, e, d;
 double product;
 double output[CLASSES];
 /* Calculate the class sum of the example multiplied by each of
 * the feature vectors of the class.
 */
 for (c = 0 ; c < CLASSES ; c++) {
 output[c] = 0.0;
 for (e = 0 ; e < EXAMPLES ; e++) {
 product = 0.0;
 /* Equation 8.13 */
 for (d = 0 ; d < DIMENSIONALITY ; d++) {
 product +=
 (SCALE(example[d]) * SCALE(dataset[c].example[e].feature[d]));
 }
 /* Equation 8.14 -- part 1 */
 output[c] += exp((product-1.0) / sqr(SIGMA));
 }
 /* Equation 8.14 -- part 2 */
 output[c] = output[c] / (double)EXAMPLES;
 }
 return winner_takes_all(output);
}

O

N THE CD

 The full source implementation for the probabilistic neural network
classifier can be found on the CD-ROM at ./software/ch8/pnn.c. The
previous source discussion provides only the PNN function to illustrate
the classifier.

Let’s now use the PNN classifier to classify the entire two-dimensional
space in which our example feature vectors exist. In this example, the
two-dimensional space is iterated to identify the class to which each point
belongs. This classification is emitted, with space in place for the example
feature vectors (see Listing 8.10).

280 Artificial Intelligence

Listing 8.10: Output of the PNN classifier over a two-dimensional space of

three classes.

$./pnn
00000000000000000000000001111111111111111111111111
0000000000000 000000000001111111111111111111111111
00000000000 00000000000001111111111111111111111111
00000000000000 00000000011111111111111111111111111
000000000 00000000000000111111111111 1111111111111
000000000000 000000000001111111111 111111111111111
00000000000 00 00000000111111111111 1 111111111111
00000000000000000000000111111111111111111111111111
0000000000000000 0000001111111111 11 1111111111111
00000000000 0000000000011111111111 111111111111111
0000000000000 000000001111111111111111111111111111
00000000000000000000001111111111 11 1 111111111111
00000000000000000000022111111111111111111111111111
00000000000000000002222221111111111111111111111111
00000000000000000022222222211111111111111111111111
00000000000000002222222222221111111111111111111111
00000000000000022222222222222211111111111111111111
00000000000002222222222222222222111111111111111111
00000000000222222222222222222222221111111111111111
00000000022222222222222222222222222211111111111111
00000000222222222222222222222222222222111111111111
00000022222222222222222222222222222222221111111111
00002222222222222222222222222222222222222111111111
002221111111
02211111
222111
2221
222222222222222222222222 2222222222222222222222222
22
2222222222222222222222 222222222222222222222222222
222222222222222222222 2222222222222222222222222222
222222222222222222222222 2222222222222222222222222
22
22222222222222222222 2 222222222222222222222222222
222222222222222222222222 2222222222222222222222222
22
222222222222222222222 2222222222222222222222222222
22222222222222222222222 22222222222222222222222222
2222222222222222222222 222222222222222222222222222
22
22
22
22
22
22
22
22
22
22
22
$

Neural Networks I 281

The example shown in Listing 8.10 illustrates the clustering capabilities
of the PNN as applied to this simple problem. PNNs have been applied to
complex problems such as speaker-independent speech recognition and
many other applications.

OTHER NEURAL NETWORK ARCHITECTURES

In addition to single and multi-layer perceptrons, there are variations of
neural network architectures that can support different types of problems.
Let’s look at two neural network architectures that support time-series (or
signal) processing and feedback systems (or those with memory).

Time-Series Processing Architecture
Consider the time series shown in Figure 8.16. This signal could be a portion
of speech, a fetal heartbeat, or the stock price of a company. The signal can
be sampled at a given frequency and used as input to a neural network to
predict a future value. The neural network could also be used to filter the
input signal for noise cancellation.

In addition to sampling points from the time series, the neural network
can operate over a window of the time series through the use of a sliding
window. Using a sliding window allows the neural network to operate on
multiple data points, making it a better predictor of future time-series
behavior.

FIGURE 8.16: Example of a time series with a sliding window.

282 Artificial Intelligence

Figure 8.17 illustrates a four-layer, multi-layer perceptron for time-series
processing. As input samples are acquired, the contents of the input nodes are
shifted right (losing the right-most value) and then inserting the new value in
the left-most node. The network is then fed-forward, resulting in an output
activation (in this model, predicting the next value of the time series).

This particular network could be trained with backpropagation on a
sample time series using the known value and predicted value to determine
the error that is to be backpropagated for weight adjustment.

TIP Neural networks, which operate over a window of time-series data, are
often called tapped-delay-line networks, as there is an implicit delay
between input samples as they shift down the line of inputs.

FIGURE 8.17: Example of a multi-mayer neural network for time-series prediction.

FIGURE 8.18: An example recurrent neural
network (feedback).

FIGURE 8.19: A recurrent neural network
with longer term memory.

Neural Networks I 283

Recurrent Neural Network
A recurrent neural network is one that includes feedback connections, where
higher layer nodes in the network feed lower layer nodes. Consider the
recurrent neural network as shown in Figure 8.18. In this network model,
the output feeds back as input to the next iteration.

Recurrent neural networks are very biologically plausible, as our own
brains are recurrent. Neural networks with feedback are able to implement
almost any arbitrary sequential behavior and are therefore useful in control
systems, robotics, and many other applications.

Recurrent neural networks are also an interesting take on long-and-short
term memory. The feedback loop provides the means for short-term memory
(recalling the last output, in the example, and using it as an input). A tapped-
delay-line could be used to keep the previous state longer (as in the tapped-
delay-line model). The tapped-delay-line could also be modified to keep the last,
10th previous, and 100th previous output to give the network a longer history.

TIPS FOR BUILDING NEURAL NETWORKS
Neural networks can benefit from careful design of inputs, outputs, and
internal structure. Let’s explore a few techniques that can help in building
efficient neural network architectures.

Defining the Inputs
How the inputs are defined to a neural network can help speed learning, or
help to minimize the overall size of the neural network. Consider a set of
inputs that describe the weather as one of four states {sunny, cloudy, raining,
snowing}. A simple representation is to define an input node for each of the
inputs, as shown in Figure 8.20.

FIGURE 8.20: Using a single input per category.

284 Artificial Intelligence

An alternative for a distinct set of inputs is to encode as a binary set
of inputs (increasing the input information density, while reducing the
number of input nodes that are necessary). Figure 8.21 illustrates this binary
encoding.

Note that this works only for mutually exclusive inputs. Using real-
valued inputs, we could set sunny and cloudy each to 0.5 (and raining and
snowing to 0.0) to represent partly cloudy. Using real-valued inputs in this
way provides a means of fuzziness to the input, and introduces the concept
of probability or input confidence.

Defining the Outputs
The winner-takes-all model is great for determining a classification (mapping
the inputs to a particular output node representing a class). Real-valued
outputs are ideal for real-valued outputs representing signal values or time-
series predictions.

Note that output values are not restricted to activations in the range 0 to
1.0 (as can be forced through the sigmoid activation function). Activations
can take any real-value, including negative values, if the particular output
activation function supports this.

It’s also useful to use target output values of the range 0.1 to 0.9 (for a
valid classification). This avoids saturating the weights in the network to force
the activation toward the extremes.

Choice of Activation Functions
There are a number of activation functions that can be used, but it’s
important to note that the power of multi-layer neural networks is that they
are non-linear. Therefore, using a linear activation function (for example)
results in a linear activation.

For single-layer networks, linear activations and also step functions can
be used. For multi-layer networks, the sigmoid, Gaussian, and hyperbolic

FIGURE 8.21: Using a binary encoding to reduce the number of inputs.

Neural Networks I 285

tangent (tanh) can be used. The only requirement for backpropagation is
that the activation function must be differentiable.

Number of Hidden Layers
A single hidden layer can model any continuous function, and is easily trained
with backpropagation. With two hidden layers, any arbitrary function can
be computed, with a complexity defined by the number of nodes. For this
reason, neural networks with two hidden layers are universal computing
devices. But neural networks with multiple hidden layers can be more
difficult to train, and therefore, models with a single hidden layer should be
used if the target problem supports this.

CHAPTER SUMMARY

Neural networks are an ideal solution to problems that can’t be formulated
easily to an algorithm, and for which lots of examples exist from which the
network can be trained. Additionally, neural networks are highly parallel and
distributed structures with the desirable property that they generalize well
to unseen data. This chapter presented an introduction to neural networks
using supervised learning algorithms, including perceptron learning, the
delta-rule, backpropagation, and probabilistic neural networks.

REFERENCES

[Gallant 1994] Gallant, Stephen I. “Neural Network Learning and Expert
Systems.” MIT Press, Cambridge, Massachusetts., 1994.

[Krogh 1995] Krogh, Anders and Hertz, John A. “A Simple Weight Decay
Can Improve Generalization.” In Advances in Neural Information
Processing Systems 4, Morgan Kauffmann Publishers, San Mateo CA,
1995, p. 950-957.

EXERCISES

1. Describe the difference between supervised and unsupervised
learning.

2. What are the major components of a neural network?
3. Describe how learning occurs in neural networks.
4. What is the primary limitation of single-layer perceptrons?

286 Artificial Intelligence

5. Multi-layer perceptrons include non-linear activation functions at the
hidden and output layers - why is this important?

6. What is the purpose of the bias component?
7. Describe the fundamental process behind perceptron learning.
8. What is a principle advantage of the Delta rule over perceptron

learning?
9. Describe the basic process behind learning with the Delta rule.
10. Consider the perceptron shown in Figure 8.22. Find the error and then

calculate the new weights given the training example. After the new
weights are available, recalculate the error for the given sample and verify
that the error has been reduced given the prior weight adjustment.

FIGURE 8.22: Sample Single-Layer Network (SLP).

FIGURE 8.23: Sample Multi-Layer Network (MLP).

Neural Networks I 287

11. With the example neural network shown in Figure 8.23, calculate the
weight adjustments using backpropagation learning. Recalculate the
output to verify that the error has been reduced given the prior weight
adjustment.

12. Describe the major architectural differences between MLP neural
networks with backpropagation and probabilistic neural networks.

13. Using the test data shown in Figure 8.24, identify to which class the
unseen feature belongs.

14. Describe a neural network architecture for time-series data prediction.
15. How can long-term memory be implemented in a neural network

architecture?

FIGURE 8.24: Sample class data for PNN calculation.

C h a p t e r

In Chapter 8, we explored a number of neural network architectures and
learning algorithms that were able to train with a set of example data,
and then generalize for unseen data. This is called supervised learning,

as the network learns with the aid of a teacher (definition of output error).
This chapter will present a different model for learning, called unsupervised
learning. In this model, the network is given a set of raw data, for which it
must analyze with no prior knowledge of its structure, and then classify it
based on the inherent similarities.

UNSUPERVISED LEARNING
Unsupervised learning is a valuable method for data classification as it
requires nothing more than raw data, and does not require an understanding
of the underlying structure of the data. Unsupervised learning algorithms can
in fact identify the underlying structure by segregating the data into distinct
groups for later analysis. It does this by finding similarities in the raw data,
and then grouping those pieces of data together. What unsupervised learning
algorithms cannot do is name the clusters of data; it has no knowledge of why
training data are grouped together, and what the grouping represents (see
Figure 9.1). It simply identifies the similarities and clusters appropriately.

NEURAL
NETWORKS II9

290 Artificial Intelligence

NOTE Reinforcement learning also uses a form of unsupervised learning.

While conceptually simple, unsupervised learning is extremely valuable
and can be used in a variety of problem domains. In addition to being used
to identify the underlying structure of a set of raw data, it can also be used
to compress or transform the data. We’ll explore a number of unsupervised
learning algorithms in this chapter, along with their relative strengths and
weaknesses.

HEBBIAN LEARNING

The work of Donald Hebb represents the earliest development of a learning rule
that is both biologically plausible and can be implemented as an algorithm.

This has been summarized concisely in what’s called Hebb’s postulate
of learning:

“When an axon of cell A is near enough to excite a cell B and repeatedly
or persistently takes part in firing it, some growth process or metabolic
change takes place in one or both cells such that A’s efficiency, as one of the
cells firing B, is increased.” [Hebb 1949]

In simpler terms, if two neuron cells are firing simultaneously, then
any weight connecting between them should be increased. In this way,
connected neurons reinforce each other to support learning. Note here
that Hebb introduced the concept of increasing weights, but not decreasing

FIGURE 9.1: Unsupervised learning can cluster based on similarities, but has no knowledge of
the meaning of the clusters.

Neural Networks II 291

weights. Nevertheless, Hebb’s work served as the basis for further research
in connectionist models, such as Frank Rosenblatt’s work on the perceptron
learning algorithm (see Chapter 8).

NOTE In the period that Hebb introduced his work in neuron modeling,
Norbert Weiner introduced the concept of Cybernetics, or the “control
and communication in the animal and the machine.” Cybernetics was a
multi-disciplinary field that included such established fields as electrical
engineering, mathematics, biology, neurophysiology, anthropology, and
psychology.

Hebb’s Rule
The basic idea behind Hebb’s rule is that whenever there are two cells with
similar activations, the weights that connect them should be strengthened.
From a pattern recognition perspective, this provides the means to
strengthen weights when inputs are similar, and to weaken them when
they’re dissimilar. This results in the very simple Eq 9.1, which implements
the learning algorithm for Hebb’s rule.

 (Eq 9.1)

where E is a learning rate (0<E<=1), x is the input, y is the output, and
wi,j is the weight that connects them.

The neural network that uses the Hebb Rule is a very simple network
that utilizes some number of input cells, and an identical set of output
cells (see Figure 9.2). The network is fully interconnected, with weights
connecting between each output cell and each input cell (so that every input
has some influence over the output).

FIGURE 9.2: Simple pattern recall network using Hebb’s rule.

292 Artificial Intelligence

To train the network, we provide the network with the input pattern (and also
duplicate the value of the input cells at the output, so that the Hebb rule builds
the association). Once the weights have been trained using Hebb’s learning
rule, the network can recall output patterns from those presented to the input
(the weights encode the memory of the patterns) as shown in Figure 9.3.

The major disadvantage with Hebb’s Rule is that it can only create a map
over orthogonal patterns of inputs. This is due to the lack of a hidden layer
within the network.

Hebb Rule Implementation
Implementing the Hebb rule is quite simple, and can be done with a minimal
amount of code. We’ll represent our network as we have with other single-
layer neural networks (see Chapter 10).

We’ll show three functions from this implementation: locking in the
input and expected output pattern, computing the activations, and the
function implementing the Hebb rule.

O

N THE CD

 The implementation of pattern recall using the Hebb rule can be found
on the CD-ROM at ./software/ch9/hebb.c.

In the first function, we set the input pattern and also lock this same
pattern into the output (define_pattern). This will be subsequently used by
the Hebb rule to train the weights for the pattern (see Listing 9.1). The input
and output vectors are also shown. Note that while the inputs are defined as
integers, the outputs are double, since we used a real-valued learning rate.
We’ll use a linear threshold to clip the values, anything greater than 0 is a
‘1,’ and anything equal to, or less than 0 is a ‘-1.’

FIGURE 9.3: An abstract pattern recognizer provides a mapping between the input to the
output.

Neural Networks II 293

Listing 9.1: Setting the input and output patterns for Hebb learning.

int inputs[MAX_CELLS];
double weights[MAX_CELLS][WEIGHTS_PER_ACTIVATION];
double outputs[MAX_CELLS];
void define_pattern(int *inp)
{
 int i;
 for (i = 0 ; i < MAX_CELLS ; i++) {
 inputs[i] = inp[i];
 outputs[i] = (double)inp[i];
 }
 return;
}

Computing the activations using Hebb’s rule is shown in Listing 9.2
(compute_activations). For each output cell, we iterate through each input
and accumulate it by multipling the associated weight by the input. Once
the output activations have been computed, a step function is used to force
the outputs to either a value of 1 or -1.

Listing 9.2: Computing the output activations using Hebb’s Rule.

void compute_activations(int adjust_weights)
{
 int out, weight;
 /* Compute the activations */
 for (out = 0 ; out < MAX_CELLS ; out++) {
 outputs[out] = 0.0;
 for (weight = 0 ; weight < WEIGHTS_PER_ACTIVATION ; weight++) {
 outputs[out] += (weights[out][weight] * (double)inputs[weight]);
 }
 /* Clip the outputs */
 if (outputs[out] > 0.0) outputs[out] = 1.0;
 else outputs[out] = -1.0;
 }
 return;
}

Finally, adjusting the weights with Hebb’s rule is the simple process
of accumulating weight changes using Eq 9.1. For each output cell, each

294 Artificial Intelligence

weight connecting to the input is adjusted by multiplying the input by the
output and a small learning rate (see Listing 9.3). This adjusts the weights
in an effort to map the input vector to the output vector.

Listing 9.3: Weight adjustment with Hebb’s rule.

void adjust_weights(void)
{
 int out, weight;
 /* Hebbian Learning Rule */
 for (out = 0 ; out < MAX_CELLS ; out++) {
 for (weight = 0 ; weight < WEIGHTS_PER_ACTIVATION ; weight++) {
 /* Equation 9.1 */
 weights[out][weight] += ETA * (outputs[out] *
(double)inputs[weight]);
 }
 }
 return;
}

To learn a new pattern, we simply specify a new image and load it with
the define_pattern function. A call to adjust_weights can then be
performed to create a mapping for the new pattern, for example:

 {
 int pattern1[MAX_CELLS] = {-1, 1, 1, -1,
 1, -1, -1, 1,
 1, -1, -1, 1,
 -1, 1, 1, -1 };
 define_pattern(pattern1);
 }
 /* Train for Pattern 1 */
 adjust_weights();

We can then test for this pattern by computing the output activations
with a call to compute_activiations. Note that in this example, we’ve
presented a partial input pattern in an attempt to test its recall capabilities:

 /* Test for Pattern 1 */
 {

Neural Networks II 295

 int patternA[MAX_CELLS] = {-1, -1, -1, -1,
 -1, 1, 1, -1,
 1, 1, 1, 1,
 1, 1, 1, 1 };
 define_pattern(patternA);
 }
 show_activations();

Note that show_activations simply emits the input and output vector to
illustrate the mapping.

Now let’s look at the algorithm in action. We’ll train our network for two
distinct training patterns in a 4 by 4 matrix. Pattern one is a simple box, and
pattern two is a representation of an ‘X’ pattern (see Figure 9.4).

FIGURE 9.4: Training patterns for the Hebb rule neural network.

FIGURE 9.5: Result of pattern recall using the Hebbian network.

296 Artificial Intelligence

To test the recall capabilities of the network, we’ll present the network with
elements of the input pattern, but not the entire pattern (see Figure 9.5).

As is shown in Figure 9.5, Hebbian learning does a reasonable job of
recalling patterns given pieces of the original patterns. The Hebb rule is very
simple, and can be very effective when there’s a strong correlation between
the presented input pattern, and desired recall pattern.

SIMPLE COMPETITIVE LEARNING

In competitive learning, the output nodes of the network (which represent the
distinct classes available for classification), compete with one another to fire
and therefore represent the class of the feature vector at the input nodes.

NOTE Clustering is a very interesting technique with very practical applications.
Clustering a raw data set allows a better understanding of the structure
of the data. Using clustering, relationships in data can be found that
could otherwise not be seen. One very useful example of clustering is in
recommendation systems, where customer data is clustered. Customers in
a given cluster are then unique classes of customers and their differences
can be used to recommend purchases to those in the cluster who lack that
purchase.

The competitive learning network is made up of two layers. The first
layer is the input layer and represents the feature vector, and the second
layer is the output layer representing the class (see Figure 9.6).

FIGURE 9.6: Sample competitive learning network.

Neural Networks II 297

The weights between the input and output layer encode the ability to
classify a particular input feature vector to an output class node. In some
competitive learning architectures, inhibitory connections between the
output layer are included. These connections allow the output nodes to
influence each other in a true competitive sense.

Vector Quantization
One example of competitive learning is called vector quantization. Vector
quantization is a surprisingly simple network architecture and learning
algorithm. The input layer has a number of nodes defined by the length of
the feature vector, and the output layer has a number of nodes defined by
the number of anticipated classes. Each output node connects to every input
node by a trainable weight.

As each prototype vector (sample to classify) is applied to the network, a
simple feedforward algorithm computes the activation of each output node,
as defined by Eq 9.2. For each output node M, the sum of the products of
the prototype vector (x) and weights determine the activation.

 (Eq 9.2)

A winner-takes-all approach then decides which particular output
activation is chosen as the correct classification. But instead of choosing the
largest activation (as we’ve seen with other approaches, such as Probabilistic
Neural Networks), we choose the lowest activation, as it represents the class
with the closest Euclidean distance to the input prototype vector. In this
sense, the weights of the neural network define the centroid of all prototype
vectors assigned to this class.

NOTE Vector quantization effectively divides the prototype vector input space
into a Voronoi tessellation. A Voronoi tessellation (named after Georgy
Voronoi) is a decomposition of a space to a specific set of discrete objects
in the space (such as centroids).

After a prototype vector is found to be closest to a given class (output
node), only the weights associated with this output node are updated. The
weights associated with the winning output node (M) are updated for input
x, and learning rate ρ, as shown in Eq 9.3.

 (Eq 9.3)

298 Artificial Intelligence

The process of training continues until we reach some termination
criteria. This could be after some number of runs, or when the network
has reached equilibrium (no changes are made, such as prototype vectors
changing classification).

Vector Quantization Implementation
Vector quantization, as illustrated by the introduction, is very easily
implemented. We’ll explore a few functions that make up the implementation,
the remaining source can be found on the CD-ROM.

O

N THE CD

 The implementation of object classification using vector quantization can
be found on the CD-ROM at ./software/ch9/vq.c.

Let’s begin with a discussion of the neural network representation for
vector quantization (see Listing 9.4). In this approach, the prototype feature
vectors are represented with the feature_vector_t type. This contains the
current class to which the prototype belongs, and the feature vector itself
(features).

The neural network is implemented very simply. Since there are no
hidden layers, we need only maintain the value of the output nodes (the
outputs array). The weights between the output layer and input layer are
represented by a two-dimensional array (first dimension is the output node,
second are the individual weights for the output node).

Listing 9.4: Major types and variables.

#define MAX_FEATURE_VECTORS 40
#define MAX_FEATURES 3
typedef struct {
 int class;
 int features[MAX_FEATURES];
} feature_vector_t;
feature_vector_t fvec[MAX_FEATURE_VECTORS];
/*
 * Neural Network Representation for Vector Quantization
 */
#define OUTPUT_NODES 3 /* Unique classes
*/
#define CLASSES OUTPUT_NODES
double outputs[OUTPUT_NODES];

Neural Networks II 299

double weights[OUTPUT_NODES][MAX_FEATURES];
#define LEARNING_RATE ((double)0.01)

Note that we’ll normalize the feature vector so that the values scale to
the range 0 to 1, but we’ll not use the value zero and one (the extremes) to
avoid saturating the weights of the network (see Figure 9.7).

Next, let’s continue the implementation discussion with the main loop
(see Listing 9.5). The main function provides a fundamental algorithm for
vector quantization, including the termination criteria. We begin by first
initializing the prototype feature vectors with a call to initialize_vectors. This
function creates a random set of feature vectors given the feature length
and available individual features (see the source on the CD-ROM for the
details of this function). Next, we initialize the neural network with a call to
initialize_network. This function simply takes the first N feature prototype
vectors (N being the number of classes available for classification), and
associates the output node with the feature vector. This is done through a call
to updateNetwork, which initializes the weights for the output node given
the prototype feature vector (we’ll review this function shortly). Note that
this can be problematic, especially if there are strong similarities between
the first N feature prototype vectors, but it is simple, and works well given
a good random distribution.

Next, we enter the main loop. This loop continues to operate while
changes occur (and by change, we mean a feature prototype vector changing
classes, based on the class feature centroids changing themselves). Each
of the sample feature prototype vectors are applied in succession to the
network, using the feed_forward function. This function returns the class
to which the prototype was assigned. This information is then applied to
the updateNetwork function, which updates the particular output node’s
(class’s) weights given the current prototype feature vector. This process then
continues for the next sample, until for each iteration through the sample
set, no changes occur.

FIGURE 9.7: Representing the prototype feature vector.

300 Artificial Intelligence

Listing 9.5: Vector quantization main loop (portion).

int main()
{
 int i, j;
 int sample = CLASSES;
 int class;
 changes = 0;
 /* Initialize the feature vectors */
 initialize_vectors();
 /* Initialize the neural network */
 initialize_network();
 /* Continue to run while feature vectors change classes */
 while (changes > 0) {
 if (sample >= MAX_FEATURE_VECTORS) {
 /* Reset the sample index */
 sample = 0;
 /* If no changes occurred in the last iteration, the exit,
 * otherwise, reset the changes counter to zero and continue.
 */
 if (changes == 0) break;
 else changes = 0;
 }
 /* Feed the sample prototype vector through the network. */
 class = feed_forward(sample);
 /* Update the weights for the winning output node (class). */
 updateNetwork(sample, class);
 /* Next sample */
 sample++;
 }
 ...
 return 0;
}

The feed_forward function implements the output node activations
based on Eq 9.2 (see Listing 9.6). Given the input prototype feature vector
index, we calculate the activations for each output node. This, using Eq 9.2,
is the sum of the products of the weights for the particular class, and the
values of the input feature vector. In a winner-takes-all fashion, we identify
the output node with the lowest value, which represents the class to which
the input feature vector belongs. Finally, we check to see if the feature vector

Neural Networks II 301

has changed classes, and if so, we increment the changes variable to let the
main loop that a class change occurred.

Listing 9.6: Computing the output node activations with feed_forward.

int feed_forward(int feature_vector)
{
 int output, weight, best;
 double best_value;
 /* Compute each output node activation for the current
 * prototype vector.
 */
 for (output = 0 ; output < CLASSES ; output++) {
 outputs[output] = 0.0;
 /* Equation 9.2 */
 for (weight = 0 ; weight < MAX_FEATURES ; weight++) {
 outputs[output] +=
 weights[output][weight] *
 SCALE(fvec[feature_vector].features[weight]);
 }
 }
 /* Set the current best to class 0 */
 best = 0;
 best_value = outputs[0];
 /* Iterate through the remaining classes to identify which was best. */
 for (output = 1 ; output < CLASSES ; output++) {
 if (outputs[output] < best_value) {
 best = output;
 best_value = outputs[output];
 }
 }
 /* Keep track of when a prototype vector changes classes, for use as
 * a termination criteria.
 */
 if (best != fvec[feature_vector].class) {
 changes++;
 fvec[feature_vector].class = best;
 }
 return best;
}

302 Artificial Intelligence

Finally, during training, once we identify that a prototype feature vector
belongs to a particular class, we update the weights for the class. This is done
through a call to updateNetwork (see Listing 9.7). To the function, we
provide the prototype vector index and the class to which it belongs. Each
of the weights associated with the particular output node (class) is then
updated per Eq 9.3. Note that we apply a learning rate to the weight update
to provide a gradual change to the weights.

Listing 9.7: Updating the weights for a particular class with updateNetwork.

void updateNetwork(int feature_vector, int class)
{
 int weight;
 for (weight = 0 ; weight < MAX_FEATURES ; weight++) {
 /* Equation 9.3 */
 weights[class][weight] += LEARNING_RATE *
 (SCALE(fvec[feature_vector].features[weight]) -
 weights[class][weight]);
 }
 return;
}

Let’s now see vector quantization in practice (Listing 9.8). Per the sample
implementation, a set of random data is created that represents a variety of
objects that differ in shape, size, and color. These are encoded into a feature
vector (shape, texture, color) and applied to the network in order to train the
weights. When training is complete (equilibrium is reached in the network),
the classification is emitted.

For this set of randomized data, we see a very clear classification emerge
from the data. From the feature vectors, we can see that class 0 contains
all objects that have the box shape. Class 2 includes all objects that are
smooth (except for boxes). Finally, Class 3 includes all objects not previously
classified. This includes any object that isn’t a box and isn’t smooth. That’s
one possible classification, but given the number of box shapes that exist, it’s
not surprising that this particular categorization was found.

Listing 9.8: Sample classification of random object data.

$./vq.exe
Class 0 contains:

Neural Networks II 303

 1 [BLACK ROUGH BOX]
 2 [BLACK SMOOTH BOX]
 3 [RED SMOOTH BOX]
 7 [BLACK SMOOTH BOX]
 8 [BLACK SMOOTH BOX]
 13 [BLACK ROUGH BOX]
 16 [BLUE SMOOTH BOX]
 18 [BLACK DIMPLED BOX]
 21 [RED ROUGH BOX]
 23 [BLACK SMOOTH BOX]
 25 [BLACK SMOOTH BOX]
 27 [RED ROUGH BOX]
 29 [RED SMOOTH BOX]
 32 [RED ROUGH BOX]
 39 [RED DIMPLED BOX]

Class 1 contains:
 0 [BLACK SMOOTH SPHERE]
 12 [BLACK SMOOTH SPHERE]
 14 [RED SMOOTH SPHERE]
 15 [BLUE SMOOTH SPHERE]
 17 [RED SMOOTH SPHERE]
 24 [RED SMOOTH CYLINDER]
 26 [RED SMOOTH CYLINDER]
 33 [BLUE SMOOTH CYLINDER]
 34 [RED SMOOTH CYLINDER]
 37 [RED SMOOTH CYLINDER]

Class 2 contains:
 4 [BLUE DIMPLED CYLINDER]
 5 [BLACK DIMPLED SPHERE]
 6 [BLACK ROUGH SPHERE]
 9 [BLACK ROUGH SPHERE]
 10 [BLACK DIMPLED CYLINDER]
 11 [BLACK ROUGH SPHERE]
 19 [BLACK ROUGH SPHERE]
 20 [BLUE ROUGH SPHERE]
 22 [BLACK ROUGH SPHERE]
 28 [BLUE DIMPLED CYLINDER]
 30 [RED ROUGH CYLINDER]

304 Artificial Intelligence

 31 [BLACK ROUGH CYLINDER]
 35 [RED DIMPLED CYLINDER]
 36 [BLACK ROUGH SPHERE]
 38 [BLACK DIMPLED SPHERE]
$

Note that this method was unsupervised. The algorithm had no
knowledge of the data, but did a reasonable job of segregating the data based
on characteristics of the data. In one cluster, the data is segmented based on
the shape, but in another, it’s segmented based on a texture.

The simplicity of this algorithm makes it a great choice for clustering.
One primary disadvantage of the algorithm is that the number of output
classes must be defined up front. This is a significant disadvantage because
it assumes that we have some general knowledge of the data and how it
should be classified.

In addition to its clustering capabilities, you’ll find vector quantization
in other applications such as image and audio compression, and even
speaker recognition. Identifying a speaker is an interesting problem and
fundamentally comes down to a classification problem. The incoming voice
audio is reduced to a feature vector, which is applied to a vector quantizer
to identify the class (or speaker) that fits best.

K-MEANS CLUSTERING

A very popular algorithm for unsupervised clustering of feature vector data
is called k-Means (where there are k clusters, and the average of the cluster
contents determine the cluster centroid). This algorithm is popular primarily
because it works relatively well and is extremely simple both to understand
and to implement (see Figure 9.8).

FIGURE 9.8: Basic flow of the k-Means clustering algorithm.

Neural Networks II 305

The fundamental approach to k-Means clustering is based on centroids
representing the average of the current set of feature vectors contained within
the cluster. The centroid is the average of all feature vectors, and is recalculated
whenever an object moves into or out of a cluster. Choosing a cluster for a given
feature vector is based on the Euclidean distance of the feature vector and the
available cluster centroids (see Figure 9.9). The closer the Euclidean distance,
the higher the probability the feature vector belongs to the cluster.

Note that each time a cluster changes, its centroid also changes (as it’s
recalculated after every change). This means that over the duration of the
algorithm, as the cluster’s membership changes, the centroids change, which
can mean that additional feature vectors can change cluster membership. For
this reason, a typical termination criteria is an iteration through all feature
vectors with none changing cluster membership.

k-Means Algorithm
The k-Means algorithm is one of many clustering algorithms, but remains
popular due to its simplicity. It’s also relatively efficient, but does have
some disadvantages (such as inefficient methods for defining the clusters at
initialization time). Let’s first explore the details of the k-Means algorithm,
and then we’ll discuss the advantages and disadvantages of this method.

NOTE As with vector quantization, we’ll use a very simple feature vector to discuss
and explore k-Means in an implementation. Feature vectors will describe
objects in terms of a number of dimensions (color, texture, and shape).

We begin with a set of prototype feature vectors that are to be clustered
based on their similarities and differences (see the flow shown in Figure
9.10). The number of clusters (k) must also be defined a priori. Each cluster
has an associated centroid feature vector which represents the average of
the prototype feature vectors contained within that cluster.

FIGURE 9.9: Demonstrating a centroid change with the loss of a data item.

306 Artificial Intelligence

NOTE A centroid is defined as the center of the mass. In this context, the centroid
is the center of a set of multi-dimensional prototype feature vectors.

We then take k of the prototype feature vectors and assign one each
to the available clusters. These k prototype feature vectors can be picked
at random, but ideally, we would choose vectors that are dissimilar. The
simplest approach is to choose the first k feature vectors and assign them to
the clusters. With the clusters now containing one prototype feature vector,
we initialize the centroid. Since the cluster contains only one prototype
feature vector, the centroid is equal to the prototype feature vector.

Next, we iterate through each of the available prototype feature vectors,
and compute the Euclidean distance of the centroid to the prototype feature
vector (see Eq 9.4, i is the feature index, x is the input feature vector, and
c is the centroid). We pick the nearest centroid (defined as the smallest
Euclidean distance) and assign the prototype vector to that centroid. We then
recalculate the centroids to take into consideration their new members. Note
that this can be done after each evaluation or in a batch mode where the
feature vectors are assigned, and then the centroids updated at the end.

 (Eq 9.4)

FIGURE 9.10: Basic flow of the k-Means clustering algorithm.

Neural Networks II 307

If at the end of evaluating all prototype feature vectors, none have
changed clusters, we can assume that we’ve reached equilibrium and the
clustering is complete. If a centroid did change (because of gaining and/or
losing a prototype feature vector), we re-evaluate each prototype vector
again. Recalculating the centroid simply involves summing the prototype
feature vectors and dividing the resulting vector by the total number of
prototype vectors in the cluster.

The primary disadvantage of k-Means is that the number of clusters must
be defined a priori. This can require some experimentation for the problem
at hand, to identify how many clusters should be present to properly classify
the data. As defined in the introduction, initialization of the clusters can also
be problematic. Therefore, multiple runs of the algorithm may be required
to find a proper classification.

That’s the basic algorithm for k-Means clustering. Let’s now explore a
sample implementation that clusters objects (based on Figure 9.7).

k-Means Implementation
To demonstrate the k-Means algorithm, we’ll reuse the data infrastructure
from the vector quantization example (object classification based on shape,
color, and texture). The prototype vectors contain both a feature vector and
the current class to which the prototype vector belongs. The centroids are
represented as a floating-point vector (see Listing 9.9). The centroids differ
from the prototype feature vectors because the centroids will represent the
average of the member prototype vectors, and therefore require floating-
point precision.

Listing 9.9: k-Means types and symbolic constants.

#define MAX_FEATURE_VECTORS 40
#define MAX_FEATURES 3
typedef struct {
 int class;
 int features[MAX_FEATURES];
} feature_vector_t;
/* Prototype Feature Vectors */
feature_vector_t fvec[MAX_FEATURE_VECTORS];
/* Number of clusters */
#define K 3
/* Cluster Centroids */
double centroids[K][MAX_FEATURES];

308 Artificial Intelligence

We’ll present a few of the functions that implement the k-Means
algorithm: the entire implementation can be found on the CD-ROM. For the
purposes of explanation, we’ll explore the k-Means main loop, identifying the
nearest centroid, computing the geometric distance, and finally recalculating
a centroid given the current prototype feature vectors.

O

N THE CD

 The implementation of object classification using k-Means clustering can
be found on the CD-ROM at ./software/ch9/kmeans.c.

The k-Means main loop implements the high-level algorithm for k-
Means clustering (see Listing 9.10). It begins by initializing the random set
of prototype feature vectors, and then assigning some number of them (K)
to clusters. Once we have a set of initialized clusters (with one random item
each), we calculate the centroid values for the clusters for later use by the
algorithm.

The main loop for k-Means then begins, with the termination criteria
that all clusters are satisfactorily classified (no prototype vectors moved
in the last iteration). Note that we iterate through the prototype vectors
backwards because the first K has been assigned to the clusters as part of
the initialize_membership function. As part of the iteration, we first call the
partition_feature_vector to identify to which cluster the prototype feature
vector belongs. If the vector changes classes, we recalculate the centroid for
the cluster that lost the vector as well as the cluster that gained it.

Listing 9.10: The k-Means algorithm main loop.

void k_means_clustering(void)
{
 int done = 0, i;
 int old, new;
 int proto_vector;
 /* Create the random set of prototype feature vectors */
initialize_prototype_vectors();
/* Set K vectors to clusters (to initialize the centroids) */
initialize_membership();
/* Compute the centroids for each cluster */
for (i = 0 ; i < K ; i++) {
 compute_centroids(i);
}
 while (!done) {
 done = 1;

Neural Networks II 309

 /* Iterate through the available prototype feature vectors */
 for (proto_vector = MAX_FEATURE_VECTORS-1 ; proto_vector >= 0 ;
 proto_vector--) {
 /* Find the cluster to which this prototype vector belongs */
 new = partition_feature_vector(proto_vector);
 /* Did the prototype feature vector change classes */
 if (new != fvec[proto_vector].class) {
 old = fvec[proto_vector].class;
 fvec[proto_vector].class = new;
 /* Recompute the affected centroids (-1 = not yet clustered) */
 if (old != -1) {
 compute_centroids(old);
 }
 compute_centroids(new);
 done = 0;
 }
 }
 }
}

The function partition_feature_vector is used to identify the cluster
with the centroid nearest the prototype feature vector under review. The
algorithm iterates through each of the available clusters, and calculates the
Euclidean distance from the prototype feature vector to the cluster’s centroid
with a call to geometricDistance. As each distance is calculated, the cluster
representing the lowest distance is saved and returned as the cluster to which
this prototype vector should be moved.

Listing 9.11: Finding the nearest cluster.

int partition_feature_vector(int proto_vector)
{
 int cluster, best = 0;
 double gdCur, gdBest = 999.99;
 /* Find the centroid that best matches the prototype feature vector */
 for (cluster = 0 ; cluster < K ; cluster++) {
 gdCur = geometricDistance(proto_vector, cluster);
 /* Keep track of the closest cluster centroid */
 if (gdCur < gdBest) {
 best = cluster;

310 Artificial Intelligence

 gdBest = gdCur;
 }
 }
 return best;
}

Calculating the Euclidean distance between the prototype feature vector
and the cluster centroid is done with a call to geometricDistance. Using Eq
9.4, we step through each element of the vector, summing the squares of the
difference. After each element of the vector has been iterated, the square
root of the result is returned.

Listing 9.12: Computing the geometric distance between the feature vector

and the centroid.

double geometricDistance(int proto_vector, int centroid)
{
 int feature;
 double gd = 0.0;
 /* Equation 9.4 */
 for (feature = 0 ; feature < MAX_FEATURES ; feature++) {
 gd += (((double)fvec[proto_vector].features[feature] -
 centroids[centroid][feature]) *
 ((double)fvec[proto_vector].features[feature] -
 centroids[centroid][feature]));
 }
 return(sqrt(gd));
}

Finally, the compute_centroids function is used to recalculate the
centroid for the defined cluster. This function very simply sums the fields of
the prototype feature vectors that are contained within the current cluster, and
then divides each field by the total number. The resulting centroid represents
the multi-dimensional center of the cluster’s prototype feature vectors.

Listing 9.13: Recalculating the cluster centroids.

void compute_centroids(int cluster)
{
 int proto_vector, feature;

Neural Networks II 311

 int total = 0;
 /* Clear the centroid vector */
 for (feature = 0 ; feature < MAX_FEATURES ; feature++) {
 centroids[cluster][feature] = 0.0;
 }
 /* Calculate the centroid vector for the current cluster */
 for (proto_vector = 0 ; proto_vector < MAX_FEATURE_VECTORS ;
 proto_vector++) {
 if (fvec[proto_vector].class == cluster) {
 for (feature = 0 ; feature < MAX_FEATURES ; feature++) {
 centroids[cluster][feature] +=
 (double)fvec[proto_vector].features[feature];
 }
 total++;
 }
 }
 /* Compute the average for the centroid */
 for (feature = 0 ; feature < MAX_FEATURES ; feature++) {
 centroids[cluster][feature] /= (double)total;
 }
 return;
}

Let’s now look at a sample result of the k-Means algorithm (see Listing
9.14). Class 0 is clearly a cluster of smooth objects, and Class 2 contains red
objects that are not smooth. Class 1 then becomes all objects that are neither
red, nor smooth.

Listing 9.14: Sample k-Means classification of random object data.

$./kmeans.exe
Class 0 contains:
 5 [RED SMOOTH BOX]
 6 [RED SMOOTH BOX]
 7 [RED SMOOTH BOX]
 8 [RED SMOOTH SPHERE]
 11 [BLACK SMOOTH SPHERE]
 12 [BLACK SMOOTH BOX]
 14 [BLUE SMOOTH CYLINDER]
 16 [BLACK SMOOTH BOX]

312 Artificial Intelligence

 17 [BLACK SMOOTH CYLINDER]
 19 [BLUE SMOOTH BOX]
 24 [RED SMOOTH CYLINDER]
 25 [RED SMOOTH SPHERE]
 30 [RED SMOOTH BOX]
 31 [BLACK SMOOTH CYLINDER]
 32 [BLUE SMOOTH SPHERE]
 33 [BLUE SMOOTH CYLINDER]
 35 [BLACK SMOOTH CYLINDER]
 36 [BLACK SMOOTH BOX]
 39 [RED SMOOTH SPHERE]

Class 1 contains:
 0 [BLUE DIMPLED CYLINDER]
 1 [BLACK DIMPLED CYLINDER]
 4 [BLUE DIMPLED BOX]
 9 [BLACK ROUGH SPHERE]
 10 [BLUE DIMPLED SPHERE]
 15 [BLACK ROUGH SPHERE]
 18 [BLUE DIMPLED CYLINDER]
 20 [BLUE DIMPLED BOX]
 22 [BLACK DIMPLED SPHERE]
 23 [BLUE DIMPLED SPHERE]
 26 [BLUE DIMPLED CYLINDER]
 27 [BLUE ROUGH SPHERE]
 29 [BLACK DIMPLED BOX]
 34 [BLUE DIMPLED CYLINDER]

Class 2 contains:
 2 [RED DIMPLED CYLINDER]
 3 [RED ROUGH SPHERE]
 13 [RED DIMPLED SPHERE]
 21 [RED DIMPLED CYLINDER]
 28 [RED DIMPLED CYLINDER]
 37 [RED ROUGH SPHERE]
 38 [RED ROUGH CYLINDER]
$

Recall that from initialization, the first k prototype feature vectors are
assigned to their same numbered cluster (vector 0 to cluster 0, vector 1 to

Neural Networks II 313

cluster 1, etc.). Note in this example that while prototype vector 2 remained
in cluster 2, prototype vector 0 moved to cluster 1 (since cluster 0 was used
to classify smooth objects).

The k-Means algorithm is a useful algorithm because it’s simple and
works well. It’s not without its issues (such as a priori definition of k, and
sensitivity to initialization), but these can be combated through multiple runs
of the algorithm on the data set.

TIP It’s good to note that there’s no theoretical solution for understanding the
optimal number of classes for any dataset. An experimental solution is to
execute the k-Means algorithm on the dataset multiple times and review
the results. Fewer clusters mean better generalization in the results,
where more clusters tends to end in clusters with very specific attributes
and a risk of over-fitting.

For k-Means and vector quantization, the primary disadvantage is that
the number of clusters must be predefined. Let’s now explore an algorithm
that can dynamically create new clusters when the dataset warrants them.

ADAPTIVE RESONANCE THEORY (ART)

Adaptive Resonance Theory is a collection of models for unsupervised
learning. In this section, we’ll focus solely on ART-1, which is applicable to
binary input vectors. For continuous variables, the ART-2 algorithm can be
used.

ART-1 in particular was designed to resolve the stability-plasticity
dillema. This refers to a conflict in the ability to maintain old learned
information while still being adaptive to learn new information. An algorithm
is defined as plastic if it can adapt to new information. Additionally, an
algorithm is stable if it can retain previously learned knowledge. The goal
then is to create an algorithm that can retain previously learned knowledge
while at the same time integrating newly discovered knowledge. In this way,
the algorithm is both stable and plastic. Many clustering algorithms are one
or the other, but not necessarily both.

As we discussed in k-Means clustering, an interesting advantage to ART-
1 is in its ability to create a new cluster if the underlying data warrants. It
accomplishes this with a vigilance parameter that helps to determine when
to cluster a feature vector to a “close” cluster, or when to simply create a new
cluster into which this feature vector is inserted.

314 Artificial Intelligence

ART-1 Algorithm
The ART-1 algorithm is simple, not quite as simple as the k-Means algorithm,
but straightforward, nonetheless. Let’s begin with a quick overview of ART-1
and then we’ll dig deeper into the algorithm to understand how it works.

We begin the algorithm with a set of unclustered feature vectors and
some number of clusters. We take each feature vector, in turn, and attempt
to find the cluster to which it’s closest. If no clusters are found that are near
the feature vector, we create a new cluster and assign the feature vector to
it. Otherwise, with a cluster that’s near the feature vector, we test how close
the feature vector is to the cluster. If the feature vector is near the cluster,
then we assign the feature vector to the cluster, and update the cluster.
Otherwise, we continue to test the feature vector to all available clusters. If
all available clusters have been exhausted, then we simply assign the feature
vector to a new cluster.

We then start the process again with a new feature vector. If we work
through all available feature vectors, and none change their cluster, all
samples have been satisfactorily clustered and the process is complete. That’s
ART-1 in a nutshell. Now let’s explore a little further to understand how the
algorithm maintains both stability and plasticity.

First, each feature vector is a binary string of a given width (n). Each
cluster is represented by a vector that is the boolean AND operator of all
feature vectors contained within the cluster (see Figure 9.11).

Note from Figure 9.11 that the width of the feature vector (and the
cluster, which must be the same) is defined as n (or 8). We’ll use the symbol
p to represent the current cluster (typically indexed, as in pi). The symbol I
represents the current feature vector. Finally, symbols β and ρ are constant
values, and we’ll discuss these shortly.

Given a feature vector, and a list of available clusters (initially, all will be
empty), the first step is to test the similarity of a feature vector to the cluster’s
vector. This is done using Eq 9.5.

FIGURE 9.11: Boolean AND relationship of feature vectors to the cluster vector for ART-1.

Neural Networks II 315

 (Eq 9.5)

TIP Note that in Eq 9.5, the double vertical bars simply represent the
number of 1s that are set in the particular vector. For example, the
vector representing cluster A in Figure 9.11 would be 3. The inverted ‘U’
represents the boolean AND operation between the cluster vector and
the current feature vector.

The similarity test in Eq 9.5 calculates how near the feature vector is to
the cluster vector. The higher the value, the closer the vector is to the cluster.
Therefore, if Eq 9.5 is satisfied, then the feature vector can be defined as
sufficiently close to the cluster. If this equation fails for all cluster vectors,
then we simply create a new cluster for this feature vector and continue
to the next feature vector. Otherwise, if it is sufficiently close, we test for
vigilance acceptability. The β parameter is used as a “tie-breaker” to give
deference to clusters with more 1s in the case that the feature vector and
cluster are similar. This parameter is typically a small number (greater than
zero and less than n).

The vigilance test is the final determiner for whether the feature vector
should be added to the particular cluster (see Eq 9.6).

 (Eq 9.6)

This equation simply identifies if the feature vector is sufficiently close
to the cluster (as a ratio of the matching 1s between the feature vector
and the cluster). This means that if vigilance (ρ) is high (such as 0.9) more
clusters will tend to be created, and if vigilance is low, then fewer clusters
are created. If ρ is set to 1.0, then the feature vector must match the cluster
exactly in order to join it.

If the feature vector fails the vigilance test, and there are no further
clusters to test, then a new cluster is created for this feature vector (as there
are no similar clusters available).

Note that while clusters are created, feature vectors may drop out of
a cluster and into another based on new feature vectors being added, and
adjusting the cluster vector. When no cluster changes are made for an entire
iteration through the available feature vectors, the algorithm is complete.

When a feature vector joins a cluster, the cluster’s vector must be
updated to incorporate the features of the new addition. If the feature vector

316 Artificial Intelligence

added is the only member of the cluster, then the cluster vector is identical
to the feature vector. Otherwise, each of the cluster’s feature vectors (Ii) is
assimilated using Eq 9.7.

 (Eq 9.7)

ART-1 is stable (retains knowledge), but is also plastic in that it can
indefinitely incorporate new knowledge given a sufficient number of
clusters. Let’s now explore the implementation of ART-1 for an object
classification task.

ART-Implementation
Let’s start with a discussion of the clustering problem at hand and then review
the representation for the feature vector and cluster vector. To demonstrate
the ART-1 algorithm, we’ll use a feature vector representing attributes of a
number of animals (see Figure 9.12). These characteristics include whether
the animal gives live birth, or lays eggs, or whether the animal has fur, hair,
or naked-skin, etc.

O

N THE CD

 The implementation of animal clustering using ART-1 can be found on
the CD-ROM at ./software/ch9/art1.c. The major functions that make up
ART-1 are explored here, but the entire implementation is provided on
the CD-ROM.

Both feature vectors and clusters are represented with the vector_t
type. This contains not only the binary feature vector, but a union which
represents the current class (in the case of a feature vector, for fvec) or
the member count (in the case of a cluster, pvec). The feature vectors are
statically initialized, while the clusters (pvec) are initialized with a call to
initialize_prototype_vectors.

FIGURE 9.12: Representing an animal’s characteristics for the ART-1 algorithm.

Neural Networks II 317

Listing 9.15: Feature vector and cluster representation for ART-1.

/* Number of clusters */
#define MAX_CLUSTERS 5

/* Number of prototype feature vectors */
#define MAX_FEATURE_VECTORS 19

/* Size (width) of feature vector */
#define MAX_FEATURES 13

typedef struct {
 union {
 int class; /* For Feature Vectors */
 int count; /* For Clusters */
 } u;
 int features[MAX_FEATURES];
} vector_t;

/* Prototype Feature Vectors */
vector_t fvec[MAX_FEATURE_VECTORS]={

/* Robin */ { {-1}, { 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0 } },
/* Spider */ { {-1}, { 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0 } },
/* Cat */ { {-1}, { 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0 } },
/* Salmon */ { {-1}, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1 } },
/* Mouse */ { {-1}, { 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0 } },
/* Moose */ { {-1}, { 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0 } },
/* Bat */ { {-1}, { 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0 } },
/* Dog */ { {-1}, { 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0 } },
/* Snake */ { {-1}, { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1 } },
/* Lion */ { {-1}, { 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0 } },
/* Iguana */ { {-1}, { 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1 } },
/* Dolphin */ { {-1}, { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1 } },
/* Zebra */ { {-1}, { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 } },
/* Horse */ { {-1}, { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 } },
/* Ostrich */ { {-1}, { 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0 } },
/* Penguin */ { {-1}, { 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0 } },
/* Tiger */ { {-1}, { 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0 } },
/* Platypus */ { {-1}, { 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0 } },
/* Octopus */ { {-1}, { 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1 } }
};

318 Artificial Intelligence

/* Clusters */
vector_t pvec[MAX_CLUSTERS];

/* Algorithm constants */
#define BETA ((double)8.0)
#define VIGILANCE ((double)0.2)

Let’s now have a look at the support functions for ART-1, which include
creating a new cluster, adding a feature vector to a cluster, and recomputing
the vector for a cluster.

Creating a new cluster involves finding a cluster that’s empty, and then
adding the defined feature vector to it. The feature vector’s class is then
adjusted for the cluster and the cluster’s count set (see Listing 9.16). The
routine begins by searching for a cluster that has no members. If one is
not found, the feature vector remains unclustered (class set to -1) and the
function returns. Otherwise, the cluster vector is copied from the feature
vector, and the feature vector class and cluster count are initialized.

Listing 9.16: Creating a new cluster with create_new_cluster.

void create_new_cluster(int vector)
{
 int cluster, i;
 /* Find an empty cluster */
 for (cluster = 0 ; cluster < MAX_CLUSTERS ; cluster++) {
 if (pvec[cluster].u.count == 0) break;
 }
 /* No cluster available -- unclassified */
 if (cluster == MAX_CLUSTERS) {
 fvec[vector].u.class = -1;
 return;
 }
 /* Set the feature vector’s class to this new cluster */
 fvec[vector].u.class = cluster;
 /* Copy the feature vector to the cluster */
 for (i = 0 ; i < MAX_FEATURES ; i++) {
 pvec[cluster].features[i] = fvec[vector].features[i];
 }
 pvec[cluster].u.count = 1;
 return;
}

Neural Networks II 319

Adding a feature vector to an existing cluster (one with existing members)
is achieved with the function add_to_cluster. The first thing this function
must do is determine if the feature vector is being removed from another
cluster (if the class is not -1). If another cluster is losing this feature vector,
then we must reset the class for the feature vector and then make a call to
recompute_cluster to redefine the cluster’s vector. Then, we add the feature
vector to the intended cluster and recompute its vector (with another call
to recompute_cluster).

Listing 9.17: Adding a feature vector to a cluster with add_to_cluster.

void add_to_cluster(int cluster, int vector)
{
 int old_cluster;
 /* If feature vector had previously been clustered */
 if (fvec[vector].u.class != -1) {
 old_cluster = fvec[vector].u.class;
 fvec[vector].u.class = -1;
 pvec[old_cluster].u.count--;
 recompute_cluster(old_cluster);
 }
 /* Add the feature vector to the new cluster */
 fvec[vector].u.class = cluster;
 recompute_cluster(cluster);
 pvec[cluster].u.count++;
 return;
}

Now let’s bring it all together with the ART-1 main loop. This function,
art1, implements the fundamental ART-1 algorithm, using the previously
discussed vector support functions. We iterate through each of the feature
vectors, looking for the nearest cluster. This begins with the similarity test
(per Eq 9.5), which is followed by the vigilance test (Eq 9.6). If the feature
vector is near the cluster and passes the vigilance test, then the feature vector
is added to the cluster (through a call to add_to_cluster). If the feature vector
is not clustered after checking all of the available clusters, then a new cluster
is created for it using create_new_cluster. This process continues until no
changes to clusters are made.

320 Artificial Intelligence

Listing 9.18: The ART-1 main loop (art1).

void art1()
{
 int done = 0, cluster, i, clustered;
 vector_t result;
 double max, sim, res_magnitude, fvec_magnitude, pvec_magnitude;
 while (!done) {
 done = 1;
 /* Iterate through each of the prototype feature vectors */
 for (i = 0 ; i < MAX_FEATURE_VECTORS ; i++) {
 clustered = 0;
 /* Iterate through each of the active clusters */
 for (cluster = 0 ; cluster < MAX_CLUSTERS ; cluster++) {
 /* Skip empty clusters */
 if (pvec[cluster].u.count == 0) continue;
 /* Mask the feature vector with the cluster vector */
 vectorAnd(&result, &fvec[i], &pvec[cluster]);
 res_magnitude = (double)vectorMagnitude(&result);
 fvec_magnitude = (double)vectorMagnitude(&fvec[i]);
 pvec_magnitude = (double)vectorMagnitude(&pvec[cluster]);
 max = res_magnitude / (BETA + fvec_magnitude);
 sim = pvec_magnitude / (BETA + (double)MAX_FEATURE_VECTORS
);
 /* Test similarity of feature vector to cluster */
 /* Equation 9.5 */
 if (max > sim) {
 /* Feature vector is sufficiently similar to cluster. Next, test
 * for vigilance acceptability (Equation 9.6).
 */
 if ((res_magnitude / pvec_magnitude) >= VIGILANCE) {
 if (fvec[i].u.class != cluster) {
 add_to_cluster(cluster, i);
 done = 0;
 }
 clustered = 1;
 break;
 }
 }
 } /* clusters loop */

Neural Networks II 321

 if (!clustered) {
 /* Add to an empty cluster */
 create_new_cluster(i);
 done = 0;
 }
 } /* vectors loop */
 }
 return;
}

Let’s now have a look at ART-1 in action. Listing 9.19 shows the result
of clustering the animal feature vector data shown in Listing 9.15 (with
the feature columns shown in Figure 9.12). What’s shown is a reasonable
clustering of the data into five classes. Class 0 represents animals that fly
while Class 1 contains all animals that are carnivores. Class 2 includes all
four-legged animals and Class 3 has a single member (salmon), representing
fish. Finally, Class 4 represents non-flying birds, but have clustered based on
their having feathers and laying eggs.

Listing 9.19: Sample output of ART-1 clustering.

$./art1.exe
Class 0 contains:
 0 [1 1 0 0 0 0 1 0 0 1 1 0 0] Robin
 6 [0 1 1 0 0 0 1 0 0 1 0 1 0] Bat
Class 1 contains:
 1 [0 0 0 1 1 0 0 1 0 0 1 0 0] Spider
 8 [0 0 0 0 0 0 0 1 0 0 1 0 1] Snake
 9 [0 0 1 0 0 1 0 1 0 0 0 1 0] Lion
 11 [0 0 0 0 0 0 0 1 0 0 0 1 1] Dolphin
 16 [0 0 1 0 0 1 0 1 0 0 0 1 0] Tiger
 17 [0 0 1 0 0 1 0 1 0 0 1 0 0] Platypus
 18 [0 0 0 0 1 0 0 1 0 0 1 0 1] Octopus
Class 2 contains:
 2 [0 0 1 0 0 1 0 0 0 1 0 1 0] Cat
 4 [0 0 1 0 0 1 0 0 0 1 0 1 0] Mouse
 5 [0 0 0 1 0 1 0 0 1 0 0 1 0] Moose
 7 [0 0 1 0 0 1 0 0 0 1 0 1 0] Dog
 10 [0 0 0 0 0 1 0 0 0 1 1 0 1] Iguana
 12 [0 0 1 0 0 1 0 0 1 0 0 1 0] Zebra

322 Artificial Intelligence

 13 [0 0 1 0 0 1 0 0 1 0 0 1 0] Horse
Class 3 contains:
 3 [0 0 0 0 0 0 0 0 0 1 1 0 1] Salmon
Class 4 contains:
 14 [1 0 0 0 0 0 1 0 1 0 1 0 0] Ostrich
 15 [1 0 0 0 0 0 1 0 0 0 1 0 0] Penguin

Note that these clusters were based on a β of 8.0 and a ρ of 0.2. By
decreasing the vigilance parameter, we could classify the feature data into
fewer clusters.

The ART-1 algorithm is a useful clustering algorithm with the obvious
advantage over k-Means in that new clusters can be created if the feature
data requires it. ART-1 can also be tuned using the B (“tie-breaker”) and
p (vigilance) parameters. Regardless of these settings, ART-1 is stable in
that once the clusters have formed, performing additional iterations of the
algorithm on the same data will not change the clusters.

HOPFIELD AUTO-ASSOCIATIVE MODEL

As our final example of unsupervised learning, let’s explore the Hopfield
auto-associative model for pattern recall. Recall the discussion of a simple
auto-associator early in this chapter for Hebbian learning.

An auto-associative network has the ability to store the set of training
examples so that they can be recalled later. Additionally, if incomplete or
noisy input patters are provided, the auto-associative model can recall the
original pattern (or memory), making them operate as a Content-Addressable
Memory (or CAM).

FIGURE 9.13: The Hopfield auto-associative network uses a recurrent weight structure.

Neural Networks II 323

We’ll focus on the Hopfield model here, which is a recurrent neural
network with discrete inputs and activations (in the domain {-1, 1}). Every
input connects to every other input, but self-connections are not permitted.
Additionally, the inputs and outputs are the same cells (see Figure 9.13).

Early learning algorithms for auto-associators were commonly called
one-shot learning algorithms. Using this algorithm, the training examples are
used once to generate the weights for the network, rather than tuning the
weights by iterating through the examples multiple times. One-shot learning
is both simple, and also very fast.

Hopfield Auto-Associator Algorithm
Building a simple Hopfield auto-associator is quite simple, and the
algorithm is very straightforward. The first step is the creation of the
weights for the recurrent neural network. This is done by summing the
outer products of each training example that is to be “memorized” by the
network (see Eq 9.8).

 (Eq 9.8)

In our example implementation, we’ll use a one-dimensional vector
to represent the examples. The result will be a two-dimensional matrix of
weights (but the diagonal will be zero, as self-connections are not permitted).
The weight matrix is summed over the examples that are to be trained.

We now have a weight matrix that can be used for recall of training
examples. To validate the recall features of the weight matrix, we can apply
the weight matrix to the example vector to produce the activation. It’s
important to note that depending on the size of the vector, and number of
training examples, not all examples will be stored in their entirety. Therefore,
some examples may not be fully recalled. It is shown that for N cells in the
Hopfield network (for the discrete case), 0.15N training examples can be
memorized. [Gallant 1994]

NOTE When considering recall, there are two fundamental modes by which
this can operate. In the synchronous mode, all cells are updated at the
same time, and therefore, each cell is able to use its inputs statically (as
none of the other cells are changing while the cell is updated). In the
asynchronous mode, the cells of the network fire independently and
asynchronously of one another. This means that the recall is dependent on
the firing order, and therefore multiple cycles may be required in order
reach a state of equilibrium.

324 Artificial Intelligence

During recall, each cell of the recall vector is a sum of the products of the
current input and associated weights (see Eq 9.9). Further, the output is bound
to the discrete range of {-1, 1} using the sign function (1 if Si>=0, -1 if Si<0).

 (Eq 9.9)

The pattern recall Y can therefore be defined as a simple matrix product
of the test (example) vector E, and the weight matrix W (see Eq 9.10).

 (Eq 9.10)

Let’s now explore a sample implementation of the discrete Hopfield
algorithm that demonstrates pattern recall, even in the presence of noise.

Hopfield Implementation
Let’s begin with a discussion of the network representation and the essential
types that are used to implement the Hopfield algorithm (see Listing 9.20).
We’ll use a 9 by 9 matrix for patterns in the Hopfield implementation, but
represent them as a one-dimensional vector of size N. As we’re implementing
the discrete model of Hopfield, a two-dimensional int array is used to
represent the weights. The weights array can be viewed as the first dimension
representing the source vector index, and the second dimension representing
the weight index to the alternate cells.

The type example_t is used to represent the examples, inputs vector, and
outputs vector. Recall that we’re implementing symmetric updates, so we’ll
maintain separate input and output vectors. A single example is shown in
Listing 9.20, which demonstrates the representation of the training vector.

Listing 9.20: Fundamental types and symbolics for Hopfield implementation.

#define M 9
#define N (M*M)
#define MAX_EXAMPLES 4
typedef int example_t[N];
int weights[N][N];
example_t inputs;
example_t outputs;
#define SGN(x) ((x) >= 0 ? 1 : -1)
example_t examples[MAX_EXAMPLES]={
 /*Plus */ { 1, 1, 1, 1, -1, 1, 1, 1, 1,

Neural Networks II 325

 1, 1, 1, 1, -1, 1, 1, 1, 1,
 1, 1, 1, 1, -1, 1, 1, 1, 1,
 1, 1, 1, 1, -1, 1, 1, 1, 1,
 -1, -1, -1, -1, -1, -1, -1, -1, -1,
 1, 1, 1, 1, -1, 1, 1, 1, 1,
 1, 1, 1, 1, -1, 1, 1, 1, 1,
 1, 1, 1, 1, -1, 1, 1, 1, 1,
 1, 1, 1, 1, -1, 1, 1, 1, 1},
 ...
};

The first step in the Hopfield algorithm is the training of the weights
using the example training data (Listing 9.21). We iterate through each of the
training examples, summing their outer products to produce a new matrix of
connection weights. Note that self connections are not permitted, so a zero
diagonal will be present in the weight matrix.

Listing 9.21: Generating the weights array using the example vectors.

void generate_weights_from_examples(void)
{
 int e, r, c;
 /* First, clear the weights */
 for (r = 0 ; r < N ; r++) {
 for (c = 0 ; c < N ; c++) {
 weights[r][c] = 0;
 }
 }
 /* Equation 9.8 */
 for (e = 0 ; e < MAX_EXAMPLES ; e++) {
 for (r = 0 ; r < N ; r++) {
 for (c = 0 ; c < N ; c++) {
 /* Don’t permit self-connections */
 if (r == c) continue;
 weights[r][c] += examples[e][r] * examples[e][c];
 }
 }
 }
 return;
}

326 Artificial Intelligence

Listing 9.22 shows the function for computing the network activations.
This very simply is a matrix multiplication of the input matrix (1 by 81) by
the connection weight matrix (81 by 81) resulting in the output matrix (81
by 1). We then scale the activations (output matrix) using the SGN function
to bound it to the discrete output values (-1 and 1).

Listing 9.22 Computing the output activations for a given input vector.

void compute_activations(void)
{
 int r,c;
 int temp[N][N];
 bzero((void *)temp, sizeof(temp));
 for (r = 0 ; r < N ; r++) {
 for (c = 0 ; c < N ; c++) {
 if (r == c) continue;
 temp[r][c] += inputs[r] * weights[r][c];
 }
 }
 for (c = 0 ; c < N ; c++) {
 outputs[c] = 0;
 for (r = 0 ; r < N ; r++) {
 outputs[c] += temp[r][c];
 }
 outputs[c] = SGN(outputs[c]);
 }
 return;
}

Using the Hopfield network model for training and recall (using the
functions discussed here) is then a simple linear process (see Listing 9.23).
It begins with the generation of the connection weight matrix (generate_
weights_from_examples). Next, we take a training example and copy it to
the inputs matrix, with some amount of noise (using set_inputs_to_example).
Finally, we compute the output activations using compute_activations and
then emit the resulting output matrix with emit_result.

Listing 9.23 Using the Hopfield network model.

generate_weights_from_examples();
set_inputs_to_example(e, noise);

Neural Networks II 327

compute_activations();
emit_result(outputs);

Let’s now look at the Hopfield network model in action. We’ll use a 9x9
matrix to represent the input and output matrices. The implementation
supports four different input patterns with increasing amounts of noise to
test the recall capabilities of the network. Figure 9.14 demonstrates one
instance of pattern recall for each of the four patterns. On the left side are
the inputs patterns (sample pattern with up to 20% noise) and on the right
is the activation of the Hopfield network (the original input pattern).

Note the similarities between Hopfield’s model and the Hebbian learning
model. Weight connections are strengthened when the example cells are
similar in sign, and are weakened when the signs of the cells are different.

CHAPTER SUMMARY
This chapter explored a variety of unsupervised neural network architectures
and learning algorithms. Unsupervised learning algorithms are useful to discover
the underlying structure of a data set. We began with a biologically plausible
learning method for patterns called Hebbian Learning and demonstrated its
pattern storage and recall capabilities. Next, we explored a number of clustering
algorithms that were capable of segregating data based on their similarities
and differences. Algorithms explored included vector quantization, k-Means
clustering, and Adaptive Resonance Theory (ART-1). Finally, we ended the

FIGURE 9.14: Sample activations for the Hopfield model implementation.

328 Artificial Intelligence

chapter with a return to pattern storage and recall with a discussion of the
Hopfield auto-associator (another biologically plausible model).

REFERENCES
[Gallant 1994] Gallant, Stephen I. Neural Network Learning and Expert

Systems. The MIT Press, Cambridge, Massachusetts, 1994.
[Hebb 1949] Hebb, D.O., The Organization of Behavior: A Neuropsychological

Theory. Wiley, New York, 1949.

EXERCISES
1. Explain some of the uses of unsupervised learning algorithms.
2. Define the fundamental idea behind Hebbian learning.
3. Using the Hebb rule implementation on the CD-ROM, experiment with

two different datasets. In the first, use patterns that are similar, and in
the second use patterns that are very different. How does recall differ
in the presence of noise or incomplete input patterns?

4. In a typical winner-takes-all network, the largest activation is used as
the proper classification. What is the relevance of using the smallest
activation in vector quantization?

5. Define the type of neural network used for vector quantization, and
explain the learning algorithm.

6. What is a primary disadvantage of vector quantization?
7. Describe the fundamental ideas behind k-Means clustering and the use

of centroids for cluster representation.
8. Define the primary advantage and disadvantage of the k-Means clustering

algorithm.
9. What are the issues for k-Means cluster initialization, and in what ways

could it be improved?
10. What is meant by the terms plastic and stable for a clustering

algorithm?
11. Describe the basic process of the ART-1 algorithm.
12. What is the purpose of the vigilance test in the ART-1 algorithm?
13. Describe the purpose of the Beta and Rho parameters for ART-1.
14. The Hopfield auto-associative model is useful for biologically plausible memory

storage and recall. Describe its architecture and learning algorithm.
15. What is one-shot learning and what are its advantages?
16. Both Hebbian learning and Hopfield can be used for pattern storage

and recall. Describe the fundamental differences between these two
approaches.

C h a p t e r

From the early days of AI, robots have existed as the physical
embodiment of AI algorithms and methods. Outside of the
realm of simulations, robots allowed AI algorithms to interact

and explore the real world. Robotics also fit the mold of early Strong
AI, where the desire was to create an intelligent machine (ideally in our
image). In this chapter, we’ll explore the fundamentals of robotics and
its application of AI.

INTRODUCTION TO ROBOTICS

While AI and robotics can be considered two independent disciplines,
they are inexorably tied given the benefits they provide one another. AI
provides the means to embed intelligence into a physical robot, where a
robot provides the means to visualize the behavior that is provided by an AI
algorithm. Therefore, the two disciplines complement one another.

This chapter will begin with an introduction to robotics, its history,
and then a short discussion of a taxonomy of robotics. The chapter will
then explore robotics in greater detail, reviewing the various interfaces and
architectures.

10 ROBOTICS AND AI

330 Artificial Intelligence

What is a Robot?
ISO (International Standard) 8373 defines a robot this way:

An automatically controlled, reprogrammable, multipurpose, manipulator
programmable in three or more axes, which may be either fixed in place or
mobile for use in industrial automation applications.

But this older definition can unfairly constrain the definition of a robot.
Josepth Engelberger, a pioneer in early industrial robotics, defines a robot
as follows:

I can’t define a robot, but I know one when I see one.
Like art, this definition fits robotics the best as modern-day robots exist

as a wide spectrum of designs to fit a given need. Early robots were viewed
as fantastical entities, built of tin and represented by evil intentions. The
realistic view is less hysterical. The first robot was a tele-operated boat that
was demonstrated at an 1898 exhibition by Nikola Tesla (with the end goal
being a wireless torpedo). [WikiRobot] The term Robot would not be coined
for another 20 years, when it was used in Karel Capek’s science fiction play,
“Rossum’s Universal Robots.”

Another way to define a robot is through its decomposition. A robot is
an entity that satisfies some goal and is made up of a platform (consisting of
some form of mechanicals), a source of power (stored, or gathered in real-
time), a set of sensors to perceive the environment, a set of actuators to move
and/or manipulate the environment, and finally, a source of intelligence for
rational decision making (see Figure 10.1).

Using a model of decomposition to define a robot permits the breakdown
of the components to identify how and where they are applied. As we’ll see,
every robot is different based on its application. The mechanicals, sensors,
and actuators can be very different from a satellite (a form of an autonomous
robot) when compared to an autonomous underwater robot. What can be
very similar is the AI algorithms applied to the problem.

In the following sections, we’ll explore these components in greater
detail to understand how the intelligence block interacts with the various
other components.

FIGURE 10.1: A robot from the perspective of decomposition.

Robotics and AI 331

A Sampling from the Spectrum of Robotics
A concise history of robotics is beyond the scope of this book, but a summary
of some of the more important epochs in robotic history will be presented.

The first mobile robot that incorporated artificial intelligence algorithms
was called Shakey and was built from 1966 through 1972 at SRI (the Stanford
Research Institute). Shakey was a mobile robot that included a TV camera,
range finder, and bump sensors to sense its environment. The Shakey
platform was connected to a PDP-10 and PDP-15 computer via a radio
link. Shakey’s AI was built on three levels of action. At the bottom were the
basic action routines (for moving, turning, and basic route planning). At the
intermediate layer was control that linked lower-level activities together to
create more complex tasks. At the highest level was the planner that could
execute plans to achieve goals. Later, in the 1970s at Stanford, Hans Moravec
built a mobile robot cart that included a very robust vision system. This
provided the robot with greater autonomy and resulted in some of the first
3D environment mapping experiments.

Robots in the early days weren’t restricted to the ground. Some objects
representing robots took flight to the Moon, Venus, Mars, and beyond. While
Sputnik was the first artificial Earth satellite, it had a couple of sensors but no
actuators (except for a transmitter that generated “beeps” for those listening
via radio on the ground). Using our model shown in Figure 10.1, Sputnik
lacked only in intelligence.

Other important robotic spacecraft included Luna 2, a Soviet Lunar
impacter (1959), and Venera 7. Venera 7 was a Soviet spacecraft that
succeeded in the first soft landing on another planet (Venus) in 1970. The
U.S. followed six years later with the Viking-1 Mars lander (and while not
mobile, it did include a robotic arm for soil sampling).

NOTE Some examples of robots that are operated remotely are called tele-robots.
These types of robots are useful where the robot can survive (at least for
a time) where a human would not. A prime example is on the surface of
Mars, such as Viking 1.

Another type of robot constructed at MIT was called Kismet (developed
by Cynthia Breazeal). Kismet is another non-traditional robot in that it’s
simply a head, but includes a variety of input devices (audio, video and
proprioception) as well as effectors to enable facial expressions (such as
moving its ears, eyebrows, eyelids, lips, and head). The goal of Kismet was
to study human social interaction. Kismet could simulate human behaviors,
demonstrating (simulated) human emotion and appearance through facial

332 Artificial Intelligence

expressions and vocalizations. An interesting side effect of this research was
that these characteristics gave the robot a personality.

NOTE New research focuses on emotions and their influence over intelligence
and learning. It’s understandable that emotions would be helpful
in building machines that can more easily interact with humans.
Emotions can be problematic (imagine a paranoid AI auto-pilot),
but not all emotions are irrational and emotions can result in a more
rational robot.

In more recent history, Honda demonstrated a very advanced humanoid
robot in Yokohama, Japan called Asimo. Asimo is a humanoid robot, meaning
that it resembles a human with legs and arms. Asimo was designed for real-
life environments, and can grasp objects and walk around an environment
(including the use of stairs). This robot incorporates a variety of human-
like sensors including vision and hearing, and is able to recognize objects,
gestures from humans, and even recognize faces and sounds. For example,
Asimo can understand pointing gestures for attention or movement.

Finally, the DARPA grand challenge, a competition to build autonomous
ground vehicles that race between two locations in difficult terrain, continues
to push the envelope for autonomous robotics. The first challenge, in 2004,
saw many organized teams, but not a single robot finished the course. By
2005, five vehicles had completed the difficult course (led by Stanford and
Carnegie Mellon).

NOTE Combining AI and vehicles is not new; in fact, Carnegie Mellon
introduced ALVINN (or Autonomous Land Vehicle In a Neural Network)
in the 1990s. A 30 by 32 two-dimensional retina (using input from a video
camera) fed a five-layer neural network (trained via backpropagation).
The output of the neural network determined the direction that the
vehicle should travel. Using this method, the vehicle controlled by
ALVINN could autonomously drive and stay on a road.

Taxonomy of Robotics
While modern robotics still fails to live up to the expectations set by
science fiction, robotics has grown from the early mobile carts and robotic
appendages. Today, robots not only navigate on land, but also in the air and
in the water. In this section, a short taxonomy of robotics will be presented,
listing some of the various types of robots that have been developed or are
under active research.

Robotics and AI 333

Fixed
Many of the industrial robots in use today are of the fixed variety. Robotic
arms perform assembly and welding to very precise specifications, repeatedly
without mistakes. These robotic arms include a manipulator or tool at their
extremity and one or more joints to give the arm the ability to move around
in its space.

Legged
The legged variety of robot can also be called the walking or hopping style
of robot. Robots with one leg (called monopods, such as the one built at the
MIT Leg Laboratory) hop in a style similar to a pogo stick. Bipedal robots
(those with two legs) mimic human locomotion (such as Asimo). But more
legs are also interesting, such as quadrupeds (four legs), hexapods (six legs),
and octapods (eight legs).

Wheeled
A popular variety of robot given its simplicity is the mobile, or wheeled
robot. Hobbyist robotic platforms are commonly of this design due not just
to its simplicity, but the minimal cost. The control of the mobile platform is
relatively simple when compared to a legged variety of robot. For example, a
mobile robot is stable without control, where a legged robot must dynamically
balance to be stable.

Underwater
Underwater robots are very useful, but require different forms of locomotion.
Many tele-robots of this variety are called ROVs, or Remotely Operated
Vehicles. These can take a number of forms, mimicking what nature has
taught us about navigating in water. Not only have underwater robots been
demonstrated that mimic fish, but also crab and lobster structures. Robotic
worms have also been used to provide locomotion.

Aerial
Robots of the aerial variety, like underwater robots, have a number of
different mechanisms for movement. For example, traditional aerial
robots can use common aircraft models (such as a plane or heliocopter).
Even a passenger airliner can be considered a flying robot, as humans
typically attend to the operation of the plane but the auto-pilot (a form
of AI). [WikiRobot] Satellites are another example of an aerial robot,
though they have an entirely different set of sensors and actuators (sun
sensors, gyroscopes for sensing, momentum wheels, and thrusters for
effectors).

334 Artificial Intelligence

Other Types of Robots
Finally, there are a number of other types of robots which don’t fit cleanly
within the previously defined categories. This is because they could apply
equally to the other robot types.

Polymorphic, or shape-changing, robots have the ability to self-
reconfigure based on the particular task at hand. These robots are multi-
functional and can tackle a variety of tasks by reconfiguring themselves. The
robot’s design indicates how polymorphic it is. The SuperBot, designed at
the USC Polymorphic Robotics Lab, is an early example of a reconfigurable
robot. This robot can reconfigure itself to walk, crawl, roll, or climb.

Distributed robots, or robot swarms, are another interesting aspect of
robotics. In this model, multiple robots swarm together to perform a task.
This can be viewed serially (such as ants cooperating to move food from a
location back to the nest) or at the same time (such as working together to
move an object that an individual robot could not move). Robot swarms
are an interesting area of research today, including topics such as task
distribution and communication. How do individual robots communicate
with one another, and how are assignments made in the absence of a
centralized planner?

Hard vs Soft Robotics
While most robots are hard in nature (made physically in the real world),
there is another category of robots that don’t exist physically. These are
called soft robots and exist within the confines of computer systems. But
instead of robot simulations, these soft robots include a soft set of sensors
and effectors that allow them to interact and navigate their environments.
For example, a soft robot (called a web spider) can navigate the Internet
using the HTTP protocol to communicate with services on a given machine.
Using advanced mobility protocols, agents can move around a network,
transporting themselves from one machine to another bringing their state
with them. An example of this is the Aglets framework from IBM that
provides a Java framework for agent mobility using the Agent Transport
Protocol (or ATP).

BRAITENBURG VEHICLES
A discussion of robotics would not be complete without at least mentioning
what are now known as Braitenberg vehicles. Valentino Braitenberg was
a cybernetician, someone who studied the processes of biological and

Robotics and AI 335

mechanical (and electronic) systems, particularly in the context of comparing
them to natural or biological systems. Braitenberg’s book “Vehicles” remains
a worthwhile read.

Braitenberg vehicles can be thought of as a set of thought experiments
for robotic systems with simple but effective control systems. As an example,
take the simple robot shown in Figure 10.2. This two-wheeled robotic
platform (with a front castor wheel) includes two light sensors (the left
sensor and right sensor) at the front that directly attach to the motors on
the wheels (the left motor and right motor). When light shines in a sensor, it
proportionally drives the motor to which it attaches. When the light shines
in the left sensor, it drives the right motor moving it toward the light sensor.
If the light shines to the right sensor, the left motor is driven, causing the
left motor to turn (thus causing the robot to travel right toward the light).
This simple control system demonstrates an attractive behavior (the robot
is attracted toward the light).

An alternative robotic architecture is shown in Figure 10.3. In this
example the sensors attach to the same side wheel motors. This has the
opposite effect, in that light shining in (for example) the left sensor drives the
left motor causing the robot to turn away from the light source. This similar
behavior occurs for the right sensors and right motor. This is an example of
repulsive behavior, the robot moves away from the light source.

Light shining in both motors has a proportional effect, but still leaning
toward a strong effect to the sensor to which a stronger light signal is
received. From these simple examples, you can see how a very simple
architecture can yield very interesting behaviors.

FIGURE 10.2: A simple Braitenberg vehicle
demonstrating attractive behavior.

FIGURE 10.3: A simple Braitenberg vehicle
demonstrating repulsive behavior.

336 Artificial Intelligence

NATURAL SENSING AND CONTROL

Before we talk about the various robotic sensors, actuators, and control
systems, it’s important to explore the senses, effectors, and control
mechanisms that we as humans use.

From the human perspective, there are five classical senses (see Table
10.1). These are the sense of sight (vision), hearing (audition), taste (gustation),
smell (olfaction), and touch (tactition). These basic senses give us the ability
to perceive the world around us. There are also other senses at work. For
example, humans have the ability of proprioception, or kinethetic sense.

This sense allows us to be aware of ourselves and our bodies. Humans
also have the ability of balance, or equilibrioception, and the ability to sense
heat or cold through thermoception.

Table 10.1: Five classical human senses.
Sense Sensor Description
Vision Eyes The Sense of Sight (Electromagnetic Waves)
Auditon Ears The Sense of Hearing (Pressure Waves)
Gustation Tounge The Sense of Taste (Chemicals)
Olfaction Nose The Sense of Smell (Chemicals)
Tactition Skin The Sense of Touch (Pressure)

But there are also senses that are not available to humans, but exist in
other organisms (see Table 10.2). For example, some animals have the ability
to sense infrared light. Bats, for example, use echolocation to determine
the position of objects. The detection of electric fields (electroception) and
fluctuations in magnetic fields (magnetoception) is also available to certain
animals (such as fish, bees, and birds).

Table 10.2: Examples of non-human senses.
Sense Description
Echolocation Detection of Objects through echo
Electroception Detection of Electric Fields
Magnetoception Detection of Fluctuation of Magnetic Fields

While many robots include senses modeled after humans, it’s not
necessarily advantageous. The complexity of some human senses (such as
vision) can be supported by other simpler mechanisms such as touch sensors
and ultrasonic detectors (for object location).

Robotics and AI 337

Humans also include a variety of effectors that are used to manipulate the
environment. In addition to the obvious mechanisms such as our arms and
hands to manipulate objects, or legs which provide us with mobility, humans
have the ability to speak to communicate with others in our environments.
There are also effectors which are hidden, such those embodied in non-
verbal communication. These mechanisms permit communication which is
indirect (and many times, unintentional).

PERCEPTION WITH SENSORS

The sensors available to robotic systems are open to the imagination and the
needs of the robotic application. Artificial sensors can mimic those of human
sensors, but extend them in ways that are useful. For example, robotic eyes
can see outside of the human visual range and see heat. Robotic ears can
amplify or hear beyond the human frequency range. See Table 10.3 for a list
of sensors and their human counterparts.

Table 10.3: Roboitic sensors and the human counterparts.
Human Sense Robotic Sensors
Vision Camera, Infrared Camera, Radiation Sensors, Ranging

Sensors
Audition Microphone
Gustation Chemical Sensors
Olfaction Chemical Sensors
Tactition Contact (bump) Sensors, Force Sensors
Proprioception Wheel Encoders
Equilibrioception Tilt Sensor, Accelerometer, Gyroscope
Thermoception Thermocouple

Robots can include vision capabilities using simple CCD (Charge-
Couple-Device) cameras, or video cameras. Sonar is also possible,
which provides a lesser form of vision (identifying when objects are
near). Cameras can also include infrared for heat detection, or sensors
that detect radiation (“seeing” in other spectrum). A metal detector can
also be viewed as a form of vision (though obviously different than our
own). Audition can be performed using microphones, but not only in
the human audible spectrum. Higher or lower frequencies can also be
measured.

338 Artificial Intelligence

The sense of gustation and olfaction can be provided through an array of
chemical sensors. These sensors can be used to detect biological, chemicals
or radiation. Tactition is one of the more common sensors available on robots,
such as contact sensors.

Other robotic sensors can be used for the other senses, such as
wheel encoders (to measure the rate at which the wheels are turning) for
proprioception. The sense of equilibrioception can be provided by tilt-
sensors, acceleratometers, or a gyroscope. Finally, a thermocouple can be
used to detect heat to provide thermoception.

ACTUATION WITH EFFECTORS
The effectors (or actuators) available to a robot are varied, and depend on
the goal of the robot itself. Some of the more common include motors that
can be used to drive wheels or end-effectors, which consist of a device at
the end of a robotic arm (such as a gripper, a paint sprayer, or other tool).
Like sensors, actuators are driven based on the task at hand and are open
to the imagination.

ROBOTIC CONTROL SYSTEMS
As defined earlier in this chapter, a robot is made up of a number of things,
but three key elements are the sensors, effectors, and the control system.
The sensors allow the robot to perceive its environment, the effectors the
ability to manipulate its environment, and the control system provides a
way to map sensors (the perception of the environment) to the effectors (to
rationally interact with the environment). This is shown in Figure 10.4, and
is an important aspect of robotic control systems.

FIGURE 10.4: The essence of a robotic
system.

FIGURE 10.5: Closing the loop with
feedback for effective control.

Robotics and AI 339

Another way to think about this is shown in Figure 10.5. The loop
aspect is important because the act of control should be viewed as a cycle,
starting with perception, leading to decision-making, and ending in control.
This implies feedback, which is the basis for control. If the robot were to
try to control the environment with sensors, this would be called an open
loop (as there’s no feedback, there’s no way to guarantee proper action). By
closing the loop (sense-control-act) feedback is incorporated, resulting in an
effective control system.

A common feedback mechanism in robotics is the shaft encoder. A shaft
encoder measures the rotation rate of a shaft. This is commonly done with
a photoreflector which reflects light back to a phototransistor (the sensor).
The transitions between reflective spots and non-relective surfaces result in
a pulse train that can be counted (see Figure 10.6). The counter coupled
with a real-time clock can then be used to determine the rate at which the
shaft (and wheel) is turning.

Using the shaft encoder, the speed of the wheel (and corresponding
object propelled by the wheel) can be measured. This allows the robot to
roughly determine its relative position. By enabling the motor, the control
system could count off eight pulse transitions to measure a complete turn
of the wheel. While fundamental, this shaft encoder example illustrates the
concept of feedback in a control system. Without a shaft encoder, there
could be no practical way to understand how far the robot traveled. This is
an example of an open-loop system (no feedback).

SIMPLE CONTROL ARCHITECTURES

Robotic platforms can use a large number of control architectures to achieve
their desired goals. In the following sections, a few of the more popular
architectures are explored. While these architectures are useful, they’re also
conceptually simple and easy to implement.

FIGURE 10.6: Using a shaft encoder to determine wheel speed.

340 Artificial Intelligence

The key to control architectures is that no single architecture is best.
Each are applicable to different scenarios, and the architecture should match
the problem at hand.

Reactive Control
The reactive control architecture is one where there’s no real intelligence.
Instead, the control system reacts to its sensors and drives its actuators
(simple stimulus-response). This architecture is shown in Figure 10.7. Note
here that the sensors map to the effectors in a direct mapping.

In this architecture, the sensors are read and directly mapped to
the effectors. This differs from a deliberative architecture where some
consideration is made about the sensors and internal state. The deliberative
architecture is the more classical intelligent approach, as consideration is
made about the state of the environment (sensors) and the state of the robot
(internal state).

An advantage to this architecture is that it’s very simple and very fast.
Since no deliberation is made about which action should be performed based
on sensors inputs, the direct mapping provides for a fast response time. This
architecture is also very useful in dynamic environments. Since the robot
simply responds to the immediate environment, it can react equally well to
static or dynamic environments. The disadvantage to this architecture is that
it’s fundamentally unintelligent and has no capacity to learn.

Subsumption
Rodney Brook’s subsumption architecture grew from the belief that human-
level intelligence could not be built from the ground up, but instead must

FIGURE 10.7: The reactive control system architecture.

Robotics and AI 341

be built from simple behaviors that collectively could exhibit emergent
higher-level behavior.

Building a robot that used simple behaviors was not new, but the problem
that existed was how to coordinate those simple behaviors such that the right
behavior could be in control at the right time. Using insects as a model,
Brooks moved forward with an architecture that had no real central control
mechanism, but instead a shared control architecture where behaviors were
active in parallel, but only one in control at a time.

The subsumption architecture exhibits a number of properties that model
aspects of insects very well. There exist prewired behaviors (as explored in
the reactive architecture), but layers of behaviors with the ability to subsume
control of lower behaviors when appropriate.

Conside the control system shown in Figure 10.8. The sensors are
provided to the behaviors, and the effectors are driven by the behaviors.
Note the parallel nature of this processing. Each behavior module has
access to the sensor inputs and effector outputs. But only one behavior is
permitted control at a time (by inhibiting execution of other behaviors). For
example, if no objects are in the area of movement, then the upper-level
module may subsume control. In this case, the explore behavior will have
control. But if the robot is low on power, then the seek power behavior can
subsume the explore behavior. While the robot is seeking power, the object
avoidance behavior can take control if needed (if an object is in the area of
movement).

The subsumption architecture is advantageous over the reactive
architecture because it can incorporate more complex goal-oriented
behaviors. Each level in the subsumption architecture can be thought of as

FIGURE 10.8: The subsumption control system architecture.

342 Artificial Intelligence

a level of competence. From low-level reactive behaviors, to higher-level
deliberative behaviors, each are competent but in different ways. But the
subsumption architecture is not without its problems. The development
of real robots using subsumption found that a large number of behaviors
resulted in highly complex systems that were difficult to debug. Even with
these complexities, subsumption remains a useful architecture.

Other Control Systems
Throughout this book, there are a number of algorithms and methods that
would apply as a control architecture for a robot. These include neural
networks, classical search algorithms, or evolutionary algorithms.

MOVEMENT PLANNING

Planning is an integral part of intelligent robot behavior. Planning is one of
the key differentiators between intelligent human behavior, and seemingly
random insect behavior. In this section, two interesting approaches to
movement planning will be explored.

Complexities of Motion Planning
One of the major complexities of motion planning is in environments that
are dynamic. Consider movement planning in an environment that does
not change. Then consider how planning differs in an environment that is
constantly changing. Dynamic environments offer considerable challenges
to motion planning.

FIGURE 10.9: Applying other AI algorithms to robot control systems.

Robotics and AI 343

One approach to planning in dynamic environments is what is called
anytime planning. Traditional planning algorithms will create a complete
plan from start to finish. The problem that this creates is that the plan
becomes brittle if the underlying assumptions change (such as in dynamic
environments). Anytime planning is an algorithm that can be interrupted
during the planning process, but still result in a workable plan. The more
time that is given to the planning algorithm, the better the resulting plan.
This is useful in dynamic environments because a plan can be created, and
while that plan is executed (and the environment changes), the planner can
continue to refine the plan dynamically given new information.

Cell Decomposition
Planning a robot’s movement through an environment can be accomplished
through a number of methods, and a conceptually simply method is called
Cell Decomposition. The idea behind cell decomposition is to decompose
the free space of the robot’s environment into smaller regions called cells.
Once the cells are defined, a graph can be created using the adjacency
information from the cells. With the graph, a traditional search algorithm
can be used to determine a path from the start cell to the end cell.

An example of cell decomposition begins with Figure 10.10. In this
figure, a sample environment is shown with free space (clear) and obstacles

FIGURE 10.10: Sample robot environment with free space and obstacles.

FIGURE 10.11: Environment decomposed into cells.

344 Artificial Intelligence

(shown in gray). At the upper left-hand corner is the start position, and at
the bottom right is the end goal.

Next, the free space in the environment is decomposed into cells. This
is done in this example by drawing parallel line segments at the boundary of
each obstacle. The bounded free space is then labeled to uniquely identify
it (see Figure 10.11).

Then, using the adjacency information from the cell decomposition, a
graph is constructed (see Figure 10.12). From this representation, simple
graph algorithms can be used to plan a path from the start position (in cell
A) to the goal position (in cell L).

Potential Fields
Potential fields is a very efficient method to provide robot movement in both
static and dynamic environments. With the potential field method, the robot
is considered a particle moving through a field containing a set of influences.
The influences are potential fields that define how the particle should behave
when in proximity to them.

Consider the potential fields shown in Figure 10.13. The goal has a
potential field that attracts the robot, while the obstacle has a repulsive field
that opposes the robot.

A robot then navigating an enviroment with other objects appears as
shown in Figure 10.14. In this diagram, the robot avoids the obstacle (as it
is repulsed by it) but then migrates toward the goal (as it is attracted to it).

FIGURE 10.12: A graph represenation of Figure 10.11.

FIGURE 10.13: Potential field example of a goal and obstacle.

Robotics and AI 345

What makes potential fields so efficient is that at any instance in the
environment, the motion of the robot is determined by the potential field at
the robot’s current location. If a new obstacle is added to the environment,
the potential field is adjusted given the new influence (additive), so the
approach can also work in dynamic environments.

An issue with potential fields is the possibility of local minimums,
which can result in the robot being stuck in a position. This problem can
be overcome by including mechanisms to escape the local minimum when
it is detected.

TIP Many other techniques exist for navigating environments. Landmark-
based navigation uses easily recognizable landmarks to determine
position. This technique has been applied to spacecraft using star fields as
the recognizable landmarks. Using four well-known stars (based on their
brightness), a spacecraft can determine its orientation. Other methods
such as visibility graphs and Voronoi diagrams are also useful.

GROUP OR DISTRIBUTED ROBOTICS

Group or distributed robotics is an interesting area of research today. In
this area, a group of robots accomplish a task that alone they could not
accomplish. Swarms of identical robots can also be used to complete tasks
much faster than a single robot acting on its own. Applications include
agriculture and construction.

An important element in group robotics is their ability to communicate
with one another to relay information about the task at hand. Examples
from nature include stigmergy, in which insects communicate through their
environment. Ants, for example, communicate with one another through
pheromone trails that are deposited in the environment. Similar behaviors
are seen in termites who also use pheromones, but in their case they are
used to construct nests.

FIGURE 10.14: Potential field example with an obstacle and goal.

346 Artificial Intelligence

ROBOT PROGRAMMING LANGUAGES
To simplify the task of programming robot systems, and also for educational
purposes, a number of robot programming languages have been developed.
Examples include LAMA from MIT and the RAPT language from the
University of Edinburgh.

From an educational perspective, a useful language developed by
Richard Pattis of Stanford University is Karel (named after the Czech writer
who coined the term robot). Karel is a language with a simple syntax that is
also reminiscent of LOGO (another educational programming language).
Karel has been updated to include object-oriented semantics, which goes
by the name Karel++.

ROBOT SIMULATORS
Robot simulations offer another way to test and validate robotic algorithms
without physical development. These algorithms also provide a way to verify
algorithms prior to embedding them into physical embodiments.

Some of the more interesting include the Open Dynamics Engine, which
is a physics library for simulating rigid body dynamics. Simbad is a 3D robot
simulator that allows immediate visualization of programmed behaviors.
Finally, TeamBots is a portable multi-agent robotic simulator that includes
visualization for teams of soccer-playing robots.

CHAPTER SUMMARY
The field of robotics and AI are inexorably tied because robotics permit the
visualization of AI algorithms in the physical world. Robotics exhibit the true
systems level of AI, as there are distinct inputs (sensors), outputs (effectors),
and the AI algorithms that provide rational decision-making. Robotics is
an interesting area of study because they encompass many elements of AI.
The algorithms demonstrated throughout this book are applicable to AI
systems, from search for use in planning, to neural networks and evolutionary
systems for learning. Robotics are the extension of AI algorithms into the
real world.

REFERENCES

[WikiRobot] “Robot,” Wikipedia free encyclopedia. Available online at:
http://en.wikipedia.org/wiki/Robot

Robotics and AI 347

RESOURCES

[Braitenberg] Braitenberg, Valentine Vehicles, Experiments in Synthetic
Psychology. MIT Press, 1986.

[Shakey] “Shakey the Robot,” SRI International. Available online at:
Available online at http://www.sri.com/about/timeline/shakey.html
Breazeal, Cynthia “Sociable Machines: Expressive Social Exchange Between

Humans and Robots.” Sc.D. dissertation, Department of Electrical
Engineering and Computer Science, MIT, 2000.

Hawes, Nick “Anytime Planning for Agent Behavior,” School of Computer
Science, The University of Birmingham, 1997.

Jones, M. Tim, “Open Source Robotics Toolkits,” IBM Developerworks,
2006.

Available online at: http://www-128.ibm.com/developerworks/linux/library/l-
robotools/

Krough, B. H. “A Generalized Potential Field Approach to Obstacle
Avoidance Control,” Proc. of International Robotics Research
Conference, Bethlehem, Pennsylvania, August, 1984.

MIT Leg Laboratory. Available online at: http://www.ai.mit.edu/projects/
leglab

Pattis, Richard E. Karel The Robot: A Gentle Introduction to the Art of
Programming. John Wiley & Sons, 1981.

Whal, F. M., Thomas, U. “Robot Programming - From Simple Moves to
Complex Robot Tasks,” Institute for Robotics and Process Control,
Technical University of Braunschweig, 2002.

EXERCISES

1. What are the major elements of a robot from the perspective of
decomposition?

2. Compare the early development of robotics to those being developed
today. How have advancements in the field of electronics affected
robotics research today?

3. What was one of the earliest implementations of a self-driving vehicle,
and which AI method was used?

4. What applications can you envision for shape-changing robots in the
future?

5. What advantages exist for robotic simulations over the development of
real physical robot embodiments? What issues to simulations present?

348 Artificial Intelligence

6. Using the example Braitenberg vehicles shown in this chapter, what
other Braitenberg-like architectures can you see? How do alternate
connections between sensors and motors (such as inhibition) affect the
robot’s behavior?

7. What is meant by open and closed loops in control systems?
8. Compare the two motion planning methods discussed in this chapter

(cell decomposition and potential fields). What are the advantages and
disadvantages of each?

9. Distributed robotics pertains to the distribution of a problem to a group
of robots. What problems exist in this domain and what advantages?

C h a p t e r

In this chapter, we’ll explore the topic of Intelligent Agents. The
definition of an intelligent agent can be difficult to succinctly provide,
as the term has been used in a variety of settings. A common definition

of an intelligent agent from the perspective of artificial intelligence is an
autonomous entity that exists in an environment and acts in a rational way.
What is rational is dependent on the environment. For example, is the
agent attempting to solve a problem, or protect itself against other entities?
In this chapter, we’ll discuss the various types of agents, their applications,
architectures, and languages.

11 INTELLIGENT
AGENTS

FIGURE 11.1: The fundamental anatomy of an agent.

350 Artificial Intelligence

ANATOMY OF AN AGENT

An agent is commonly made up of a number of elements. These include
one or more sensors that are used to perceive the environment, one or more
effectors that manipulate the environment, and a control system. The control
system provides a mapping from sensors to effectors, and provides intelligent
(or rational) behavior (see Figure 11.1).

This anatomy can be applied to humans, as a first example. The human
body has a rich set of sensors that cover a wide variety of domains. This
includes vision (eyes), smell (nose), hearing (ears), taste (tongue), touch
(various including skin), balance (vestibular sense), nociception (pain), and
others. The human body also has a number of effector systems, including
our fingers, limbs (arms and legs), and other various motor control systems.
The control system includes our brain and central nervous system.

This can also be applied to other types of agents, both virtual and
physical. A web spider, for example, is a virtual agent that gathers and filters
information for another party. A web spider uses a primary sensor of the
HyperText Transport Protocol, or HTTP, as a means to gather data from web
pages. Its control system is an application, which can be written in almost
any language, that drives the behavior of the web spider. This behavior
includes web-data parsing and filtering. The web spider can identify new
links to follow to collect additional information, and use the HTTP protocol
to navigate the web environment. Finally, the web spider can communicate
with a managing user through email using the Simple Mail Transport
Protocol, or SMTP. The user can configure the web spider for collection,
navigation, or filtering, and also receive emails indicating its current status
(see Figure 11.2).

A web spider is one example of an agent, but we’ve not yet described
the properties that separate an agent from a program.

FIGURE 11.2: Web spider as an agent.

Intelligent Agents 351

NOTE Another useful perspective of agents is that of an agency. An agent is an
intermediary between two or more parties. For example, the previous
web spider agent example illustrates this property of an agency. The
web spider is an intermediary agent for web-data gathering and filtering
for a user. The web spider acts on the user’s behalf for data gathering,
given a set of constraints from the user. We’ll look at an example of this
application later.

A robot can also be considered an agent. A robot includes a variety
of sensors including vision (cameras, ultrasonic transducers, infrared
detectors), hearing (microphones), touch (bump sensors), as well as other
types of sensors for pressure, temperature, and movement detection
(accelerometers). Effectors include motors (to drive wheels, tracks, or limbs),
and a speaker for sound vocalization. A robot can also include a number of
other effectors that can manipulate the environment, such as a vacuum, a
water pump, or even a weapon.

While a complete taxonomy of agents is not feasible, we can reduce
agents to a small tree, as shown in Figure 11.3. This division splits agents
into hard and soft agents. Animals (including humans) and robots fall into
the hard agents category, while software, or intelligent, agents (and viruses)
fall into the soft category. Franklin and Graesser first identified viruses as
agents in their 1996 taxonomy. [Franklin/Graesser 1996]

AGENT PROPERTIES AND AI

We can think of agents as a super-set of artificial intelligence. What makes a
program an agent is that it utilizes one or more properties that exhibit some
type of intelligence (or at least exhibit properties that appear intelligent).
We’ll now explore some of the properties that form the basis of intelligent
software agents (see Table 11.1).

FIGURE 11.3: Simple agent taxonomy.

352 Artificial Intelligence

Table 11.1: Agent properties.
Property Description
Rationale Able to act in a rational (or intelligent) way
Autonomous Able to act independently, not subject to external

control
Persistent Able to run continuously
Communicative Able to provide information, or command other agents
Cooperative Able to work with other agents to achieve goals
Mobile Able to move (typically related to network mobility)
Adaptive Able to learn and adapt

Rationale
The property of rationality simply means that the agent does the right thing
at the right time, given a known outcome. This depends on the actions that
are available to the agent (can it achieve the best outcome), and also how
the agent’s performance is measured.

Autonomous
Autonomy simply means that the agent is able to navigate its environment
without guidance from an external entity (such as a human operator).
The autonomous agent can therefore seek out goals in its environment,
whether to sustain itself or solve problems. An example of an autonomous
agent is the remote agent that rode along in NASA’s Deep Space 1
spacecraft.

Persistent
Persistence implies that the agent exists over time and continuously exists
in its environment. This property can also imply that the agent is stateful in
conditions where the agent must be serialized and moved to a new location
(as would be the case for mobile agents).

Communicative
An agent having the ability to communicate provides obvious
advantages to agent systems. Agents can communicate with other agents
to provide them with information, or communicate with users (for whom
the agent represents). An example of agent communication was shown in
Figure 11.2.

Intelligent Agents 353

Cooperative
Related to the property of communication is the property of cooperation.
This property implies that an agent can work with other agents to collectively
solve problems in an environment. In order to cooperate, agents must have
the ability to communicate (in some form or another). A related property
is that of deception. Instead of communicating to cooperatively solve a
problem, an agent can communicate disinformation to deceive another agent
to maxmize its own reward.

Mobile
Mobility in agent systems is commonly defined as the agent’s ability to
migrate between systems over a network. This can be done autonomously,
using a framework that supports this functionality (such as the Aglets mobile
agent framework). Mobility also applies to viruses, which use either email
(SMTP) or the web (HTTP) to move among systems and users.

NOTE It’s difficult to classify agents in one dimension when they’re actually
multi-dimensional. For example, an agent that is both mobile and
cooperative (implying communication) can also be called Distributed
Artificial Intelligence (DAI) or Distributed Problem Solving (DPS).

Adaptive
The last, but likely most important, is the ability for an agent to learn and
adapt to the environment. From the perspective of the agent, learning
means creating a mapping of sensors to effectors that demonstrate intelligent
behavior, or behavior that satisfies a set of defined constraints. To adapt
means that these mappings are flexible, and can be modified due to changes
in the environment.

AGENT ENVIRONMENTS

Whether an agent’s environment is the Internet, virtual landscape of a game, or
the unique space of a problem environment, all environments share a common
set of characteristics. These characteristics are shown in Table 11.2.

Table 11.2: Agent environment properties. [Russell/Norvig 2003]
Property Description
Observability Are all elements visible to the agent?

354 Artificial Intelligence

Change Does the environment change (dynamic) or does
it stay the same (static) and change only when the
agent performs an action to initiate change?

Deterministic Does the state of the environment change as the
agent expects after an action (deterministic), or is
there some randomness to the environment change
from agent actions (stochastic)?

Episodic Does the agent need prior understanding of
the environment (prior experience) to take an
action (sequential), or can the agent perceive the
environment and take an action (episodic)?

Continuous Does the environment consist of a finite or infinite
number of potential states (during action selection
by the agent)? If the number of possible states is
large, then the task envirionment is continuous,
otherwise it is discrete.

Multi-Agent Does the environment contain a single agent, or
possibly multiple agents acting in a cooperative or
competitive fashion.

Given this taxonomy of agent properties, how would sample agents be
classified such as a Non-Player Character (NPC) from a game environment,
or a Chess program (or Chess Agent)?

A Chess-playing agent would be classified as shown in Table 11.3.

Table 11.3: Properties of a Chess agent.
Property Description
Fully Observable The Chess board is fully observable to the Chess

agent, nothing is hidden.
Static The environment changes based on actions of

the Chess agent and those of the opponent. But
during the period when the Chess agent is making a
decision for a move, the environment (Chess board)
does not change.

Determistic The Chess board changes based on the move selected
by the agent, and therefore the environment is
deterministic.

Intelligent Agents 355

Episodic The Chess agent operates in episodes, alternating
between agent moves and opponent moves.

Multi-Agent The Chess board environment can be classified as
single agent (if the opponent is not considered) or as
multi-agent, considering that an opponent operates
on the environment in a competitive fashion.

Now let’s look at the classification of a very different environment, that of
a first-person-shooter (FPS) game environment. In this case, the environment
is a virtual environment that is occupied by numerous NPCs and typically one
or more human players. The classification for this environment is provided
in Table 11.4.

Table 11.4: Properties of a non-player character agent.
Property Description
Partial Observability First-person shooter genre games commonly use

the real-world aspect of concealment and the ability
to hide as a core part of the game experience. This
means that another character in the game may not
be visible to the player, making the environment only
partially observable.

Dynamic By definition, FPS games are dynamic. Players and
NPCs compete or cooperate in the environment
in real-time, and therefore the environment
dynamically changes without any action taken by the
observing agent.

Stochastic The enviroinment of an FPS is stochastic (not
deterministic). An action taken by an agent at one
time may not result in the same response when
taken again (such as shooting at another player).
The agent may miss, or score a non-lethal hit to
the opposing agent. Therefore, determinism is not
a common characteristic to interesting FPS game
environments.

Continuous The FPS environment is continuous, as compared
to an episodic environment such as a turn-based
strategy game. For this reason, the continuous style

356 Artificial Intelligence

environment for an FPS can be considered a real-
time strategy.

Multi-Agent An FPS environment is interesting by the fact that
it’s multi-agent. Typically, these are competitive
environments, though some also include cooperative
elements through support NPC agents.

Even though the Chess-game environment appears to be quite a bit
simpler than that of an NPC agent in an FPS, the task at hand for a Chess
agent is considerably more difficult. While the environment in an FPS
game is much more dynamic and random, the agents are typically built
with state-machine behaviors and minimal amounts of AI. The Chess-board
environment is deterministic, but action selection is the key. Therefore, the
Chess-playing agent includes much greater complexity (as illustrated in
Chapter 4, AI and Games).

AGENT TAXONOMIES
Now that we’ve provided an introduction to agent properties and the
characteristics of agent environments, let’s explore some of the major agent
types that exist in preparation for discussing agent applications.

Interface Agents
One of the earliest applications of intelligent agents was in the design of
intelligent user interfaces. To minimize information overload on a user,
intelligent user agents were built to reduce the amount of information
presented to a user as a way to help the user focus on what is most important
at any given time.

FIGURE 11.4: A user scenario for email and UseNet.

Intelligent Agents 357

For example, consider a user that uses email and the UseNet. When
new email arrives, typically an icon appears or a sound is played to indicate
that new email is available. The user can then bring up their mail client to
identify the sender of the email to decide whether to read it now, or wait
until later. This user may also occasionaly review UseNet newsgroups for
new information about a given topic (see Figure 11.4).

To combat the information overload and help the user focus on what’s
most important, an intelligent agent interface was proposed to assist the
user in filtering what information should be presented when. To assist, the
agent would need to learn about the user’s needs. This was typically done in
a learning phase, where the agent would monitor what the user did under
which circumstances. For example, if the user always read emails from a
given sender, the agent could emit the email notification only when email
was received by that person. Also, if the user read UseNet posts about a given
topic, the agent could autonomously monitor the UseNet for these posts,
and then notify the user at some later time.

The goal of the intelligent interface agent is to minimize the information
overhead on the user by learning under what circumstances certain actions
are taken. This minimizes interruptions on the user, allowing them to focus
more on what’s important (see Figure 11.5).

Early development of intelligent interface agents focused on web
interfaces, but others exist as well (which we’ll explore in the section on
agent applications).

Virtual Character Agents
A useful agent application that takes on a number of forms is called virtual
character agents, or synthetic agents. These agents can take on a number of

FIGURE 11.5: An intelligent interface agent to minimize distractions.

358 Artificial Intelligence

forms, focused on their particular application. These range from synthetic
agents, and game agents (non-player characters), and conversational agents
(otherwise known as chatbots).

Entertainment Agents
Synthetic agents are a special type of agent used in virtual reality environments.
These types of agents can be used as characters in computer-generated (CG)
movies or for training purposes in military simulations. Various movie studios
have adopted CG and produced a variety of feature-length films using CG
synthetic characters. Rather than each character being animated by an
animator, a character is created complete with articulated joints and then
trained to move. The animator can then simply request the character to move
or perform an action, rather than specify it on a frame-by-frame basis.

An interesting variation on the entertainment agent is the “talking
head” created at Ananova. Ananova is the first virtual newscaster that reads
news from real-time news information using text-to-speech technology and
computer animation to create a lifelike newscaster that lip syncs with the
text being spoken.

Game Agents
One of the most common uses of agents, and a test bed for the development of
AI is in the genre of video games (see also Chapter 4, AI and Games). Called
Non-Player Characters in games (NPCs), these agents bring life to a variety of
games by introducing characters that are autonomous and add to the realism
of video games. NPCs can be cooperative in games; in other words, characters
that work with the play in the game. NPCs can also be neutral characters in the
game that provide guidance or help to the player during the game (or simply
add to the ambient background of open-world games). But NPCs are more
often competitive, working against the player from satisfying the desired goals
of the game (for example, enemy NPCs in war or fantasy games).

To enable the development of NPCs, many games include scripting
capabilities with APIs focused on the integration of realistic NPC
behaviors. One of the more prominent examples of this capability is called
UnrealScript, which was developed for the UnrealEngine of the popular
Unreal Tournament first-person-shooter. UnrealScript is an object-oriented
scripting language of the Java flavor.

TIP The simplest implementation of an NPC is the reactive (or reflexive)
agent. This agent includes no state, and instead directly maps an action
from the current set of inputs.

Intelligent Agents 359

A simple (though incomplete) example of an NPC in UnrealScript is
shown in Listing 11.1. The function SpawnSimpleActor is used to create
a new NPC. This function picks a random location and spawns the new
character at that location. The state code implements the behaviors of the
agent.

Listing 11.1: Extending the actor class for a simple NPC.

class SimpleActor extends Actor;
var int Health;
// Spawn a new SimpleActor
function SpawnSimpleActor()
{
 local SimpleActor SA;
 local vector NewLocation;
 // Pick a new location
 NewLocation = Location + VRand();
 NewLocation.Z = Location.Z;
 // Spawn SimpleActor there
 SA = Spawn(class’SimpleActor’,,,NewLocation);
}
// State Code
auto state Waiting
{
 function Touch(actor Other)
 {
 GotoState(‘Moving’);
 }
Begin:
 sleep(5);
 goto ‘Begin’;
}
auto state Moving
{
 Begin:
 // Move around
 GotoState(‘Waiting’);
}
DefaultProperties
{

360 Artificial Intelligence

 // Specify Defaults
 Health=100
}

NOTE Many game environments implement NPC characters using the scripted
Finite-State Machine (FSM) model. This model is conceptually simple
and makes it easy to build characters with complex behaviors.

ChatterBots
Chatterbots, or conversational agents, have a long history in AI. As discussed
in Chapter 1, Alan Turing proposed what is now known as the “Turing Test”
as a means to judge the intelligence of a computing system. The test was
based on the machine’s ability (to make a judge operator) believe that it was
speaking to another human, instead of a machine. If a judge couldn’t tell the
difference between a human and a machine, then it could be inferred that
the machine possessed the characteristics of intelligence. This was really
nothing more than a test of a machine’s linguistic aspects, and not entirely
intelligence.

There currently exists no academic focus on competing in the Turing
test, but a less stringent form has resulted in a number of competitive
solutions. The Loebner Prize awards prizes to the conversational agent that
demonstrates the most human-like conversation.

Eliza and Parry
One of the earliest examples of a conversational agent is Joseph Weizenbaum’s
Eliza (written in the LISP language). Eliza was written in 1966 and in
general, simply rephrased the input back to the human, typically in the form
of a question. Listing 11.2 provides a sample conversation with Eliza.

Listing 11.2: A conversation with Eliza.

Patient: I’d like to talk about my mother.
Eliza: What else comes to mind when you think of your mother?
Patient: She wants to control me and run my life.
Eliza: Your life?
Patient: Yes, there are times that I have one.
Eliza: You are sure.
Patient: Why don’t you think I have a life?
Eliza: Do you believe I don’t think you have life?

Intelligent Agents 361

Eliza simply looked for patterns, and then rephrased, or picked a random
comment. You can see how this is done in Chapter 15, which offers an
introduction to the POP-11 language.

Another interesting and early example of a conversational agent was
Parry. This agent differed from Eliza, in that instead of pretending to be a
therapist, Parry simulated a patient with paranoid schizophrenia. Listing
11.3 provides a sample conversation between Parry and Eliza from RFC 439
(January 1973). [RFC 439]

Listing 11.3: A conversation between Parry and Eliza.

Eliza: Please go on.
Parry: Do you know anything about bookies?
Eliza: What makes you think I know anything about bookies?
Parry: A bookie didn’t pay me off once.
Eliza: What does that suggest to you?
Parry: I beat up the bookie who did not pay off, and I thought he might

use his friends in the underworld to get even with me.
Eliza: What else would you like to discuss?
Parry: What do you know about racketeers?
Eliza: Why do you ask?
Parry: What experience have you had gambling?
Eliza: Why does that question interest you?
Parry: I like horseraces.
Eliza: What else do you like?
Parry: I know the mob controls the big rackets.
Eliza: Who are you really talking about?

Parry, like Eliza, used patterns to formulate a response to a prior
question or comment. It was written in meta-LISP on the DEC PDP-10
in the early 1970s.

Artificial Intelligence Markup Language (AIML)
AIML, or Artificial Intelligence Markup Language, is an interpeter that can
be used to build conversational agents. As its name implies, AIML is a dialect
of the Extensible Markup Language, or XML, which is a meta-language
that allows definition of data, as well as its meaning and structure. Take the
following example of a simple AIML template. In AIML, the fundamental
unit of knowledge is called a category. A category contains a pattern (the
input pattern) and the template (the response).

362 Artificial Intelligence

<category>
 <pattern>WHO ARE YOU</pattern>
 <template>Who I am is not important.</template>
</category>

AIML also supports variables, so that you can store information learned
from the user. This can then be introduced later in the conversation.

AIML is a useful tool for building conversational agents, and has won
the Loebner Prize for most human computer three times, in addition to
other awards.

Mobile Agents
Mobile agents are those agents that possess the characteristics of mobility.
This means that the agents have the ability to migrate from one host
computer to another. This may seem like a trivial characteristic, but the
advantages to mobility are both subtle and important.

Consider the agent example in Figure 11.6. In this example, the agent
is stationary at a host node and collecting data from another node. The
physical constraint in this example is that the network be available for
communication. If the network becomes unavailable, the ability for the
agents to communicate is severed resulting in a brittle system.

FIGURE 11.6: The brittleness of non-mobile software.

FIGURE 11.7: Increasing system reliability with mobile software.

Intelligent Agents 363

An alternative is to bring the data collection software to the source. As
shown in Figure 11.7, a mobile agent migrates from Host A to Host B where
the data is sourced. This agent could be a control system (in the simplest
case, a thermostat), that reads the source data and then interacts with the
system to make adjustments. In this model, the mobile agent interacts with
the data collection agent at the source. Further, the agent could collect and
filter data, and then return to the original host. This type of agent could be
useful in situations where full-time connections are not always practically
possible (such as satellites in low-earth orbit).

Mobile agents, which can also be viewed as a form of a virus, have potential
in many areas of computing. Outside of data collection, mobile agents are
an interesting method for software deployment. For example, customer
purchasing software could accept a mobile agent that packages the software, or
is the software itself. The agent could maintain licensing with a server, and also
keep in touch with a remote server to ensure that patches are up-to-date.

With mobile agents, a communication theme emerges. Agents, particularly
those that are mobile, require the means to communicate either locally or
remotely. Later in this chapter, we’ll explore some of the protocols that are
used for agent communication (some designed specifically for this purpose).

Mobile agents have been used in a variety of applications including process
control and network monitoring. Network monitoring is an ideal application
for mobile agents. An agent is provided details of data collection, and then
disbursed into a network. The agent collects data, and either communicates
the data back to a central server, or migrates back to itself with its data.

Process control is another interesting application. Instead of purely
collecting data from remote servers, the agents must also monitor and control
the devices to which they’re attached. Prior to migrating, the agents can be
configured for their particular destination. From this perspective, mobile
agents are an interesting deployment method for distributed systems.

IBM’s aglets framework for Java is an interesting example of a mobility
API. Aglets use what’s called a ticket to identify where the agent is to be
migrated. The agent use itself creates a ticket, and then calls the dispatch
method with this ticket to serialize the Java program and migrate to the
destination (see Listing 11.4). Once dispatched is called, the agent and its
data are packaged and restarted at the defined destination.

Listing 11.4: Java aglets as a mobility API.

public class MyAgent extends Aglet {
 public void run()

364 Artificial Intelligence

 {

 QoC qoc = new QoC(QoC.NORMALINTEGRITY, QoC.
NOCONFIDENTIALITY);
 Ticket ticket = new Ticket(“atp://192.168.1.100/”, qoc);
 try {
 // Serialize and migrate to the host defined by the ticket
 dispatch(ticket);
 } catch(Exception excp) {
 excp.printStackTrace();
 }
 ...
 }
}

In this example, a URL is defined for ticket. The URL specifies
“atp” which represents the Agent Transfer Protocol. This protocol
implements the ability to migrate aglets between hosts (where each support
the ATP).

To enable the mobility with agents, frameworks are commonly built
to provide this capability. Examples include IBM’s Aglets framework, and
also ANTS, or Active Node Transfer System. Another useful adaptation of
mobile agents is what’s called Active Networking, where packets transferred
through a network contain data interpreted as code. These active packets
(sometimes called capsules) can be used for various applications, including
router configuration.

User Assistance Agent
One of the earliest applications for intelligent agents was for the purpose of
simplifying our experiences when dealing with computers. Let’s explore some
of these applications from the perspective of the modern-day Internet.

Email Filtering
A simple example is that of email. When a new email arrives, our computers
typically notify us of this fact using either a visual que (a mailbox flag) and
possibly a tone indicating that our focus should change from whatever we
happen to be doing to that of reading and responding to email. In some cases,
this is what we’ll naturally do (in the case of important email). But in other
cases, such as spam or lower priority emails, we’d rather ignore this to avoid
the interruption and continue with our work.

Intelligent Agents 365

The email example is a perfect one for agentification. The agent first
enters a state in which it monitors the actions of the user from the perspective
of input stimulus (such as new email). This is the learning phase. When an
email arrives, the user opens the mail client and scans the newly received
email. Some of the emails are read, some are simply deleted, and others
remain unread for some time. Over time, the agent can build probabilities
that model the user’s behavior. When the agent is able to model the user to
a sufficient threshold (for example, 95% stimulus A results in response B),
then it can mediate for the user in the domain of email. If an email arrives
for which the user normally reads immediately (above the 95% threshold),
the agent could present a window to the user that identifies that the email
was received, and asks the user if they would like to read it. Otherwise, if
the email falls below the threshold, the agent could withhold the email
notification, so that the user is not disturbed by the new information.

An example agent that implements intelligent email handling is Maxims.
This agent was developed in Common LISP for the Macintosh platform and
learned to intelligently prioritize email for a user, as well as sorting and archiving.
The Maxims agent also used caricatures to convey the state of the agent to the
user. In this way, the user could know if the agent was working, suggesting, or
unsure of what to do (as well as other emotive states). [Lashkari 1994]

Many new mail clients provide the ability to classify the route email
according to user-defined rules. These features provide a mechanism for this
capability, though it can be difficult to classify them as agents.

Information Gathering and Filtering
Information gathering and filtering is another useful example of using agents
for user assistance. Keeping up on the latest information in our fields is
important, but can be very time-consuming. But rather than do this work
on our own, Internet search agents can do this work for us, providing the
results when something new is available.

An interesting example of information gathering and filtering is the Google
Alerts service. Google Alerts allow a user to create search ‘alerts’ which are
search keywords. When Google runs across an item that matches your search
criteria, it collects these links together and then emails you on a periodic basis.
The emails are in the form of text plus a URL link, making it simple to review
the new information and then present it in an easy-to-use format.

Other User-Assistance Applications
Many other applications have been developed in the category of user
assistance. These include applications that require communication between

366 Artificial Intelligence

agents. One example is a calendar agent which is used to schedule a person’s
time. The calendar agent representing a user negotiates meetings with other
calendar agents to optimize all participants’ time. Other examples include
auction agents, which communicate with other auction agents to bid on
goods per a user’s request.

Hybrid Agents
In most cases, agents can’t be classified succinctly by a single label as most
are hybrid in nature. Instead of a single characteristic, such as mobile, agents
implement multiple characteristics, such as mobile and communicative.

Consider an interface agent that securely relays information between
consoles in an operations center. The agent consolidates the information to be
relayed and then migrates to the destination console. Once there, it opens a
window to the console’s user (first authenticating the user to ensure it’s the right
person) and then provides the data in its needed form. This agent demonstrates
a number of characteristics such as mobility, autonomy, and the ability to
communicate (with a user in this context) through a defined interface.

NOTE The ability for agents to communicate for purposes of relaying information
or directions is most often noted as the characteristic of communication.
This characteristic has also been defined as a social ability where agents
interact with one another for both collaboration and coordination.

AGENT ARCHITECTURES
Let’s now explore some of the agent architectures that have been created to
support the development of agent systems. We’ll first discuss the meaning
of architecture, and then review some of the more important types of agent
architectures that have been created. We’ll then finish this discussion with
a review of some of the agent architectures that have been developed and
review some of the applications for which they can be used.

What is Architecture?
When we refer to architecture, we’re referring to a framework from which
applications can be built. Architectures are commonly defined to support a specific
type of problem, such as dependable, or real-time. Architectures are commonly
defined from a perspective or a viewpoint. This perspective could be from a
functional view, code view, or user view (to name a few from the Recommended
Practice for Architecture Description of Software-Intensive Systems).

Intelligent Agents 367

TIP Agent architectures, like software architectures, are formally a description
of the elements from which a system is built and the manner in which
they communicate. Further, these elements can be defined from patterns
with specific constraints. [Shaw/Garlin 1996]

A number of common architectures exist that go by the names pipe-and-
filter or layered architecture. Note that these define the interconnections
between components. Pipe-and-Filter defines a model where data is moved
through a set of one or more objects that perform a transformation. Layered
simply means that the system is comprised of a set of layers that provide
a specific set of logical functionality and that connectivity is commonly
restricted to the layers contiguous to one another.

From the perspective of agent architectures, patterns can exist that
support the development and operation of agents. For example, components
can exist to provide communication between agents. Other components
can support perception (viewing the agent’s environment) and also actions
(manipulating the environment). These types of components simplify the
development task for agent designers, allowing them to concentrate on their
particular task at hand instead of common environmental concerns.

NOTE It should be noted that architecture can be applied at multiple levels to
agent systems. An agent itself can have architecture. Consider patterns
that define how particular agents are developed. There are also lower-
level architectures that provide the agent environment (as would be the
case for mobile agent architectures).

In this section, we’ll introduce a variety of architecture types as a
precursor to explore specific frameworks that have been created for agent
development.

Types of Architectures
Based on the goals of the agent application, a variety of agent architectures
exist to help. This section will introduce some of the major architecture types
and applications for which they can be used.

Reactive Architectures
A reactive architecture is the simplest architecture for agents. In this
architecture, agent behaviors are simply a mapping between stimulus and
response. The agent has no decision-making skills, only reactions to the
environment in which it exists. Figure 11.8 illustrates this architecture.

368 Artificial Intelligence

As shown in Figure 11.8, the agent simply reads the environment and
then maps the state of the environment to one or more actions. Given the
environment, more than one action may be appropriate, and therefore the
agent must choose.

The advantage of reactive architectures is that they are extremely fast.
This kind of architecture can be implemented easily in hardware, or fast in
software lookup. The disadvantage of reactive architectures is that they apply
only to simple environments. Sequences of actions require the presence of
state, which is not encoded into the mapping function.

Deliberative Architectures
A deliberative architecture, as the name implies, is one that includes some
deliberation over the action to perform given the current set of inputs.
Instead of mapping the sensors directly to the actuators, the deliberative
architecture considers the sensors, state, prior results of given actions,

FIGURE 11.8: Reactive architecture defines a simple agent.

FIGURE 11.9: A deliberative agent architecture considers its actions.

Intelligent Agents 369

and other information in order to select the best action to perform. The
deliberative architecture is shown in Figure 11.9.

The mechanism for action selection as shown in Figure 11.9 is undefined.
This is because it could be a variety of mechanisms including a production
system, neural network, or any other intelligent algorithm.

The advantage of the deliberative architecture is that it can be used to
solve much more complex problems than the reactive architecture. It can
perform planning, and perform sequences of actions to achieve a goal. The
disadvantage is that it is slower than the reactive architecture due to the
deliberation for the action to select.

Blackboard Architectures
The blackboard architecture is a very common architecture that is also very
interesting. The first blackboard architecture was HEARSAY-II, which was
a speech understanding system. This architecture operates around a global
work area call the blackboard. The blackboard is a common work area for
a number of agents that work cooperatively to solve a given problem. The
blackboard therefore contains information about the environment, but also
intermediate work results by the cooperative agents (see Figure 11.10).

The example shown in Figure 11.10 illustrates how a blackboard
architecture could be applied to an agent system. In this example, two
separate agents are used to sample the environment through the available
sensors (the sensor agent) and also through the available actuators (action
agent). The blackboard contains the current state of the environment that is
constantly updated by the sensor agent, and when an action can be performed
(as specified in the blackboard), the action agent translates this action into

FIGURE 11.10: The blackboard architecture supports multi-agent problem solving.

370 Artificial Intelligence

control of the actuators. The control of the agent system is provided by one
or more reasoning agents. These agents work together to achieve the goals,
which would also be contained in the blackboard. In this example, the first
reasoning agent could implement the goal definition behaviors, where the
second reasoning agent could implement the planning portion (to translate
goals into sequences of actions).

Since the blackboard is a common work area, coordination must be
provided such that agents don’t step over one another. For this reason,
agents are scheduled based on their need. For example, agents can monitor
the blackboard, and as information is added, they can request the ability to
operate. The scheduler can then identify which agents desire to operate on
the blackboard, and then invoke them accordingly.

The blackboard architecture, with its globally available work area, is
easily implemented with a multi-threading system. Each agent becomes one
or more system threads. From this perspective, the blackboard architecture
is very common for agent and non-agent systems.

Belief-Desire-Intention (BDI) Architecture
BDI, which stands for Belief-Desire-Intention, is an architecture that
follows the theory of human reasoning as defined by Michael Bratman.
Belief represents the view of the world by the agent (what it believes to be
the state of the environment in which it exists). Desires are the goals that
define the motivation of the agent (what it wants to achieve). The agent may
have numerous desires, which must be consistent. Finally, Intentions specify
that the agent uses the Beliefs and Desires in order to choose one or more
actions in order to meet the desires (see Figure 11.11).

FIGURE 11.11: The BDI architecture desires to model mental attitudes.

Intelligent Agents 371

As we described above, the BDI architecture defines the basic
architecture of any deliberative agent. It stores a representation of the
state of the environment (beliefs), maintains a set of goals (desires), and
finally, an intentional element that maps desires to beliefs (to provide one or
more actions that modify the state of the environment based on the agent’s
needs).

Hybrid Architectures
As is the case in traditional software architecture, most architectures are
hybrids. For example, the architecture of a network stack is made up of
a pipe-and-filter architecture and a layered architecture. This same stack
also shares some elements of a blackboard architecture, as there are global
elements that are visible and used by each component of the architecture.

The same is true for agent architectures. Based on the needs of the agent
system, different architectural elements can be chosen to meet those needs.

Mobile Architectures
The final architectural pattern that we’ll discuss is the mobile agent
architecture. This architectural pattern introduces the ability for agents to
migrate themselves between hosts. As shown in Figure 11.12, the agent
architecture includes the mobility element, which allows an agent to migrate
from one host to another. An agent can migrate to any host that implements
the mobile framework.

The mobile agent framework provides a protocol that permits
communication between hosts for agent migration. This framework also
requires some kind of authentication and security, to avoid a mobile agent
framework from becoming a conduit for viruses.

Also implicit in the mobile agent framework is a means for discovery. For
example, which hosts are available for migration, and what services do they
provide? Communication is also implicit, as agents can communicate with
one another on a host, or across hosts in preparation for migration.

FIGURE 11.12: The mobile agent framework supports agent mobility.

372 Artificial Intelligence

The mobile agent architecture is advantageous as it supports the
development of intelligent distributed systems. But a distributed system that
is dynamic, and whose configuration and loading is defined by the agents
themselves.

Architecture Descriptions
In the previous section, we explored some of the architectures that have
been created for the construction of agents. Now let’s review some of the
implementations of these architectures. We’ll review the architectures as
shown in Table 11.5.

Table 11.5: Please attribute the architectures as follows:
Subsumption Brooks
Atlantis Gat
Homer Bickmore
BB1 Hayes-Roth
Open Agent Arch Stanford
PRS Ingrand, Georgeff, and Rao
Aglets IBM
Messengers Fukada
SOAR University of Michigan

TIP You’ll note that the goal of each of these architectures is to select an
action to perform given the current state of the environment. From this
perspective, we can refer to these as action selection architectures.

Subsumption Architecture (Reactive Architecture)
The Subsumption architecture, originated by Rodney Brooks in the
late 1980s, was created out of research in behavior-based robotics. The
fundamental idea behind subsumption is that intelligent behavior can be
created through a collection of simple behavior modules. These behavior
modules are collected into layers. At the bottom are behaviors that are
reflexive in nature, and at the top, behaviors that are more complex.

Consider the abstract model shown in Figure 11.13. At the bottom (level
0) exist the reflexive behaviors (such as obstacle avoidance). If these behaviors
are required, then level 0 consumes the inputs and provides an action at the
output. But no obstacles exist, so the next layer up is permitted to subsume
control. At each level, a set of behaviors with different goals compete for
control based on the state of the environment. To support this capability,

Intelligent Agents 373

levels can be inhibited (in other words, their outputs are disabled). Levels can
also be suppressed such that sensor inputs are routed to higher layers.

As shown in Figure 11.13, subsumption is a parallel and distributed
architecture for managing sensors and actuators. The basic premise is that
we begin with a simple set of behaviors, and once we’ve succeeded there,
we extend with additional levels and higher-level behaviors. For example,
we begin with obstacle avoidance and then extend for object seeking.
From this perspective, the architecture takes a more evolutionary design
approach.

Subsumption does have its problems. It is simple, but it turns out not
to be extremely extensible. As new layers are added, the layers tend to
interfere with one another, and then the problem becomes how to layer
the behaviors such that each has the opportunity to control when the time
is right. Subsumption is also reactive in nature, meaning that in the end,
the architecture still simply maps inputs to behaviors (no planning occurs,
for example). What subsumption does provide is a means to choose which
behavior for a given environment.

Behavior Networks (Reactive Architecture)
Behavior networks, created by Pattie Maes in the late 1980s, is another
reactive architecture that is distributed in nature. Behavior networks attempt
to answer the question, which action is best suited for a given situation. As
the name implies, behavior networks are networks of behaviors that include
activation links and inhibition links.

An example behavior network for a game agent is shown in Figure 11.14.
As shown in the legend, behaviors are rectangles and define the actions
that the agent may take (attack, explore, reload, etc.). The ovals specify

FIGURE 11.13: Architectural view of the subsumption architecture.

374 Artificial Intelligence

the preconditions for actions to be selected, which are inputs from the
environment. Preconditions connect to behaviors through activation links
(they promote the behavior to be performed) or inhibition links (that inhibit
the behavior from being performed).

The network in Figure 11.14 illustrates a typical NPC in an FPS game
environment. The environment is sampled, and then the behavior for the
agent is selected based on the current state of the environment. The first
thing to note is the activation and inhibition links. For example, when
the agent’s health is low, attack and exploration are inhibited, leaving
the agent to find the nearest shelter. Also, while exploring, the agent
may come across medkits or ammunition. If a medkit or ammunition is
found, it’s used.

Maes’ algorithm referred to competence modules, which included
preconditions (that must be fulfilled before the module can activate),
actions to be performed, as well as a level of activation. The activation level
is a threshold that is used to determine when a competence module may
activate. The algorithm also includes decay, such that activiations dissipate
over time.

Like the subsumption architecture, behavior networks are instances of
Behavior-Based Systems (BBS). The primitive actions produced by these
systems are all behaviors, based on the state of the environment.

Behavior networks are not without problems. Being reactive, the
architecture does not support planning or higher-level behaviors. The
architecture can also suffer when behaviors are highly inter-dependent. With
many competing goals, the behavior modules can grow dramatically in order
to realize the intended behaviors. But for simpler architecture, such as the
FPS game agent in Figure 11.14, this algorithm is ideal.

FIGURE 11.14: Behavior network for a simple game agent.

Intelligent Agents 375

ATLANTIS (Deliberative Architecture)
The goal of ATLANTIS (A Three-Layer Architecture for Navigating Through
Intricate Situations), was to create a robot that could navigate through
dynamic and imperfect environments in pursuit of explicitly stated high-level
goals. ATLANTIS was to prove that a goal-oriented robot could be built
from a hybrid architecture of lower-level reactive behaviors and higher-level
deliberative behaviors.

Where the subsumption architecture allows layers to subsume control,
ATLANTIS operates on the assumption that these behaviors are not
exclusive of one another. The lowest layer can operate in a reactive fashion
to the immediate needs of the environment, while the uppermost layer
can support planning and more goal-oriented behaviors. The fundamental
architecture of ATLANTIS is provided in Figure 11.15.

In ATLANTIS, control is performed from the bottom-up. At the
lowest level (the control layer) are the reactive behaviors. These primitive-
level actions are capable of being executed first, based on the state of
the environment. At the next layer is the sequencing layer. This layer is
responsible for executing plans created by the deliberative layer. The
deliberative layer maintains an internal model of the environment and
creates plans to satisfy goals. The sequencing layer may or may not complete
the plan, based on the state of the environment.

This leaves the deliberation layer to perform the computationally expensive
tasks. This is another place that the architecture is a hybrid. The lower-level
behavior-based methods (in the controller layer) are integrated with higher-

FIGURE 11.15: The three-layer architecture of ATLANTIS.

376 Artificial Intelligence

level classical AI mechanisms (in the deliberative layer). Interestingly, the
deliberative layer does not control the sequencing layer, but instead simply
advises on sequences of actions that it can perform. The advantage of this
architecture is that the low-level reactive layer and higher-level intentional
layers are asynchronous. This means that while deliberative plans are under
construction, the agent is not susceptible to the dynamic environment. This
is because even though planning can take time at the deliberative layer, the
controller can deal with random events in the environment.

Homer (Deliberative Arch)
Homer is another interesting deliberative architecture that is both modular
and integrated. Homer was created by Vere and Bickmore in 1990 as
a deliberative architecture with some very distinct differences to other
architectures. Some of the notable differences include a temporal planner
and a natural language processor.

At the core of the Homer architecture is a memory that is divided into
two parts. The first part contains general knowledge (such as knowledge
about the environment). The second part is called episodic knowledge, which
is used to record experiences in the environment (perceptions and actions
taken). The natural language processor accepts human input via a keyboard,
and parses and responds using a sentence generator. The temporal planner
creates dynamic plans to satisfy predefined goals, and is capable of replanning
if the environment requires. By temporal, we mean that the planner can plan
actions to take place within a given time, which can be replanned if this does
not occur. The architecture also includes a plan executor (or interpreter),
which is used to execute the plan at the actuators. The architecture also
included a variety of monitor processes.

FIGURE 11.16: The architecture of Homer integrates separate fields of AI.

Intelligent Agents 377

The basic idea behind Homer was an architecture for general intelligence.
The keyboard would allow regular English language input, and a terminal
would display generated English language sentences. The user could therefore
communicate with Homer to specify goals and receive feedback via the terminal.
Homer could log perceptions of the world, with timestamps, to allow dialogue
with the user and rational answers to questions. Reflective (monitor) processes
allow Homer to add or remove knowledge from the episodic memory.

Homer is an interesting architecture implementing a number of
interesting ideas, from natural language processing to planning and
reasoning. One issue found in Homer is that when the episodic memory
grows large, it tends to slow down the overall operation of the agent.

BB1 (Blackboard)
BB1 is a domain-independent blackboard architecture for AI systems created
by Barbara Hayes-Roth. The architecture supports control over problem
solving as well as explaining its actions. The architecture is also able to learn
new domain knowledge.

BB1 includes two blackboards; a domain blackboard which acts as the
global database and a control blackboard, which is used for generating a
solution to the given control problem. The key behind BB1 is its ability to
incrementally plan. Instead of defining a complete plan for a given goal, and
then executing that plan, BB1 dynamically develops the plan and adapts
to the changes in the environment. This is key for dynamic environments,
where unanticipated changes can lead to brittle plans that eventually fail.

As a blackboard architecture, knowledge sources introduce new
knowledge to the blackboard for one or more users. The change of knowledge
in a blackboard serves as a trigger for operation by users. In BB1, control
solutions are dynamically generated using knowledge from the domain
blackboard from control knowledge in the control blackboard. A scheduler
manages which blackboard users should get the ability to execute.

Open Agent Architecture (Blackboard)
The Open Agent Architecture (or OAA) is a blackboard architecture in which
all agents communicate through the blackboard (via a server process). The
server process acts in a number of roles. It coordinates activities between
the client agents (deciding which can act on knowledge on the blackboard)
as well as providing communication between client agents. When knowledge
is applied to the blackboard (through the server), the server decides
which agent should be notified and then schedules them accordingly. An
architectural view of the

OAA is provided in Figure 11.16A.

378 Artificial Intelligence

The language used to communicate between agents in OAA is an extension
of Prolog. A new agent registers itself with the server, and can install triggers
that monitor incoming data into the blackboard. The trigger serves as a
request such that when knowledge arrives, the server can route the data to
the agent for further processing. Agents may also communicate with other
agents through the server. This can be done for the purpose of requesting
activities of other agents. The server (and blackboard) also provide the means
for broadcast communications to globally coordinate between the agents.

The OAA is a useful generic architecture for multi-agent programming
with a common communication structure. The agent communication
language, using Prolog, makes it useful to communicate not only generic
requests and responses, but also knowledge and semantic queries.

Procedural Reasoning System (BDI)
The Procedural Reasoning System (PRS) is a general-purpose architecture
that’s ideal for reasoning environments where actions can be defined
by predetermined procedures (action sequences). PRS is also a BDI
architecture, mimicking the theory on human reasoning.

PRS integrates both reactive and goal-directed deliberative processing
in a distributed architecture. As shown in Figure 11.17, the architecture is
able to build a world-model of the environment (beliefs) through interacting
with environment sensors. Actions can also be taken through an intentions
module. At the core is an interpreter (or reasoner) which selects a goal to
meet (given the current set of beliefs) and then retrieves a plan to execute

FIGURE 11.16A: The OAA uses a blackboard and a server for coordination.

Intelligent Agents 379

to achieve that goal. PRS iteratively tests the assumptions of the plan during
its execution. This means that it can operate in dynamic environments where
classical planners are doomed to fail.

Plans in PRS (also called knowledge areas) are predefined for the
actions that are possible in the environment. This simplifies the architecture
because it isn’t required to generate plans, only select them based on the
environment and the goals that must be met. While planning is more about
selection than search or generation, the interpreter ensures that changes to
the environment do not result in inconsistencies in the plan. Instead, a new
plan is selected to achieve the specific goals.

PRS is a useful architecture when all necessary operations can be
predefined. It’s also very efficient due to lack of plan generation. This makes
PRS an ideal agent architecture for building agents such as those to control
mobile robots.

Aglets (Mobile)
Aglets is a mobile agent framework designed by IBM Tokyo in the 1990s.
Aglets is based on the Java programming language, as it is well suited for a
mobile agents framework. First, the applications are portable to any system
(both homogeneous and heterogeneous) that is capable of running a Java
Virtual Machine (JVM). Second, a JVM is an ideal platform for migration
services. Java supports serialization, which is the aggregation of a Java
application’s program and data into a single object that is restartable. In
this case, the Java application is restarted on a new JVM. Java also provides

FIGURE 11.17: PRS is a BDI architecture for plan execution.

380 Artificial Intelligence

a secure environment (sandbox) to ensure that a mobile agent framework
doesn’t become a virus distribution system.

The Aglets framework is shown in Figure 11.18. At the bottom of
the framework is the JVM (the virtual machine that interprets the Java
bytecodes). The agent runtime environment and mobility protocol are next.
The mobility protocol, called Aglet Transport Protocol (or ATP), provides
the means to serialize agents and then transport them to a host previously
defined by the agent. The agent API is at the top of the stack, which in usual
Java fashion, provides a number of API classes that focus on agent operation.
Finally, there are the various agents that operate on the framework.

The agent API and runtime environment provide a number of services
that are central to a mobile agent framework. Some of the more important
functions are agent management, communication, and security. Agents must
be able to register themselves on a given host to enable communication
from outside agents. In order to support communication, security features
must be implemented to ensure that the agent has the authority to execute
on the framework.

Aglets provides a number of necessary characteristics for a mobile agent
framework, including mobility, communication, security, and confidentiality.
Aglets provide weak migration, in that the agents can only migrate at arbitrary
points within the code (such as with the dispatch method).

Messengers (Mobile)
Messengers is a runtime environment that provides a form of process
migration (mobile agency). One distinct strength of the messengers

FIGURE 11.18: The aglets mobile agent framework.

Intelligent Agents 381

environment is that it supports strong migration, or the ability to migrate at
arbitrary points within the mobile application.

The messengers environment provides the hop statement which
defines when and where to migrate to a new destination. After migration is
complete, the messengers agent restarts in the application at the point after
the previous hop statement. The end result is that the application moves
to the data, rather than using a messaging protocol to move the data to the
agent. There are obvious advantages to this when the data set is large and
the migration links are slow.

The messengers model provides what the authors call Navigational
Programming, and also Distributed Sequential Computing (DSC). What
makes these concepts interesting is that they support the common model of
programming that is identical to the traditional flow of sequential programs.
This makes them easier to develop and understand.

Let’s now look at an example of DSC using the messengers environment.
Listing 11.5 provides a simple program. Consider an application where on a
series of hosts, we manipulate large matrices which are held in their memory.
This can be simply demonstrated on Listing 11.4.

Listing 11.5: Example of distributed sequential computing.

// Begin on host A
r1 = value(A)
// Hop to host B
hop(B)
r2 = f1(r1, B)
// Hop and end at host C
hop(C)
r3 = f2(r2, C)

What’s interesting about this simple program, and a strength of the
messengers approach, is that the resulting program has the same structure
and flow as the original sequential variant. The only difference between
this program, and a single processor non-distributed variant is that hop
statements are inserted to initiate transfer of the program to the new host.

Another useful application of DSC is in the domain of sensor networks.
Rather than moving sensor data among hosts for processing, messenger
applications migrate to the sensor nodes (such as multi-megapixel imagers),
process them (calculate their centroids), and migrate their results on to
subsequent processing nodes.

382 Artificial Intelligence

Soar (Hybrid)
Soar, which originally was an acronym for State-Operator-And-Result,
is a symbolic cognitive architecture. Soar provides a model of cognition
along with an implementation of that model for building general-purpose
AI systems. The idea behind Soar is from Newell’s unified theories of
cognition. Soar is one of the most widely used architectures, from research
into aspects of human behavior to the design of game agents for first-
person-shooter games.

The goal of the Soar architecture is to build systems that embody general
intelligence. While Soar includes many elements that support this goal (for
example, representing knowledge using procedural, episodic, and declarative
forms), but Soar lacks some important aspects. These include episodic
memories and also a model for emotion.

Soar’s underlying problem-solving mechanism is based on a production
system (expert system). Behavior is encoded in rules similar to the if-then
form. Solving problems in Soar can be most simply described as problem-
space search (to a goal node). If this model of problem solving fails, other
methods are used, such as hill climbing. When a solution is found, Soar uses
a method called chunking to learn a new rule based on this discovery. If the
agent encounters the problem again, it can use the rule to select the action
to take instead of performing problem solving again.

AGENT LANGUAGES
Agents can be built in any language, though a number of agent-focused
languages (and language extensions) are available to simplify their
development. In this section, we’ll explore some of the languages and
language extensions that can be used for agent development.

Telescript
Telescript is both a language and environment for the development of agents
and agent societies. It’s also one of the oldest languages that focus solely on
agent development (including those with mobile attributes). Telescript was an
object-oriented language that was interpreted by the environment. Telescript
could also integrate with C applications for building large systems.

The two primary elements of Telescript are the agent and place (each
represented as base classes). Using these classes, mobile and communicating
agents can be developed along with locations for them to migrate and
interact. Telescript includes the necessary security controls for places to

Intelligent Agents 383

authenticate one another (through the platform interconnect protocol) to
support the secure transport of mobile agents.

A very simple example of Telescript migration is provided in Listing
11.6. In this example, a Telescript function is provided encapsulate the
movement method (go). As with the aglets framework, a ticket is used to
represent the request to travel to a remote host. The go method is used to
initiate the transfer. Note below that the ‘*’ symbols represent the object
being manipulated, in this case, the current object.

Listing 11.6: A simple method in telescript.

changeLocation: op (locName: Telename; locAddress: Teleaddress) =
{
 // Clear events
 *.disableEvents();
 *.clearEvents();
 // Move to new location
 *.go(Ticket(locName, locAddress));
};

Telescript was an interesting language, following the heritage of
Smalltalk (the original object-oriented language). Unfortunately, Telescript
was a proprietary language and environment and lacked the developer and
research community to survive.

Aglets
As described in the agent architectures section, Aglets is a Java-based
framework for agent construction. In particular, the Java extensions provide
the means for migration of agents (including their data) between hosts that
support the Aglets framework. The Aglet framework was developed at IBM’s
Tokyo research laboratory.

As with Telescript, Aglets supports the development of mobile agents
(using the Aglet class), and also places (implemented as Aglet contexts).
Given their mobility, Aglets communicate using messages which are
supported by the framework. The Aglets framework also support a global
namespace, such that each Aglet is given a unique identifier.

The Aglets API supports the creation of Aglets, cloning of Aglets
(duplication), disposal (removal of the Aglet), and other behaviors. This API
is interesting because it extends a currently popular language with agent
characteristics. This means that developers need not learn a new language

384 Artificial Intelligence

in order to deploy agents (and potentially complex semantics), but instead
simply the new classes for an existing language.

An example of Aglet’s mobility mechanism is provided in Listing 11.4.

Obliq
Obliq was an interpreted language developed by the Digital Equipment
Corporation (DEC). The goal was to create a language in which networking
and migration was a part of the core kernel. The language supports the
migration of procedures across a network as a closure. This provides a
secure form of migration which minimizes the agent’s access to remote host
resources (only those provided by the remote side).

Obliq uses the concept of the hop instruction to migrate to a new host.
The agent is migrated, along with its suitcase, which represents the data that
it may carry with it to the new host. When the agent arrives at the new host,
it receives a briefing, which represents the data made available to it by the
host (a containment mechanism). The briefing can contain more than just
data, and may also describe functions available to the agent and the new host
as well as other agents that are available.

Agent TCL
Agent TCL, as the name implies, is a set of extensions for agent programming
using TCL (Tool Command Language developed at the University of
California at Berkeley). Agent TCL transforms the standard TCL language
and interpreter into a transportable agent system.

One of the features provided by agent TCL is migration. This is provided
by a new command called agent_jump. When the agent_jump
command completes, the agent restarts at the new host at the command
following the previously executed agent_jump command.

In addition to migration using the agent_jump command, Agent
TCL supports those features common in agent frameworks. For example,
communication using message passing, agent creation, cloning, and
destruction commands, and the required features of security.

A portion of a simple example is shown in Listing 11.7.

Listing 11.7: Simple example of agent TCL migration.

Catch any exceptions that occur for the agent_jump command
if {[catch {agent_jump $machine} result]} {
 # Unable to migrate to $machine

Intelligent Agents 385

 puts “Couldn’t migrate...”
} else {
 # Migrated to $machine
 # Notify parent agent of migration
 agent_send $agent(root) 0 “I’m here.\n”
}

Agent TCL is another interesting example of an existing popular language
that’s been extended for agent development.

Traditional Languages
Agent systems have been developed in a wide range of languages, from the
specialized languages designed for AI (domain-specific languages) and also
the more traditional languages in wide use today (C, C++, and others). While
the development of certain types of agent systems may require specialized
capabilities (such as those demonstrated by mobile agent systems, or natural
language systems), an intelligent application can be developed in any
language, from LISP to object-oriented scripting languages such as Ruby.

AGENT COMMUNICATION

In the domain of multi-agent systems, communication is an important
characteristic to support both coordination and the transfer of information.
Agents also require the ability to communicate actions or plans. But how
the communication takes place is a function of its purpose. In this section,
we’ll explore some of the popular mechanisms for communication and their
semantics.

KQML (Knowledge Query and Manipulation Language)
The KQML is an interesting example of communication from a number of
facets. For example, communication requires the ability to locate and engage
a peer in a conversation (communication layer). A method for packaging the
messages is then necessary (messaging layer), and finally an internal format
that represents the messages and is sufficiently expressive to convey not only
information but requests, responses, and plans (content layer).

In a network of KQML-speaking agents, there exists programs to support
communication. These consist of facilitators that can serve as name servers
to KQML components, and help find other agents that can satisfy a given

386 Artificial Intelligence

agent’s request. A KQML router supports the routing of messages and is a
front-end to a specific KQML agent.

As KQML was originally written in Common LISP, it’s message
representation follows the LISP example (balanced parentheses). A KQML
message can be transferred to any particular transport (such as sockets) and
has a format that consists of a performative and a set of arguments for that
performative. The performative defines the speech act which defines the
purpose of the message (assertion, command, request, etc.). For example,
the following describes the KQML message structure (see Listing 11.8). The
performative-name defines the particular message type to be communicated
(evaluate, ask-if, stream-about, reply, tell, deny, standby, advertise, etc.). The
sender and receiver define the unique names of the agents in the dialogue.
The content is information specific to the performative being performed.
This content is defined in a language (how to represent the content), and an
ontology that describes the vocabulary (and meaning) of the content. Finally,
the agent can attach a context which the response will contain (in-reply-to)
in order to correlate the request with the response.

Listing 11.8: The structure of a KQML message.

(performative-name
 : sender X
 : receiver Y
 : content Z
 : language L
 : ontology Y
 : reply-with R
 : in-reply-to Q
)

Let’s now look at an example conversation between two KQML agents.
In this example, an agent requests the current value of a temperature sensor
in a system. The request is for the temperature of TEMP_SENSOR_1A
that’s sampled at the temperature-server agent. The content is the
request, defined in the prolog language. Our agent making the request is
called thermal-control-appl.

(ask-one
 :sender thermal-control-appl
 :receiver temperature-server

Intelligent Agents 387

 :language prolog
 :ontology CELSIUS-DEGREES
 :content “temperature(TEMP_SENSOR_1A ?temperature)”
 :reply-with request-102
)

Our agent would then receive a response from the temperature-server,
defining the temperature of the sensor of interest.

(reply
 :sender temperature-server
 :receiver thermal-control-appl
 :language prolog
 :ontology CELSIUS-DEGREES
 :content “temperature(TEMP_SENSOR_1A 45.2)”
 :in-reply-to request-102
)

KQML is very rich in its ability to communicate information as well
higher-level requests that address the communication layer. Table 11.6
provides a short list of some of the other KQML performatives.

Table 11.6: KQML performatives.
Performative Description
evaluate Evaluate the content of the message
ask-one Request for the answer to a question
reply Communicate a reply to a question
stream-about Provide multiple responses to a question
sorry Return an error (can’t respond)
tell Inform an agent of a sentence
achieve A request of something to achieve by the receiver
advertise Advertise the ability to process a performative
subscribe Subscribe to changes of information
forward Route a message

KQML is a useful language to communicate not only data, but the
meaning of the data (in terms of a language and ontology). KQML provides
a rich set of capabilities that cover basic speech acts, and more complex acts
including data streaming and control of information transfer.

388 Artificial Intelligence

ACL (FIPA Agent Communication Language)
Where KQML is a language defined in the context of a university, the FIPA
ACL is a consortium-based language for agent communication. ACL simply
means Agent Communication Language and it was standardized through the
Foundation for Intelligent Physical Agents consortium. As with KQML, ACL
is a speech-act language defined by a set of performatives.

NOTE The FIPA, or Foundation for Intelligent Physical Agents, is a non-profit
organization that promotes the development of agent-based systems.
It develops specifications to maximize the portability of agent systems
(including their ability to communicate using the ACL).

The FIPA ACL is very similar to the KQML, even adopting the inner
and outer content layering for message construction (meaning and content).
The ACL also clarifies certain speech-acts, or performatives. For example,
communication primitives are called communicative acts, which are separate
from the performative acts. The FIPA ACL also uses the Semantic Language,
or SL, as the formal language to define ACL semantics. This provides the
means to support BDI themes (beliefs, desires, intentions). In other words,
SL allows the representation of persistent goals (intentions), as well as
propositions and objects.

Each agent language has its use, and while both have their differences,
they can also be viewed as complementary.

XML
XML is the eXtensible Markup Language and is an encoding that represents
data and meta-data (meaning of the data). It does this with a representation
that includes tags that encapsulate the data. The tags explicitly define what
the data represents. For example, consider the ask-one request from KQML.
This can be represented as XML as shown below:

<msg>
<performative>ask-one</performative>
<sender>thermal-control-appl</sender>
<receiver>temperature-server</receiver>
<sensor-request>TEMP_SENSOR_1A</sensor-request>
<reply-with>request-102</reply-with>
</msg>

There are some obvious similarities to XML and KQML. In KQML, the
tags exist, but use different syntax than is defined for XML. One significant

Intelligent Agents 389

difference is that KQML permits the layering of tags. Note here that the
<msg> tag is the outer layer of the performative and its arguments. XML is
very flexible in its format and permits very complex arrangements of both
data and meta-data.

XML is used in a number of protocols, including XML-RPC (Remote
Procedure Call) and also SOAP (Simple Object Access Protocol). Each of
these use the Hyper Text Transport Protocol (HTTP) as its transport.

CHAPTER SUMMARY

Intelligent agents are an interesting exploration in artificial intelligence
as they are key users of AI methods and techniques. While agents can
be viewed as an end application of AI, their study introduces concepts of
intelligent systems and fundamental architectures for their implementation.
This chapter provided an introduction to agent systems, characteristics,
and architectures. You’ll find agent systems in games, web applications
(such as user assistance) as well as internally in complex and distributed
applications.

RESOURCES

[ANTS 2003] “Active Networks at the University of Washington,” 2003.
Available online at: http://www.cs.washington.edu/research/networking/ants/.
[Aglets 2002] “Aglets Software Development Kit,” 2002, IBM.
Available online at: http://www.trl.ibm.bom/aglets/.
[Bratman 1987] “Intention, Plans, and Practical Reason,” CSLI Publications,

1987.
[Brooks 1986] “A Robust Layered Control System For a Mobile Robot,”

IEEE Journal of Robotics and Automation, April 1986.
[Google Alerts] Google Alerts, 2006. Available online at:
http://www.google.com/alerts
[Gat 1991] Gat, E. “Integrating planning and reacting in heterogeneous

asynchronous architecture for mobile robots,” SIGART Bulletin 2, 1991.
[Hayes-Roth 1984] Hayes-Roth, Barbara, “BB1: An architecture for

blackboard systems that control, explain, and learn about their own
behavior,” Stanford University, 1984.

[IEEE-1471] “Recommended Practice for Architecture Description of
Software-Intensive Systems.” Also known as ISO/IEC DIS 25961.

390 Artificial Intelligence

Kotz, et al, “Agent Tcl: Targeting the Needs of Mobile Computers,” IEEE
Internet Computing, July/August 1997.

Labrou, et al. “Agent Communication Languages: The Current Landscape,”
University of Maryland, Baltimore County, IEEE Intelligent Systems,
March/April 1999.

Labrou, et al. “A Proposal for a new KQML Specification,” TR CS-97-03,
1997.

Available online at: http://www.cs.umbc.edu/kqml/papers/kqml97.pdf
Laird, John, Newll, Allen, and Rosenbloom, Paul. “Soar: An Architecture for

General Intelligence,” Artificial Intelligence, 33:1989.
Mabry, Susan L., Bic, Lubomir, F. “Bridging Semantic Gaps with Migrating

Agents,” International Conference on Parallel and Distributed
Computing Systems (PDCS), 1999.

Muscettola, et al. “Remote Agent: To Boldly Go Where No AI System Has
Gone Before,” Artificial Intelligence, 1998.

Newell, Allen Unified Theories of Cognition Harvard University Press,
1990.

Nicolescu, Monica, and Mataric, Maja. “A hierarchical architecture
for behavior-based robots,” Proceedings, First International Joint
Conference on Autonomous Agents and Multi-Agent Systems, pages
227-233, Bolgna Italy, July 2002.

“Soar (cognitive architecture),” Wikipedia. Available online at:
http://en.wikipedia.org/wiki/Soar_(cognitive_architecture)

REFERENCES

Franklin, S., and Graesser, A. “Is It an Agent or Just a Program? A Taxonomy
for Autonomous Agents” from the Proceedings of the Third International
Workshop on Agent Theories, Architectures, and Languages, 1996.

Lashkari, Y.; Metral, M.; and Maes, P. 1994. “Collaborative Interface Agents.”
In the proceedings of the Twelfth National Conference on Artificial
Intelligence, 444-450. Menlo Park, CA.

Shaw, M., and Garlin, D. Software Architecture: Perspectives on an Emerging
Discipline Prentice-Hall, 1996.

Stuart Russell, Peter Norvig. Artificial Intelligence: A Modern Approach
Second Edition, Addison-Wesley, 2003.

Ananova, Virtual Newscaster. Available online at:
http://www.ananova.com/video
[RFC 439], Cerf, V. “Parry Encounters the Doctor,” January 21, 1973.

Intelligent Agents 391

EXERCISES

1. In your own words, define how an agent and a program differ.
2. Define the major agent properties and how they affect an agent.
3. Given the agent environment properties in Table 11.2, provide two

environment examples and the properties they support.
4. What other types of interface agents could be used in an Internet

environment?
5. Explore a game environment that supports NPC scripting. How rich is

the script and what kinds of behaviors could be implemented?
6. Describe how Eliza carried out a seemingly intelligent conversation with

a user.
7. Define an advantage of mobile agents over typical systems that rely on

remote communication.
8. If you were to create a new mobile agent framework, describe the

manner in which serialization and migration would occur. How would
your approach differ from the mobile agent frameworks discussed in this
text?

9. Compare and contrast the reactive and deliberative agent
architectures.

10. Explain how communication and coordination work in a blackboard
architecture.

11. While subsumption and behavior networks are both reactive
architectures, they are architecturally very different. Define the two
architectures and how they compare and differ.

12. Homer is a deliberative agent architecture. What is unique about Homer,
and for which applications would it be used?

13. Explain the planning mechanism used by the Procedural Reasoning
System.

14. Telescript and aglets are both mobile agent runtime environments.
Define how each specifies migration.

C h a p t e r12
BIOLOGICALLY
INSPIRED AND
HYBRID MODELS

From the perspective of biologically intelligent systems, we find a hybrid
of methods at play. Humans are adept at numerical computation
and symbolic computation. We support associative memories, and

can recall images and concepts based on incomplete facts. We are highly
parallel and connectionist in nature. In short, we are a hybrid of independent
methods that integrate together and result in the highest form of intelligence
on the planet. In this chapter, we’ll explore some of the hybrid methods that
result from integrating different AI techniques together.

CELLULAR AUTOMATA (CA)

Cellular Automata, or CA, is an interesting example of systems with very
simple rules that exhibit very complex behavior. CAs are discrete systems
that have been used in a variety of contexts, from theoretical biology to
computability theory. A CA is what’s known as Turing complete as it can be
used to compute any computable function, albiet in an unusual fashion.

The first cellular automaton was developed by John Von Neumann and
was based on a conversation with Stanislaw Ulam. The purpose of this first
CA was as a vehicle to understand the conceptual requirements for self-
replicating machines.

394 Artificial Intelligence

CAs can be simply described as a finite-state machine. The states of a
system are then a function of some collection of other states in the system.
At a discrete time step, each state of the system is updated given the other
current states of the system, producing a globally changing system. These
changes can exhibit computation, classification, and even self-replication.

Let’s now look at some cellular automata classes to better understand
their capabilities.

One-Dimensional CAs
The simplest form of CA is the one-dimensional CA. This consists of a row of
cells, where each cell follows a globally defined set of rules. Each cell has a
given state, which is altered at each discrete time step using the global rules.
The cell states can be binary, or take on multiple values.

Additionally, the rules can be simple (such as using the cell states to the
current cell and its two neighbors) up to many neighbors indicating a large
number of rules.

Note that in the case of a rule set that incorporates the state of the
current cell and that of its two neighbors, there are eight rules possible. A

FIGURE 12.1: Simple rule set for our one-dimensional CA.

FIGURE 12.2: Generational behavior of the simple one dimensional CA.

Biologically Inspired and Hybrid Models 395

sample rule set is shown in Figure 12.1. These rules simply define that a cell
is born when a cell in the previous generation appears to its left or right (but
only one) of the current neighborhood.

The result of this rule set (from Figure 12.1) is shown in Figure 12.2,
given the initial generation 0. Note the neighborhood shown in Generation
0 as the bold line in the center (which will use rule 2). We can think of the
cells as living (dark cell) and empty (white cell). The rules then define the
birth criteria for a new cell given the state of its neighbors.

Given such simple rules, the CA is capable of generating very complex
and interesting patterns. But while interesting, one-dimensional CAs are
quite limited. Let’s now take a more detailed look at the CA that extends
another dimension.

Two-Dimensional CAs
The most famous two-dimensional CA was introduced in the 1970s by John
Conway (and popularized through Scientific American). This was called
the Game of Life. First, the universe for this CA is a two-dimensional grid.
Each cell has eight neighbors (for a given cell in the grid, each cell that
surrounds the cell is a neighbor). Like the one-dimensional CA, life occurs
in generations. At each generational step, a new universe is created from the
old. This means that if a cell dies, survives, or gives birth, it occurs in the next
generation (where each cell is manipulated in parallel and births in the new
generation do not contribute to neighbors in the old generation).

The rules of Conway’s Game of Life are very simple (see the Conway
neighborhood shown in Figure 12.3). If a cell is currently alive and has less
than two neighbors, then it dies in the next generation. If a cell is currently
alive and has two or three neighbors, then it survives into the next generation.

FIGURE 12.3: Illustration of the Conway
neighborhood for a specific cell.

FIGURE 12.4: Translation of the glider
object using Conway’s rules.

396 Artificial Intelligence

But if a cell is alive, and has more than three neighbors, then it dies from
overcrowding. Finally, if a cell is vacant but has three neighbors, then it
becomes alive in the next generation. From this very simple set of rules,
very complex behaviors are possible, even to the extent of being Turing
complete.

Note that for Conway’s rule, only the number of neighbors is relevant.
This means that there can be a maximum of 18 rules (nine rules for each of
the cell on or off state). Other rule systems could instead use specific cell
configurations (for a maximum of 512 rules).

A simple example that shows the changes to a universe over time is
shown in Figure 12.4. This example illustrates what is called a glider. This
object moves (translates) diagonally one cell every four generations.

Conway Application
Implementing Conway’s game of life is very simple. A portion of this is
provided below to demonstrate Conway’s rule. Two complete universes must
be maintained which alternately represent the present and past. The contents
of the present universe are generated from the past using Conway’s rules.
Once we determine which universe is the past and which is the present, we
simply apply the rules to the past to identify which cells are set (or reset) in
the future.

O

N THE CD

 The complete source for the Conway’s life application can be found on
the CD-ROM at ./software/ch12/life.c. This application uses ncurses,
which is available in GNU/Linux, or in Cygwin for Windows. Also on the
CD-ROM are sample CA pattern files that can be used to demonstrate
interesting CA objects.

Listing 12.1: Conway’s Life Rule Implementation in C.

void generateUniverse(int gen)
{
 int y, x, neighbors, past, newcell;
 /* Which is the previous universe to test from? */
 past = (gen == 0) ? 1 : 0;
 /* Evaluate each cell from the past to determine what the future cell
 * should be.
 */
 for (y = 0 ; y < MAX_Y_GRID ; y++) {

Biologically Inspired and Hybrid Models 397

 for (x = 0 ; x < MAX_X_GRID ; x++) {
 /* Compute neighbors cells around the current */
 neighbors = cell(past,y-1,x-1) + cell(past,y-1,x) +
 cell(past,y-1,x+1) + cell(past,y,x-1) +
 cell(past,y,x+1) + cell(past,y+1,x-1) +
 cell(past,y+1,x) + cell(past,y+1,x+1);
 /* Conway rule
 *
 * Death (cell on, less than 2 neighbors)
 * Survival (cell on, 2 or 3 neighbors)
 * Birth (cell off, 3 neighbors)
 * Otherwise, new cell is off
 *
 */
 newcell = 0;
 if (cell(past,y,x) && (neighbors < 2)) newcell = 0;
 if (cell(past,y,x) && ((neighbors == 2) || (neighbors == 3)))
 newcell = 1;
 if ((!cell(past,y,x)) && (neighbors == 3)) newcell = 1;
 /* Birth, survival, or death */
 cell(gen,y,x) = newcell;
 }
 }
 return;
}

While Conway’s rule uses eight neighbors to determine the cell state,
we could increase the size of the neighborhood for different interactions.
Also, what’s described here is a homogeneous where each cell implements
the same rule, but cells could operate with different rules, based on their
location or based on a global system state (heterogeneous CA).

FIGURE 12.5: Cellular automata glider gun (P30).

398 Artificial Intelligence

The output of the sample application is shown in Figure 12.5. This shows
a P30 glider gun emitting gliders (to the lower right).

Turing Completeness
The Turing completeness of CA (ability to emulate another computational
model with CA) was proven in Stephen Wolfram’s “A New Kind of Science.”
This book showed that rule 110 of a one-dimensional two-state CA exhibited
the ability to create structures that would support universal computation.
This was exciting because it opened up the possibility of natural physical
systems supporting universal computation.

Emergence and Organization
Cellular Automata, and Conway’s Life, is interesting because even with simple
rule sets such as Conway’s, characteristics such as emergent complexity appear.
Emergence is a property of complex systems and can be very simply described
as the appearance of complex system behaviors from the interactions of the
lower-level elements of the system. The term self-organization has also been
used to describe CA, where the internal organization of a system increases
in complexity without any external guidance or pressure.

ARTIFICIAL IMMUNE SYSTEMS

Autonomic computing systems are those systems that have the ability to manage
themselves for self-configuration, self-optimization, self-protection, and self-
healing. Such systems perform these tasks in a way that mimics human biology.
Our autonomic nervous system, for example, maintains our heart rate and

FIGURE 12.6: The layered architecture of an autonomic computing system.

Biologically Inspired and Hybrid Models 399

stabilizes our body temperature without our conscious involvement. In the same
way, an autonomic computing system allows system administrators to focus on
higher-level business goals instead of the details of system management.

An autonomic computing system is made up of several components that
work in concert to implement self-management capabilities. These components
are implemented in a layered architecture, as shown in Figure 12.6.

At the bottom of the architecture are managed resources, which make
up the elements that the system will monitor and control. These elements
can be high-level information technology (IT) systems (such as servers) or
applications within a single system. The interface to the managed resource is
called a touchpoint. The touchpoint provides a set of Get and Set operations
for monitoring and managing the resource.

At the next level are touchpoint autonomic managers. These autonomic
managers work with the touchpoint to gather data about one or more
resources. An autonomic manager commonly implements an intelligent
algorithm to provide self-management, and when a change is required, you
use the touchpoint again to alter the environment. Each autonomic manager
implements a policy of self-management for self-configuration, self-healing,
self-optimization, or self-protection.

Another set of autonomic managers is called the orchestrating autonomic
managers. These managers provide coordination capabilities over several
lower-level autonomic managers. Finally, at the top of the architecture is
the management console, which you use to monitor the activities of the
autonomic computing system and also define the policies to be used in self-
management.

Self-Management capabilities
Control can exist at multiple layers within the autonomic computing
system architecture but is most often implemented in the autonomic

FIGURE 12.7: Control loop for an autonomic computing element.

400 Artificial Intelligence

managers. The embedded control loop follows a specific flow, though not
all elements may be implemented. Figure 12.7 illustrates the elements
of the control loop.

The monitor element collects and filters incoming data, which results
in a symptom. The symptom is fed to the analyze element, which analyzes
the symptom, potentially performs modeling and analysis of the symptom,
identifies the course of action to take (if any), and generates a change
request. From the change request, the plan element creates a change plan
to achieve the goal. Finally, the execute element executes the plan to achieve
the intended change. The knowledge element encapsulates the shared data
that the monitor, analyze, plan, and execute elements use.

This collection of control loops at the various layers in the autonomic
computing structure implements the attributes of self-management. These
attributes include:

• Self-configuring
• Self-healing
• Self-optimizing
• Self-protecting

Autonomic managers can implement a single self-management attribute
and operate within that domain. Orchestrating autonomic managers can
work with the lower-level autonomic managers within attributes (such as
self-configuring) or across attributes to achieve higher-level goals.

Touchpoints
A touchpoint is an interface to an underlying managed resource. The
touchpoint implements sensor and effector behaviors that higher-level
autonomic managers can use to manage the resource. The sensors gather
information about a resource, and the effectors change the state or behavior
of the underlying resource. A touchpoint may simply present a sensor/
effector interface in the form of an API, or it may implement some level
of internal intelligence to offload from higher-level managers (such as data
filtering or data aggregation).

Touchpoint Autonomic Managers
The touchpoint autonomic managers provide intelligence for managing
resources through their touchpoints. These managers may implement the
control loop (or pieces of it) depending on the goal of the manager.

Biologically Inspired and Hybrid Models 401

A touchpoint autonomic manager implements a policy that you define
(from a management console) to provide for self-configuration, self-healing,
self-optimization, or self-protection. It may do this using a single touchpoint, or
it may work with multiple touchpoints of different types to achieve its goal.

These touchpoints may also provide an interface for orchestrating
autonomic managers. An orchestrating autonomic manager may manage
across self-management disciplines and therefore provide control over two
or more touchpoint autonomic managers.

Orchestrating Autonomic Managers
A touchpoint autonomic manager manages a single resource through the
touchpoint for that managed resource. Orchestrating autonomic managers
coordinate across touchpoint autonomic managers to provide system-wide
autonomic behavior.

Orchestrating autonomic managers may operate in one of two
configurations. In the first configuration, the managers coordinate touchpoint
autonomic managers of the same type (such as self-configuration autonomic
managers). In the second configuration, the managers coordinate across
disciplines (such as working with a self-protecting touchpoint autonomic
manager and a self-healing touchpoint autonomic manager). In either case,
the orchestrating autonomic managers have greater visibility into the system
to be managed and can better contribute to overall system management.

Further, autonomic managers at all layers can work against each other
to achieve their goals. An orchestrating autonomic manager that views the
underlying system from a greater perspective (having greater visibility into the
overall system than a focused autonomic manager) can more optimally manage
the system from one or more self-management disciplines. For example,
consider two self-optimizing autonomic managers that attempt to manipulate a
common parameter for independent goals. It’s possible that in their competing
goals, they de-tune each another, resulting in no optimization. An orchestrating
autonomic manager could help arbitrate situations such as these.

Integrated Management Console
At the top of the layered autonomic computing architecture is the Integrated
Management Console (see Figure 12.8). This console is the user interface
(UI) for the autonomic system. It allows you to manage the system and define
the policies for self-management. It also allows you to monitor the activities
of the autonomic system. Depending on the behavior of the system, you can
change policies to better manage the system and achieve your goals.

402 Artificial Intelligence

The integrated management console provides a single platform that can
monitor and manage all elements of the autonomic computing system.
This management includes not only initial configuration but also run-time
monitoring and tuning. In the next tutorial, you’ll see an example of an
integrated management console built on the HTTP web protocol.

Autonomic Summary
Autonomic systems is an interesting architectural pattern for the
development of intelligent systems. It’s built around a layered architecture
with very distinct responsibilities at each of the layers. The autonomic
systems pattern can be used to develop a wide range of systems, from those
that protect and manager servers (such as IBM’s goal for autonomic systems)
to the development of intelligent agent systems.

ARTIFICIAL LIFE

Artificial Life (or alife) is the study of life through simulation. It’s also more
commonly associated with the evolution of simple life forms that exhibit some
desired behavior. For example, early alife simulations focused on the ability
to breed creatures with varying control systems that could survive in their
environments. Other simulations focused on economic behaviors and trading,
and others on the synthesizing of life, albiet in a form different than our own.

NOTE Note that the earlier discussion of Cellular Automata was a form
of artifical life (prior to the term being coined). CAs are low-level
implementations of artificial life (at the cell level) where the rules and
state of the environment determine behaviors.

FIGURE 12.8: Integrated Management Console.

Biologically Inspired and Hybrid Models 403

In this section, we’ll explore some of the examples of artificial life and
then look at a simple simulation that demonstrates the basic properties of
artificial life and simulated evolution.

Echo
John Holland, a pioneer in the field of complex adaptive systems, created one
of the earliest artificial life simulations called Echo. Holland’s Echo provides
an environment where agents interact in activities such as combat, mating,
and trade. Along the way, agents develop strategies to survive and compete
in environments that are resource constrained. The environments and
agents include the necessary “knobs” to tweak the simulation’s parameters
to provide the ability to play “what-if” experiments.

Holland’s Echo remains an important artificial-life simulation and is
unique in its economic modeling.

Tierra
Tierra is another interesting simulator for the evolution of artificial life
(from Tom Ray). In particular, the life in this simulator consists of evolved
programs. The environment consists of a simulated computer where the
evolved life execute. The programs vie for CPU time (energy) to execute
and then reproduce in the environment (the RAM-space).

With Tierra, very complex behaviors have been evolved, including
complex interactions between agents. For example, evolutionary arms races
have been observed including host/parasite relationships of agents. Tom Ray’s
Tierra is another useful simulator for the study of evolution and ecology of
novel agents in a unique environment.

Simulated Evolution
Let’s now look at a simulation that provides the basic elements necessary
to support evolution through natural selection. We’ll start with a review of
the environment, and then review the bug (agent in the environment), its
sensors, and available actions. Finally, we’ll look at a portion of the simulation
to better understand how it works.

Environment
The environment for our simulation is a simple N x N grid. The environment
contains cells that can be empty, or occupied by a bug or food. The
environment typically contains a number of cells with food, and a lesser
number of bugs.

404 Artificial Intelligence

The goal is to evolve a bug such that it can survive in the environment.
With each step that the bug takes, it loses energy. If the bug’s energy falls to
zero, then it dies and is replaced by a mutated version. But if the bug is the
oldest in the simulation, then it is allowed to be reborn without mutation.
This allows the simulation to breed in an elitist fashion. The best bug is
reborn without modification, but lesser bugs are mutated in the hopes that
the mutation produces a better bug. If it does, one could postulate that
evolution is occurring.

If a bug moves into a cell that contains food, then the food is consumed
by the bug and a new food item placed somewhere else in the environment
(into an empty cell). Each time food is consumed, energy is increased for the
bug. But each time a move is made, energy is consumed. The goal, therefore,
is to create a bug that is constantly in search of food to minimize energy use
and maximize energy consumption.

The Bug (or Agent)
The bugs that populate the environment are provided with a reactive control
system that reads the current state of the surrounding environment, and then
chooses an option based on the sensor inputs. Let’s begin with a discussion
of the input sensor.

Figure 12.9 provides a diagram of the bug’s field of perception. The bug
is at the center (and if food had been present, it would have been consumed).
There are eight separate fields in the bug’s view. At the top left (field 0) are
four cells. If a food item is present in any one of these, then the sensor input
0 is set. Similarly, sensor 1 contains two cells, and if either of them contain
a food item, the sensor input is set.

FIGURE 12.9: Bug’s field-of-view in the
environment.

FIGURE 12.10: Sample environment with
sensor classification.

Biologically Inspired and Hybrid Models 405

Let’s the look at the application of the sensor for a bug in an environment
(see Figure 12.10). This example shows a 9 by 9 fragment of the environment.
The cells marked with ‘F’ are food, while the center marked ‘B’ is the
location of the bug in question. The bold lines differentiate the sensor inputs
as defined before in Figure 12.9. At the bottom of Figure 12.10 is the sensor
input that results from the environment. Note that the number of elements
isn’t as important as the existence of a food item in that sensor region.

The bug is provided with a minimal set of actions, essentially the ability
to move North, South, East, or West as a single move. The reactive control
system for the agent is then simply a sensor mapping for direction given a
classification of the inputs. The classification that matches closest is the one
permitted to execute. Note that in the case of a tie, we’ll take the first action
that was encountered. A sample classifier is shown in Figure 12.11. The
classifier can be difficult to read, as it’s a function of the environment, but
one thing that does stand out is that the agent has a motivation to move to
the East (as it matches all sensor inputs excepot for North). This particular
classifier was evolved by the simulator and could survive for tens of thousands
of moves.

Let’s now look at the moves that will be made by our bug given the
evolved control system shown in Figure 12.11. In Figure 12.12 is our original
environment from Figure 12.10. We’ll apply the classifer and count the
number of matches (number of times a sensor is non-zero, and the classifier
element is non-zero). The sum of these determines the applicability of the
classifier to the current environment. The one with the highest (or the first
if there is more than one) is chosen as the action to take.

For the initial position of the bug (as shown in Figure 12.12), the
classifier counts are North (2), South (3), West (2), and East (4). Using the
largest match (4), the bug makes a move to the East. The remaining moves
can be determined by the reader, but considering the agent’s initial energy

FIGURE 12.11: Sample classifier evolved in
the simulation.

FIGURE 12.12: Moves selected by the bug
given the classifer in Figure 12.11.

406 Artificial Intelligence

of 10, a food value of 5, and the cost of a move 1, the agent’s ending energy
is 20. The control system evolved for this bug is obviously beneficial and
allows it to find and consume food in its environment.

In Listing 12.2 is the core of the simulation which is used to determine
the next move to make for the current bug. Any number of bugs can be
competing in the environment at the same time, so this focuses on one. After
adjusting the bug’s age, the current sensors are evaluated given the bug’s
position and the environment. The sensors are then matched to the classifiers
and the one that matches best is chosen. The bug is moved, and if food is at
the new location, it is consumed and the bug’s energy is increased.

O

N THE CD

 The full source for the artificial life simulation can be found on the CD-
ROM at ./software/ch12/simevol.c.

Listing 12.2: Core of the bug simulation - the action selection routine.

void makeMove(bug_t *bug)
{
 unsigned char sensors[MAX_SENSORS];
 unsigned char c_sum[MAX_CLASSIFIERS];
 int x, y, c, s;
 /* Age the bug so we know how long it lived */
 bug->age++;
 /* Keep track of the oldest bug */
 if (bug->age > maxAge) maxAge = bug->age;
 /*
 * Sensors:
 * 00122
 * 00122
 * 33.44
 * 55677
 * 55677
 *
 */
 y = bug->loc.y;
 x = bug->loc.x;
 /* Function env returns the contents of the cell */
 sensors[0] = env(y-2,x-2) + env(y-2,x-1) + env(y-1,x-2) + env(y-1,x-1);
 sensors[1] = env(y-2,x) + env(y-1,x);
 sensors[2] = env(y-2,x+2) + env(y-2,x+1) + env(y-1,x+2) + env(y-1,x+1);

Biologically Inspired and Hybrid Models 407

 sensors[3] = env(y,x-2) + env(y,x-1);
 sensors[4] = env(y,x+2) + env(y,x+1);
 sensors[5] = env(y+2,x-2) + env(y+2,x-1) + env(y+1,x-2) + env(y+1,x-1);
 sensors[6] = env(y+2,x) + env(y+1,x);
 sensors[7] = env(y+2,x+2) + env(y+2,x+1) + env(y+1,x+2) + env(y+1,x+1);
 /* Match the classifiers to the sensors */
 for (c = 0 ; c < MAX_CLASSIFIERS ; c++) {
 c_sum[c] = 0;
 for (s = 0 ; s < MAX_SENSORS ; s++) {
 if (bug->classifier[c][s] && sensors[s]) c_sum[c]++;
 }
 }
 /* Now pick the classifier (action) with the closest match */
 s = 0;
 for (c = 1 ; c < MAX_CLASSIFIERS ; c++) {
 if (c_sum[c] > c_sum[s]) s = c;
 }
 /* Remove the bug from the current location */
 setLocation(bug->loc.y, bug->loc.x, “ “);
 /* Change location */
 bug->loc.y = upd(bug->loc.y+actions[s].y);
 bug->loc.x = upd(bug->loc.x+actions[s].x);
 /* Is there food at this new location? */
 if (environment[bug->loc.y][bug->loc.x]) {
 /* Consume food and increase energy */
 bug->life += FOOD_VALUE;
 environment[bug->loc.y][bug->loc.x] = 0;
 /* Add another food to the environment */
 findEmptySpot(&y, &x);
 environment[y][x] = 1;
 setLocation(y, x, “*”);
 }
 /* Reduce energy for move */
 bug->life--;
 /* Bug has died, mutate */
 if (!bug->life) mutateBug(bug);
 /* Place the bug back into the environment */
 setLocation(bug->loc.y, bug->loc.x, “B”);
 return;
}

408 Artificial Intelligence

If the bug dies because it runs out of energy, a function called mutateBug
is invoked. This function checks to see if the current bug is the longest lived
of the current set, and if so, it’s allowed to be reborn without mutation.
Otherwise, the classifiers of the bug are mutated at a given rate. The bug’s
age is then set to zero (a newborn) and the simulation continues. This is the
natural selection portion of the simulation. If the bug is the best, it is the
fittest and is permitted to continue without modification. Otherwise, the bug
is mutated at some rate and the new bug is evaluated in the environment.
This allows the simulation to maintain the best bug, but then mutate the
others that don’t measure up with the intent that these will evolve into
better bugs.

When that happens, the older elitist bug will be mutated, causing the
process of competition to continue.

Variations of Artificial Life
In addition to artificial life used in the form of natural selection and synthetic
evolution, the concepts have also been applied in such fields as artificial
chemistry. This was started in the artificial-life community as a way to
simulate the processes of chemical reactions.

Lindenmayer Systems
Lindenmayer Systems (otherwise known as L-systems) are a model of
biological development that’s based on mathematical formalisms. An
interesting characteristic of biological forms is that they are branched in their
growth. The two most prevalent uses of L-systems are in the generation of
fractals and in the realistic modeling of plants. But L-systems have found
there way into other applications such as generation of neural network
structures (nodes and their connections). This section will provide an
introduction to L-systems and the basics of grammar rewriting systems.

FIGURE 12.13: Simple L-system illustrating a basic transformation.

Biologically Inspired and Hybrid Models 409

At the core of an L-system is a rewriting system. Given an alphabet, and
a set of rules for alphabet transformation, the ability to transform an element
from the alphabet, or a sequence of elements from the alphabet is provided.
This is sometimes referred to as a substitution system.

Let’s now look at a couple of simple examples. The first is shown in
Figure 12.13 and demonstrates an L-system of a two-letter alphabet and two
rules. At each step, the current string is rewritten to the string below. Each
letter undergoes a transformation, as indicated by the connecting lines.

Another example is provided in Figure 12.14. In this example, our
alphabet consists of the numbers 0 and 1. Note the symmetry produced
by this substitution system. At every other generation, the initial string is
reproduced but at twice the size.

Each of these examples are a class of L-systems called deterministic
and context-free. From the branching behaviors seen in the previous
two examples, we can see how they could be applied to neural network
architectures. Now let’s look at how L-systems are used to generate graphical
structures, which could also be used for neural network structures.

Consider the example shown in Figure 12.15. With a single rule, we’re
able to generate a branching tree structure. But note at the rightmost portion
of the figure is the representation as a two-layer neural network.

FIGURE 12.14: Simple L-system illustrating symmetry of string generation.

FIGURE 12.15: Simple L-system resulting in a neural network topology.

410 Artificial Intelligence

L-systems (of the bracketed form) can develop very life-like plant
structures (as shown in Figure 12.16). The bracketed L-system includes
operators for pushing and popping branches. This allows a trunk to be
branched, to operate on that branch, and then revert back to the trunk.

FUZZY SYSTEMS

Fuzzy logic is an ideal way to take analog concepts from the real world and
make them manageable in the discrete world of computer systems. Instead
of dealing with crisp values and their semantics, we deal instead with
membership in sets that represent the semantics of the value system. In this
way, we can operate in the domain of conditional expressions using degrees
of membership in fuzzy membership functions.

Fuzzy logic was created by Lotfi Zadeh at the University of California at
Berkeley in 1965. The method was controversial, but adopted with success in
Japan in a variety of successful applications. Adoption in the U.S. was much
slower, but applications have grown with this method. This is because fuzzy
logic can be easily implemented in low cost and low-end microprocessors.

Introduction to Fuzzy Logic
From a control perspective, fuzzy logic solves a real problem when

considering the semantics of values. In human language, we talk about
discrete states, but this creates problems for continuous ranges of values.
For example, we can refer to temperature as hot or cold, but what do they
really mean? Further, if we try to build logic based on a discrete factor such
as cold, we quickly run into problems. The continuous nature of things like
temperature are not well suited for the binary nature of logic. For example,

FIGURE 12.16: A plant structure created by simple L-system rules.

Biologically Inspired and Hybrid Models 411

if we have just two temperatures, then there’s a temperature by which we
transition from cold to hot, and the real world doesn’t work that way.

The answer is to use a mechanism that takes real-world ranges and
translates them into discrete states, but in a fuzzy way. For example, instead
of our temperature being hot or cold, our temperature is instead a member
of the states. Let’s look at an example to illustrate this further.

Figure 12.17 provides graph indicating the membership functions for our
temperature states. A membership function is one that defines the degree
of membership for a value to a given state (instead of simple true or false,
as would be the case for traditional logic). For example, if our temperature
is T1 or below, then we can say that the temperature is 1.0 cold and 0.0 hot.
But since the membership for hot is 0, we can omit it. On the other side,
temperature T3 is 1.0 hot and 0.0 cold (or simply, Hot).

Between T1 and T2 is where fuzzy logic begins to make sense. For
example, at temperature T2, the fuzzy temperature is 0.5 cold and 0.5 hot.
So it’s neither hot, nor cold. This allows us to refer to temperatures in human
terms, while allowing a computer to deal with them in a numeric sense (in
terms of membership in a temperature category).

NOTE Note in Figure 12.17 that there’s not a distinct jump from the cold state to
the hot state. Instead there’s a gradual transition from cold (1.0 / 0.0) to
warm (0.5 / 0.5) to hot (0.0 / 1.0) with many intermediate states between.
This is the power behind fuzzy logic. Rather than distinct steps, there’s
a gradual transition between the two.

Fuzzy Logic Mapping
Let’s now explore how we would represent the fuzzy membership in a simple
application. Let’s return to our temperature example, but in this case, we’ll
note values for each in order to develop the membership functions.

FIGURE 12.17: Fuzzy logic membership for temperature.

412 Artificial Intelligence

Figure 12.18 provides a graph of the membership functions for the
cold and hot temperatures. As shown, if the temperature is 45 degrees F or
below, then it’s cold. If it’s 75 degrees F or above, the temperature is hot. At
a temperature of 60 degrees F, it’s both cold (0.5) and hot (0.5).

We can represent this very easily as is shown in Listing 12.3. The two
membership functions m_cold and m_hot test for the extreme, and
then the slope to determine the membership degree. The slope calculation
returns the y value between two x coordinates.

Listing 12.3: Encoding fuzzy logic membership functions for temperature.

/* Calculate y value of slope between two x coordinates */
#define downslope(x, left, right) ((right-x) / (right-left))
#define upslope(x, left, right) ((x-left) / (right-left))
float m_t_cold(float x)
{
 float left = 45.0;
 float right = 75.0;
 if (x <= left) return 1.0;
 else if (x >= right) return 0.0;
 else return downslope(x, left, right);
}
float m_t_hot(float x)
{
 float left = 45.0;
 float right = 75.0;
 if (x <= left) return 0.0;
 else if (x >= right) return 1.0;
 else return upslope(x, left, right);

FIGURE 12.18: Temperature membership functions.

Biologically Inspired and Hybrid Models 413

}
int main()
{
 float x;
 x = 45.0;
 printf(“%fF is Cold(%f) and Hot(%f)\n”, x, m_t_cold(x), m_t_hot(x));
 x = 60.0;
 printf(“%fF is Cold(%f) and Hot(%f)\n”, x, m_t_cold(x), m_t_hot(x));
 x = 75.0;
 printf(“%fF is Cold(%f) and Hot(%f)\n”, x, m_t_cold(x), m_t_hot(x));
 return 0;
}

To build a fuzzy logic application, let’s introduce one more set of fuzzy
membership functions. These will represent pressures, but these will be a
little different than those for temperature. For our pressure measurement,
we’ll provide three fuzzy membership functions; low, nominal, and high. But
in this case, we’ll introduce a trapezoid membership function for nominal that
extends to both the low-and high-pressure fuzzy values (see Figure 12.19).

These new pressure membership functions are implemented as shown
in Listing 12.4. The low and high pressure is implemented similarly to the
temperature functions. The nominal pressure function includes support for
two slope functions and also a plateau.

Listing 12.4: Encoding fuzzy logic membership functions for pressure.

float m_p_low(float x)
{
 float left = 40.0;

FIGURE 12.19: Pressure membership functions.

414 Artificial Intelligence

 float right = 70.0;
 if (x <= left) return 1.0;
 else if (x >= right) return 0.0;
 else return downslope(x, left, right);
}
float m_p_nominal(float x)
{
 float left_b = 40.0;
 float left_t = 70.0;
 float right_t = 90.0;
 float right_b = 120.0;
 if (x <= left_b) return 0.0;
 else if ((x > left_b) && (x < left_t))
 return upslope(x, left_b, left_t);
 else if (x >= right_b) return 0.0;
 else if ((x > right_t) && (x < right_b))
 return downslope(x, right_t, right_b);
 else if (x >= right_b) return 0.0;
 else return 1.0; /* For Plateau */
}
float m_p_high(float x)
{
 float left = 90.0;
 float right = 120.0;
 if (x <= left) return 0.0;
 else if (x >= right) return 1.0;
 else return upslope(x, left, right);
}

Fuzzy Logic Operators
The term fuzzy logic implies that there are logical operations that can be
performed. Fuzzy logic is applied as a set of if/then rules using the fuzzy
membership functions. The fuzzy logic operators mimic those provided in
traditional logic, but differ in their details. The three fuzzy logical operators
are NOT, AND, and OR. These are defined as:

NOT x = (1.0 - x)
x AND y = minimum(x, y)
x OR y = maximum(x, y)

Biologically Inspired and Hybrid Models 415

The resulting values are normalized to arrive at a binary logic value. If
the result is 0.5 or greater, then the normalized value is 1.0. Otherwise, the
normalized value is 0.0. Listing 12.5 explores the implementation of these
operators.

Listing 12.5: Fuzzy operators implmentation.

#define EXTEND(x) (((x) < 0.5) ? 0.0 : 1.0)
float f_and(float x, float y)
{
 if (x < y) return x;
 else return y;
}
float f_or(float x, float y)
{
 if (x < y) return y;
 else return x;
}

Fuzzy Control
Let’s use our previously defined temperature and pressure membership
functions to demonstrate the fuzzy operators in a fuzzy control system. In
the previous listings, we provided membership functions for a device from
which we can read temperatures and pressures. Our device has a control
mechanism that can be throttled high, medium, or low, depending on the
state of the sensors. Let’s now define a couple of rules to control the throttle
(see Listing 12.6).

Listing 12.6: Natural language rules for managing the throttle.

if (temperature is hot) AND (pressure is high) then
 throttle = low
endif
if ((temperature is cold) AND
 (pressure is low) OR (pressure is nominal)) then
 throttle = high
endif

The rules shown in Listing 12.5 are very easily translated into an
application using fuzzy logic as shown in Listing 12.6 (note that the

416 Artificial Intelligence

EXTEND function simply extends the fuzzy value to a binary value). These
functions provide the fuzzy rules for throttle management given temperature
and pressure values.

Listing 12.6: Fuzzy rules for throttle management.

if (EXTEND(f_and(m_t_hot(t), m_p_high(p)))) {
 /* Set throttle to high */
}
if (EXTEND(f_and(m_t_cold(t), f_or(m_p_low(p), m_p_nominal(p)))))
{
 /* Set throttle to low */
}

This simple example illustrates the power behind fuzzy logic. Given a set
of natural language rules, real-world analog values can be transformed into
fuzzy values which can then be manipulated through a set of fuzzy operators.
This makes it easier to understand and debug.

Fuzzy logic brings the fuzzy nature of the real world to the binary nature
of computer systems. You’ll find fuzzy logic in image processing, machine
vision, robot navigation, medicine, and in telecommunications.

EVOLUTIONARY NEURAL NETWORKS

An interesting combined biological metaphor of AI is the evolution of neural
networks. As we explored in Chapter 8, neural networks can be trained and
constructed in a number of ways, but evolution of neural networks offers
some signficant advantages to other methods. For example, by evolving
neural networks, we can not only evolve the weights of a network, but also
its topology (the connectivity of the neurons). This allows us to construct
networks with very specific constraints, such as size, or minimal connectivity
but still solve the problem at hand.

In this section, we’ll explore two methods for neural network evolution
and then return to our artificial-life example to evolve networks to control
bugs in synthetic environments.

Genetically Evolved Neural Networks
One of the most common and simplest methods for evolving neural networks
is simple weight evolution. This implies that the architecture of the network

Biologically Inspired and Hybrid Models 417

is already formed, and what’s missing is the weights that connect the cells
of the network.

The evolution of the weights is provided by the genetic algorithm.
For this reason, this type of solution is typically called GANN (or Genetic
Algorithms/Neural Networks). The weights of the neural network are
defined in a chromosome which has a direct mapping to the weights of the
network. Figure 12.20 shows an example of this representation. On the left
is the chromosome that represents the weights of the network; each weight
is represented as its own gene in the chromosome.

Once a random population of chromosomes is created, their fitness is
based on how well they solve the given problem when the weights in the
chromosome are applied to the neural network. The better they solve the
problem, the more likely they are to be selected for recombination and to
survive to future generations. Recall the discussion of Genetic Algorithms
in Chapter 7.

The basic disadvantage to this method is that an assumption is made on
the architecture that it will solve the problem at hand. This assumption may
not be correct, but the network architecture can be altered and new weights
evolved. This property can sometimes be advantageous if we’re attempting to
understand the limits of a given network architecture. Given a small network,
how well does it solve a given problem? Or given a particular network
topology, can it solve a given problem? In this way, we can choose a network
that classifies perhaps 95% of the inputs, but 5% are left unclassified, which
may be suitable for the problem at hand.

Another method for the evolution of neural networks involves
creating both the network architecture and the weights. This means that
the weights and the architecture of the network must be encoded into
the chromosome. A very common way to achieve this is by creating a
chromosome that unfolds into a connectivity matrix. The connectivity

FIGURE 12.20: Combining neural networks with genetic algorithms.

418 Artificial Intelligence

matrix defines the weights between the cells of the network. For example,
in Figure 12.21, we see the entire flow from chromosome to connectivity
matrix to neural network. The chromosome is a simple one-dimensional
string that is folded to become a two-dimensional matrix. Each cell in the
matrix represents a single weight. Wherever a zero appears in the matrix,
no connection exists.

Using this method, we can evolve neural networks of various sizes and
connectivity. The example shown in Figure 12.21 is a simple multilayer
feed forward network, but this method also supports recurrent connections
(where neurons feed back to neurons in lower layers). Connections that
bridge unconnected layers are also possible (for example, input layer neurons
feeding directly to the output layer).

Evolving the weights and topology has some interesting advantages
over simple weight evolution. Many times the correct network architecture
is not intuitive. There are also times that the problem is simpler than we
originally thought, and therefore a simpler solution can be found. The fitness
parameters for the genetic algorithm can be tuned to not only find the
solution to the problem, but also the one that requires the fewest number of
neurons, or fewest connections between neurons. For this reason, evolving
the network topology is preferred.

Another approach to neural network evolution (related to the genetic
algorithm) is through what can be called synthetic evolution (or situated
evolution). In this method, the neural networks compete with one another
in a form of survival of the fittest. In genetic algorithms, this can be called
elitist selection, as only the fittest is permitted to remain in the population.
All other members must be mutated in some way to extend the search for
an optimal network.

FIGURE 12.21: The connectivity matrix representation of a neural network.

Biologically Inspired and Hybrid Models 419

Simulated Evolution Example
Let’s return to our bug example for artificial life, and apply the concepts of
neural network evolution. Recall that the environment is made up of a grid
that contains cells of food, other bugs, or nothing. Bugs survive by occupying
the same cell food (which is consumed), thereby increasing their health. For
each move that a bug makes, it’s health is reduced. Therefore, the bug must
find food, otherwise it will die. Therefore, the neural network controlling
the bug must be in constant search of food.

Recall from Figure 12.9 that the field of perception for the bug is the
24 surrounding cells. These cells are grouped into eight regions that serve
as the input to the neural network (see Figure 12.22).

The agent implements a simple two-layer neural network. Each cell in
the input layer connects to each cell of the output layer. The output layer
contains four cells, which represent the actions that are possible by the bug
(North, South, East, West). The neural network implements the winner-
takes-all strategy, which simply means that the output node with the largest
value is the cell that fires (the action to be taken).

The power that guides the evolution of the bugs is simply survival of the
fittest. If a bug is the most fit (longest living), then it is permitted to be reborn
without mutation. Any bug that dies (and is not the most fit) is mutated and
then reborn. In this way, lesser fit bugs are modified and have the potential to
be reborn with a better strategy, thereby taking the most fit role and forcing
the previously fit bug to be mutated. This process continues for some number
of iterations, and in the end, the best bug is emitted with its neural network.
The action selection routine for the neural network version of the simulated
bugs is shown in Listing 12.7.

O

N THE CD

 The complete source for evolved neural network application can be
found on the CD-ROM at ./software/ch12/nnevol.c. This application uses
ncurses, which is available in GNU/Linux, or in Cygwin for Windows.

FIGURE 12.22: Agent field-of-view to neural network inputs.

420 Artificial Intelligence

Listing 12.7: Neural network action selection function.

void makeMove(bug_t *bug)
{
 short sensors[MAX_SENSORS];
 short outputs[MAX_ACTIONS];
 int x, y, a, s, best;
 /* Age the bug so we know how long it lived */
 bug->age++;
 /* Keep track of the oldest bug */
 if (bug->age > maxAge) maxAge = bug->age;
 /*
 * Sensors:
 * 00122
 * 00122
 * 33.44
 * 55677
 * 55677
 *
 */
 y = bug->loc.y;
 x = bug->loc.x;
 /* Function env returns the contents of the cell */
 sensors[0] = (env(y-2,x-2)+env(y-2,x-1)+env(y-1,x-2)+env(y-1,x-1)) ? 1 : 0;
 sensors[1] = (env(y-2,x) +env(y-1,x)) ? 1 : 0;
 sensors[2] = (env(y-2,x+2)+env(y-2,x+1)+env(y-1,x+2)+env(y-1,x+1)) ? 1 : 0;
 sensors[3] = (env(y,x-2) +env(y,x-1)) ? 1 : 0;
 sensors[4] = (env(y,x+2) +env(y,x+1)) ? 1 : 0;
 sensors[5] = (env(y+2,x-2)+env(y+2,x-1)+env(y+1,x-2)+env(y+1,x-1)) ? 1 : 0;
 sensors[6] = (env(y+2,x) +env(y+1,x)) ? 1 : 0;
 sensors[7] = (env(y+2,x+2)+env(y+2,x+1)+env(y+1,x+2)+env(y+1,x+1)) ?
1 : 0;
 /* Feedforward the input sensors through the neural network */
 for (a = 0 ; a < MAX_ACTIONS ; a++) {
 outputs[a] = 0.0;
 for (s = 0 ; s < MAX_SENSORS ; s++) {
 outputs[a] += bug->network[a][s] * sensors[s];
 }
 }
 best = 0;

Biologically Inspired and Hybrid Models 421

 /* Winner-takes-all output node selection */
 for (a = 1 ; a < MAX_ACTIONS ; a++) {
 if (outputs[a] > outputs[best]) best = a;
 }
 /* Remove the bug from the current location */
 setLocation(bug->loc.y, bug->loc.x, “ “);
 /* Change location */
 bug->loc.y = upd(bug->loc.y+actions[best].y);
 bug->loc.x = upd(bug->loc.x+actions[best].x);
 /* Is there food at this new location? */
 if (environment[bug->loc.y][bug->loc.x]) {
 /* Consume food and increase energy */
 bug->life += FOOD_VALUE;
 environment[bug->loc.y][bug->loc.x] = 0;
 /* Add another food to the environment */
 findEmptySpot(&y, &x);
 environment[y][x] = 1;
 setLocation(y, x, “*”);
 }
 /* Account for move */
 bug->life--;
 /* Bug has died */
 if (!bug->life) mutateBug(bug);
 setLocation(bug->loc.y, bug->loc.x, “B”);
 return;
}

FIGURE 12.23: Sample evolved agent neural network.

422 Artificial Intelligence

A sample bug that was able to survive for many thousands of iterations
is shown in Figure 12.23. This neural network contains only six connections,
but remains a stable strategy for finding food in the environment. Each of
the four actions are covered by inputs, but based on action selection, some
actions are favored over others. For example, the winner-takes-all will select
the largest output cell, but if there’s a tie, it will choose the largest that was
found first. In this way, if there’s a tie between all actions, the North action
will be chosen.

NOTE The neural network shown in Figure 12.23 shows only activitory links
(inputs contribute positively toward actions). The network could have
also included inhibitory links leading to more complex strategies.

The strategy is fairly straightforward from looking at the network. If food
lies to the North, then the North action is taken. If food is to the Southeast,
then the South action is taken. But if food lies to both the Southeast and to
the East, then the East action is taken (East is also selected if food lies to the
East). Finally, if food lies to the West or NorthWest, then the West action
is taken. This strategy is shown visually in Figure 12.24. In this example, we
can see the agent’s preference to move North and East when food lies in
those directions.

The use of evolved neural networks is interesting in this application
because in effect the evolution provides a form of training with competetion.
The best bug is permitted to remain in the environment without being
mutated, but once a new bug appears that is more fit, then it takes over the
most fit role and the previous bug’s neural network is mutated. In this way, the
bugs compete against one another to not be mutated. Mutation isn’t necessarily
a bad thing, as ultimately a mutated bug will take the most fit spot.

FIGURE 12.24: Visual display of the bug’s strategy.

Biologically Inspired and Hybrid Models 423

ANT COLONY OPTIMIZATION (ACO)

Ant Colony Optimization, or ACO, is a biologically inspired optimization
method that is very useful for solving problems in physical space. As the
name implies, ACO is an optimization algorithm using simulated ants. Recall
that ants have the ability to build invisible trails made up of pheromones.
These trails can be used to lead ants to and from food, thus optimizing their
roundtrip times to the food and back to the nest.

In the same way that ants place down pheromone trails to collectively
optimize the food forraging strategy (in a process known as stigmergy), this
same concept can be used in a variety of problem domains, from network
routing to pathfinding, and more.

The basic idea behind ACO can be visualized with a graph. Consider
the nodes of a graph as locations, and edges as the path between those
locations. A collection of ants are distributed around the graph and then
probabilistically choose their path based on the strength of the pheromone
on the edges open for them to take. The higher the pheromone level on an
edge, the more likely they are to take that edge. After the ants complete
a tour of the graph, their tour is measured (using whatever scheme is
meaningful for the problem), and a new pheromone is placed on the tour
representative with its fitness. Over time, the correct path becomes clear,
and each ant begins to take the path found by others. From this simple
description, one can see how this models the strategy used by ants using the
process of stigmergy.

Traveling Salesman Problem (TSP)
Let’s now have a look at the ACO algorithm as applied to the traveling
salesman problem (finding the shortest or cheapest path through a graph of

FIGURE 12.25: Simple graph to demonstrate TSP tours.

424 Artificial Intelligence

locations, visiting each location only once). The Traveling Salesman Problem
(or TSP) was first explored in the 1800s.

Consider the simple graph shown in Figure 12.25. This simple graph
consists of four cities (labeled A-D). Each city is connected to each other,
so that the salesman can take any path. This means that a tour through all
cities could be A->C->D->B->A (for a complete tour, the salesman must
end back at the originating city), or A->B->D->C->A. Each of these tours is
suboptimal, with one of the two optimal tours being A->B->C->D->A.

The TSP is an NP-hard problem, but various algorithms and heuristics
have been devised to solve it (such as branch-and-bound algorithms or
progressive improvement algorithms). ACO may not find the optimal path,
but it will find a good one.

An interesting advantage to the ACO algorithm to TSP is dynamic
changes to the cities. For example, if cities are added or removed, the ACO
can run continuously and adapt to the changes dynamically, yielding a good
solution.

ACO Algorithm
The elements that make up the ACO are the graph (set of cities, assuming
fully interconnected and bidirectional), and a population of ants. Each ant
maintains a set of information about its movement, what cities it has visited,
and which remain for the tour. The length of the tour is also calculated along
the way, which is used by the ant algorithm.

The ant algorithm then relies on a number of simple steps that are
repeated for some number of iterations. These are:

• Distributing Ants to the Graph
• Performing a Tour with Each Ant
• Calculating the Tour Cost
• Distributing Pheromone
• Evaporating Pheromone

Ant Distribution to the Graph
Initialization of the algorithm begins with the distribution of the ants to
the graph. The ants are as evenly distributed to the cities in the graph as is
possible. The entry point of each ant becomes the first city in its tour.

TIP For best results, the number of ants should be equal to the number of
cities (number of nodes in the graph).

Biologically Inspired and Hybrid Models 425

Once ants are distributed, the next step is for each to visit each of the
cities to make up a tour. This next step involves path selection.

Path Selection
The mechanism by which an ant selects the next city to visit is based on a
relatively simple probability equation. This equation (Eq 12.1) determines
the probability that a city should be visited. Note that when the ant is sitting
on its first location for the initial tour, each path to the next city has equal
probability of being selected.

 (Eq 12.1)

The level of pheromone on a edge of the graph (between two locations)
is represented by and the distance between the distance between the
current location and candidate location is represented by . Each of
these parameters is adjusted for the effect by which they will have over the
path selection. The α parameter, with a value between 0 and 1, represents
how much influence the pheromone plays in the path selection. The β
parameter, with a value between 0 and 1, represents how much influence
the distance measure plays. As shown by Eq 12.1, the cities left to be visited
are calculated and summed (with k representing the cities left to visit). The
ratio of the current candidate city calculation to the sum of this calculation
is then the probability that the path should be selected. We’ll see how this
is calculated and used shortly.

This process continues until each ant makes a complete tour of the graph
(visits each city). When the tour is complete, pheromones are managed in
the graph as defined by the following two steps.

Pheromone Intensification
Now that each of the ants has completed a tour of the graph (visited each
of the nodes), the pheromone is distributed to the edges in an amount that
commensurates with the length of the tour. The shorter the tour, the higher
the pheromone that is distributed to the particular edges that make up the
tour. The amount of pheromone distributed is based on Eq 12.2.

 (Eq 12.2)

In this equation, represents the amount of pheromone to intensify
on the path, Q is a constant value, and is the length of the tour (over k

426 Artificial Intelligence

cities). Note that this equation is applied on each edge individually, where i
and j represent the edge between the cities. Eq 12.3 is then used to apply the
pheromone to the particular edge. Note also here that ρ is used to control the
amount of pheromone to apply. This will be a value between 0 and 1.

 (Eq 12.3)

Pheromone Evaporation
Initial tours of the ants may use many of the edges that are available, but over
time, better tours through the locations are found (as defined by the length of the
tour), and more pheromone is placed on these paths. Pheromone evaporation
reduces the intensity of pheromones on all paths and helps make clear where
the best paths are (to be used by the path selection equation in Eq 12.1).

Eq 12.4 is the evaporation algorithm, which is applied to all edges once
the ant tour is complete. Note here that ρ is repeated again, but in the inverse
to the pheromone intensification (Eq 12.3).

 (Eq 12.4)

New Tour
Once all ants make a complete tour of all locations, the pheromone is
intensified on the paths taken by the ants, and pheromone evaporated,
the next step is to allow the ants to take another tour. Note that since
pheromone is on the paths in an intensity based on the tour length, ants will
probabilistically follow the best paths while randomly selecting other ones.
In this way, given the α and β parameters, pheromone is intensified on the
best path while allowing the ants to explore randomly. The ants will take
some number of tours, either based on a user-defined maximum, or after
some duration of a new best tour not being found.

Sample Use
Using the ACO for the traveling salesman problem is quite simple to
implement and yields very good solutions. In this section, we’ll look at some
of the implementation details of the ACO. The focus will be the functions
devoted to path selection, and pheromone intensification and evaporation.

O

N THE CD

 The complete source for the ACO TSP program can be found on the CD-
ROM at ./software/ch12/ants.c.

Biologically Inspired and Hybrid Models 427

Choosing the path an ant takes through all possible edges (to unvisited
cities) is accomplished with the function choose_next_city (see Listing 12.8).
The first task is to compute the denominator for Eq 12.1. This is performed
by searching through the tabu list (for the cities that have not been visited),
and then computing the denominator. This denominator is then used to
complete Eq 12.1 and results in a probability value. This value is used with
a random number to determine which city should be visited next (searching
through the tabu list to identify the cities that have not yet been visited).

TIP For efficiency reasons, the distances between cities is precalculated and then
used here (precomputed_distance). This allows a very fast lookup, rather
than the math instructions involved in calculating it on the fly. This requires
a bit more memory to store, but yields benefits in faster execution.

Once a new city is selected, the ant’s data structures are updated (tabu,
tour_length, etc.). If the tour is complete, we complete the ant’s tour
to the initial city to complete the path.

Listing 12.8: Selecting the next city in the ant’s tour.

void choose_next_city(ANT_T *ant)
{
 int from, to;
 double d=0.0, p;
 from = ant->current_city;
 /* If city not yet visited */
 for (to = 0 ; to < NUM_CITIES ; to++) {
 if (ant->tabu[to] == 0) {
 /* Equation 12.1 */
 d += pow(pheromone[from][to], alpha) *
 pow((1.0 / precomputed_distance[from][to]), beta);
 }
 }
 /* Probabilistically select the next city */
 to = 0;
 while (1) {
 /* If city not yet visited */
 if (ant->tabu[to] == 0) {
 /* Equation 12.1 */
 p = (pow(pheromone[from][to], alpha) *
 pow((1.0 / precomputed_distance[from][to]), beta)) / d;

428 Artificial Intelligence

 if (RANDOM() < p) break;
 }
 to = ((to+1) % NUM_CITIES);
 }
 /* We have our new destination, update for the new city */
 ant->next_city = to;
 ant->tabu[ant->next_city] = 1;
 ant->tour[ant->tour_index++] = ant->next_city;
ant->tour_length +=
 precomputed_distance[ant->current_city][ant->next_city];
 if (ant->tour_index == NUM_CITIES) {
 ant->tour_length +=
 precomputed_distance[ant->tour[NUM_CITIES-1]][ant-
>tour[0]];
 }
 ant->current_city = ant->next_city;
 return;
}

Once all tours are complete, the pheromone is intensified on those
edges that were used by the ants. Each ant is iterated, and then each edge
of the tour for each ant is used to calculate the pheromone level to add (see
Listing 12.9).

Listing 12.9: Intensifying pheromone levels on the paths that the ants used.

void intensify_pheromone_trails(void)
{
 int from, to, i, city;
 for (i = 0 ; i < NUM_ANTS ; i++) {
 for (city = 0 ; city < NUM_CITIES ; city++) {
 from = ants[i].tour[city];
 to = ants[i].tour[((city+1)%NUM_CITIES)];
 /* Equation 12.2 / 12.3 */
 pheromone[from][to] += ((qval / ants[i].tour_length) * rho);
 pheromone[to][from] = pheromone[from][to];
 }
 }
 return;
}

Biologically Inspired and Hybrid Models 429

The next step is to evaporate pheromone from the ant trails (see Listing
12.10). Just like intensifying pheromone on the trails, evaporating applies
to all edges and simply removes a small amount of pheromone (depending
up the value of ρ). Pheromone evaporation is the inverse of intensification.
For example, if ρ was 0.9, then during pheromone intensification, only 90%
of the pheromone level would be added. During evaporation, only 10% of
the pheromone would be removed.

Listing 12.10: Evaporating pheromone from the ant trails.

void evaporate_pheromone_trails(void)
{
 int from, to;
 for (from = 0 ; from < NUM_CITIES ; from++) {
 for (to = 0 ; to < NUM_CITIES ; to++) {
 /* Equation 12.4 */
 pheromone[from][to] *= (1.0 - rho);
 if (pheromone[from][to] < 0.0) pheromone[from][to] = BASE_
PHEROMONE;
 }
 }
 return;
}

A sample result of the algorithm is shown in Figure 12.25. This illustrates
a 20-city TSP and a reasonable (though sub-optimal) solution.

The ACO has more practical applications than the TSP. It has been
applied to other problems (including NP-Hard problems). Examples include

FIGURE 12.25: A sample solution of a 20-city TSP using the ant algorithm.

430 Artificial Intelligence

dynamic and adaptive network routing, vehicle routing for logistics, and even
for discovery of classification rules.

ACO Parameters
A number of parameters exist that allow a developer to control the way in
which the algorithm works. The four parameters are shown in Table 12.1.
The number of ants to be used is also a useful variable; typically it’s the
number of cities in the problem space. Finally, the number of iterations
can also be useful, especially if the ants are allowed to explore (and favor
pheromone and distance equally).

Table 12.1: ACO parameters for tuning

α Favor Pheromone Level over Distance
β Favor Distance over Pheromone Level
ρ Intensification/Evaporation value
Q Constant Value for Pheromone Distribution

AFFECTIVE COMPUTING

Affective computing is all about emotion, but from two different perspectives.
First, it’s about the detection and classification of emotions of a user. Second,
it’s about the synthesis of emotions from a computer to a user. Let’s explore
what this means and why it’s important.

Emotions are a critical aspect of human communication (a side-band, if
you will, of information). Consider the emotion of confusion. If a computer
could detect this emotion from a user, it could alter the way in which it’s
presenting information. In order to present a computer as a believable entity,
emotion must be part of its communication (either through speech, or acts
of speech).

Emotions may also be more fundamental in nature than intelligence.
For example, animals are capable of understanding emotion in humans
(consider a dog’s response to a human’s gestures or speech), and while they’re
intelligent, it’s certainly at a different level.

Characterizing Human Emotion
Characterizing human emotion can occur in numerous ways, but provide
different types of information. For this reason, a hybrid approach is necessary

Biologically Inspired and Hybrid Models 431

for a complete and unambiguous view of the emotion of a human. Speech is
a multi-channel interface, and in addition to the information being conveyed,
information is also available in the patterns and pitch of the speaker. For
example, the pitch of the speech, the speed of the speech, and the inflections
in the speech that can be tuned by emotion, are all detectable through a
microphone and software for analysis.

Gestures are also an important channel of communication for emotion.
Some of this information is context-dependent. For example, inattention is
an important gesture to understand for learning, but is even more important
when used to understand a driver’s awareness. Hand gestures are also
important, as are posture and facial expressions.

Other important indicators of emotion include physiological parameters,
most of which can require more than just visually monitoring a subject.
Gauging a person’s temperature can be done through infrared, but heart
rate or blood pressure requires more invasive monitoring.

Giving a computer the ability to characterize and understand a human’s
emotive state is very important in future human-computer interfaces. With
this we can build systems that not only communicate with a user (from the
perspective of Strong AI), but can use subtle queues to build more efficient
interfaces.

Synthesizing Emotion
Synthesizing human emotion in machines is an important aspect of Strong
AI, particularly for the development of believable characters (computer
agents) or in robotic systems. But human emotions are very complex and
multi-dimensional. For example, happiness and sadness can be considered
polar opposites, but a human can be both happy and sad at the same time, so
they’re not opposite ends of a spectrum. Considering the variety and depth
of human emotion, synthesizing an agent with believable emotions will be
difficult indeed.

Research exists to pursue the simulation of emotions given its importance
to a number of applications, from Strong AI to computer game agents. The
emotions to be synthesized are based on what’s available to the simulated
agent. Computer agents (those in computer games or other applications)
typically have a full range of channels, as characters are typically fully
modeled with synthesized speech. But visualization of emotions is the
simpler aspect of this problem.

The more difficult problem of synthesizing emotion is generating
emotion from a variety of internal agent states. How do these internal states
map to the dimensionality of emotion? First steps would involve minimizing

432 Artificial Intelligence

the emotive states to a more manageable set, and then evolving this set with
experience.

Emotions may also play an important role in the internal function of
simulated agents. Consider the survival response of animals. Animals can
intellectually understand a situation and determine a response, but emotions
and other physiological factors certainly apply in determining a rationale
response to a situation.

RESOURCES

Dittrich, Peter, et al. “Artificial Chemistries - A Review,” University of
Dortmund, 2001.

Dorigo, M. and Blum, C. “Ant Colony Optimization Theory: A Survey,”
Theoretical Computer Science, 344(2-3):243-278, 2005.

Dorigo, M., Stutzle, Thomas. “Ant Colony Optimization,” MIT Press,
2004.

Gambardella, et al. “Ant Colony Optimization for Vehicle Routing in
Advanced Logistics Systems,” Multi-Agent-Systems, 2003.

Available online at: http://www.idsia.ch/~luca/MAS2003_18.pdf
Holland, John. “Echo Artificial Life Simulator”
Available online at: http://www.santafe.edu/~pth/echo/
J. von Neumann. The Theory of Self Reproducing Automata University of

Illinois Press, Urbana Illinois, 1966.
Lindenmayer, A. “Mathematical models for cellular interaction in

development I.Filaments with one-sided inputs,” Journal of Theoretical
Biology, 1968.

Liu, Bo, Abbas, H.A, McKay B. “Classification rule discovery with ant colony
optimization,” Intelligent Agent Technology, IAT 2003, 2003.

Prusinkiewicz P., Lindenmayer A. “The Algorithmic Beauty of Plants,”
Springer-Verlag, New York, 1990.

Wolfram, Stephen. A New Kind of Science Wolfram Media, Inc., 2002.
Zadeh, Lotfi. “The birth and evolution of fuzzy logic,” International Journal

of General Systems 17, 1990.

C h a p t e r13 THE LANGUAGES
OF AI

While AI algorithms and techniques can be implemented in a wide
spectrum of languages, there are a number of languages that are
better suited to AI problems. For numerical AI problems such

as neural networks or genetic algorithms, languages such as C are effective.
For relational problems that depend on predicate logic, Prolog is ideal.
Historically, LISP has been the foundational AI language as it emerged
during the early days of AI (referred to as a functional language). In the
end, any language can be used to build AI applications, but some are better
suited to certain problems than to others. This chapter will introduce the
major language taxonomies, and then explore the major languages used in
AI to identify the applications for which they’re best suited.

LANGUAGE TAXONOMY

Programming languages are a very interesting area of study, as they each
fundamentally do the same thing; they allow a programmer to solve problems
using a computer. But how they solve those problems can vary in a wide
spectrum. For example, where loops are a common programming construct
in C or Ada, recursion is commonly used to emulate loops in a language

434 Artificial Intelligence

like Haskell, or LISP. Each language provides fundamentally the same
functionality, but each does so in very different ways.

Another example is the comparison of imperative languages to object-
oriented languages. In an imperative language, a system is built up from a
set of functions in a hierarchy. Files typically act as containers for functions
that logically belong together (such as functions that implement a queue).
In an object-oriented system, containers for like functions and data are
encapsulated into objects. The object embodies a data structure and the
functions that operate on the data. A system is then built from a collection
of objects.

Table 13.1 lists six of the major language types, from functional languages
to concurrent languages.

Table 13.1: Major language types.
Type Focus
Functional Builds programs as functions over types.
Imperative Builds programs as commands over data.
Object-Oriented Builds programs from cooperative collections of

objects.
Logic Draws conclusions from facts and relationships.
Concurrent Uses multiple processes with communication.

NOTE Most programming languages, particularly the ones that we’ll explore
here, are what is known as Turing Complete. This means that the language
has the computational power equivalent to the abstract computing model
called the Turing Machine. Simply, this means that using the language
we are able to perform any computational task (regardless of efficiency
of simplicity of the solution).

In the early days of AI, the focus of AI systems development was
symbolic languages like LISP (1950s) and logic languages such as PROLOG
(1970s). But as we’ve seen in this book, a variety of languages can be used for
AI development. Let’s look at the popular programming language paradigms,
and how they apply to AI systems development.

Functional Programming
Functional programming is a paradigm deeply rooted in the theoretical
framework called the Lambda calculus. Functional programming is based
on a number of characteristics including higher-order functions, first-class

The Languages of AI 435

functions, recursion, a lack of side effects, continuations, and closures to
name just a few.

Table 13.1: Sample functional languages.
Language Year Introduced Focus
LISP 1958 The original functional progamming

language.
Scheme 1975 Elegant and simplified dialect of LISP.
ML 1980 A pure and strict functional language.
Haskell 1987 General purpose pure but lazy functional

language.

Functional programming is best understood my comparing it to the
imperative programming paradigm. Rather than relying on the sequential
execution of commands that alter memory and state, functional programming
relies on the application of functions over data. Let’s now look at the major
characteristics of functional programming.

Higher-order functions are a primary attribute to functional programming.
A higher-order function is one simply that either is able to take a function as
input, or return a function as output. This concept is common in mathematics;
for example, the derivative in the calculus maps one function to another.

TIP The classification of languages has become more difficult, as languages
strive to support multiple programming paradigms. For example, Ruby
and Python are object-oriented scripting languages, but each support the
ability for programming using functional characteristics.

Many languages provide support for higher-level functions, including
modern languages such as Python. The map function is used to apply a
function to a list, as shown in Listing 13.1.

Listing 13.1: Using the Python map function.

>>> def square(x): return x*x
...
>>> map(square, [1, 2, 3])
[1, 4, 9]
>>>

First-class functions are otherwise known as first-class objects, and lack
the restrictions typically associated with other elements of a language. For

436 Artificial Intelligence

example, in a language that supports first-class functions, we could create
functions dynamically (see Listing 13.2), treat them as data (or vice-versa),
pass functions to other functions, or return them from functions. First-class
functions are values, just like any other data, and can be stored within data
structures. While languages like C can store functions (or references to
functions) in data structures, pass them to other functions, or return them
from functions, C does not provide support for dynamic function creation.

Listing 13.2: First-class functions in the Ruby language.

irb> def mult_by(factor)
irb> return Proc.new(|n| n*factor)
irb> end
=> nil
irb> mult_by_5 = mult_by(5)
irb> mult_by_2 = mult_by(2)
irb> mult_by_5.call(10)
=> 50
irb> mult_by_2.call(8)
=> 16
irb>

Recursive functions are functions that call themselves. This is typically
how iteration is performed within function languages. Since recursion can
imply maintaining a stack of return addresses, many languages that rely on
recursion implement what is known as tail recursion. This obviates the need
for a stack, which is efficient for both memory and processing.

Listing 13.3: Using recursion in LISP to compute the factorial.

(defun fact (n)
(if (= n 1)
 1
 (* n (fact (- n 1)))))

Closures are an interesting characteristic to functional programming,
and are related to first-class functions. A closure is a dynamic function
(sometimes anonymous) that is passed into a different lexical context for
use. For example, closures can be used to create dynamic special purpose
functions, such as filters.

The Languages of AI 437

Imperative Programming
The defining characteristic of imperative programming (otherwise known as
procedural programming) is that computation is the sequential execution of
statements that change program state.

The earliest imperative language was FORTRAN, developed in 1954.
FORTRAN was developed by one of the pioneers of early computing, John
Backus (while employed at, IBM). FORTRAN is at the root of a very large
language tree that includes BASIC, Pascal, Modula, C, Ada, and a huge
number of domain-specific languages such as Python and Ruby.

Table 13.2: Sample imperative languages
Language Year Introduced Focus
FORTRAN 1957 First general-purpose programming

language.
ALGOL 1958 Second imperat ive programming

language.
C 1972 Pervasive procedural programming

language.
POP-11 1975 Multi-paradigm programming language.
Ada 1983 Multi-paradigm concurrent programming

language.

TIP We can also think of machine languages (or assembly languages) as
imperative languages. The instructions of a given computer architecture
are also an example of an imperative language. The instructions of a
machine language not only alter memory, but also the machine state
(status flags, for example).

Listing 13.4 illustrates the organization of a simple imperative program
in BASIC. Note how this example can be described as a recipe. For example,
request the user’s name through the terminal, get the user’s name, and finally
emit the user’s name through the terminal.

Listing 13.4: Illustrating the sequential commands of an imperative language

(BASIC).

print “Please type in your name :”
read name
print “Hello, “ + name
end

438 Artificial Intelligence

While recursion is permitted in imperative languages, these languages
lack tail-recursion and therefore they are less efficient than functional
implementations. Commonly, loops provide the iteration capabilities (as
shown in the factorial implementation in Listing 13.5). As shown here,
the while reserved word in C implements the looping behavior while the
expression ‘(n > 0)’ remains true.

Listing 13.5: Computing the factorial in an imperative language (C).

unsigned long factorial(int n)
{
unsigned long fact = 1;
while(n > 0) {
 fact = fact * n;
 n--;
}
return fact;
}

Object-Oriented Programming (OOP)
Object-Oriented Programming (or OOP) is a paradigm in which programs
are constructed from a set of objects that connect to one another. Objects are
able to message other objects through their public interfaces, while objects
also maintain a set of private interfaces (and data) that are used internally
by the objects themselves. Objects typically encapsulate some logical
functionality of a system A sample of object-oriented languages through four
decades is provided in Table 13.3.

Table 13.3: Sample of object-oriented languages.
Language Year Introduced Focus
Simula 67 1967 First object-oriented programming

system.
C++ 1970 C l anguage w i th ob jec t -or ien ted

extensions.
Smalltalk 1970 Dynamic and reflective programming.
Ruby 1993 Pure in terpre ted ob jec t -or iented

language.

A few of the fundamental characteristics are classes and objects,
inheritance, encapsulation, and polymorphism.

The Languages of AI 439

A class is an abstract entity that defines behaviors (the actions that it
can perform) and attributes (the characteristics for the class). Objects are
instantiated from a class, going from an abstract entity to a physical instance
of the class. Take, for example, a class that represents an NPC (non-player
character) in a game. The attributes could specify the NPC’s damage and
the weapon that it’s carrying (which itself could be represented by another
object). The class behaviors could include the actions that the NPC may
perform (attack, move, defend, etc.).

An example class is shown in Listing 13.6. In this simple example, our
class exports two behaviors, set_value and area. The behavior set_value
(which is also called a method) allows the initialization of an internal value.
The second behavior, area, returns the square of the internal value. A sample
main function is also presented that creates two instances of the Csquare
class and demonstrates their methods.

Listing 13.6: Illustrating a class and two objects with C++.

#include <iostream.h>
using namespace std;
class Csquare {
 int h;
 public:
 void set_value(int);
 int area(void);
};
void Csquare::set_value(int in_h)
{
 h = in_h;
 return;
}
int Csquare::area(void)
{
 return h*h;
}
int main()
{
 Csquare s, t;
 s.set_value(5);
 t.set_value(5);
 cout << “s area = “ << s.area() << endl;

440 Artificial Intelligence

 cout << “t area = “ << t.area() << endl;
 return 0;
}

Inheritance is the ability for classes to inherit the characteristics of other
classes. In this way, we can build base classes that define default behavior,
and then create subclasses that amend these behaviors. For example, in
designing a game, we might specify a class for an NPC. This class provides
the base set of features that all NPCs share. Then, we can create subclasses
that specialize the base class for more specific characters in the game.

As shown in Listing 13.7, we create an NPC_Base class that provides
our base set of behaviors. From this, we create a Barbarian subclass, and a
Villager subclass, that refine the behaviors for the character type. At the end
of the listing, we create two objects of the two subclasses to demonstrate
the specialization.

Listing 13.7: Illustrating inheritance with Ruby.

> class NPC_Base
> def move
> puts “Move the NPC”
> end
>
> def behavior
> puts “Just stand there”
> end
> end
>
> class Villager<NPC_Base
> def behavior
> puts “Loiter”
> end
> end
>
> class Barbarian<NPC_Base
> def behavior
> puts “Attack!”
> end
> end
>

The Languages of AI 441

> fred = Villager.new
> hans = Barbarian.new
> fred.behavior
Loiter
> hans.behavior
Attack!
>

Note here that the behavior method has been replaced from the base
class in the subclasses. This is an example of polymorphism, where the same
method achieves different results based on the particular subclass for which
an object is an instance.

Finally, the concept of encapsulation (otherwise known as information
hiding) allows a class to hide the details of its internal operations. A class
exports what is necessary as far as methods and instance data goes for proper
operation, but hides what the external world is not necessary to know.

Logic Programming
Logic programming, first introduced by John McCarthy in 1958, is based
on pattern-directed execution of rules to arrive at a goal. While logic
programming is based on mathematical logic, logic programming is much
more constricted than the capabilities of mathematical logic. Specifically,
logic programming implements what is known as horn clauses. A horn clause
(specifically a definite clause) can be shown as:

X0 if X1 and X2, and … Xn

which means that if all X1 through Xn is true, then X0 is true. A special case
of the horn clause is a simple fact, which is simply specified as:

X0.

The horn clause can then be thought of as a fact being true if all prerequisites
of the fact are true. For example:

mortal(X) if man(X)

which means that if the atom identified by X is a man, then X is also mortal.
This can be demonstrated in Prolog as follows, with first the definition of a
fact, and then a query, testing a given query:

442 Artificial Intelligence

?- man(Socrates).
?- mortal(X) :- man(X).
?- mortal(Socrates)?
Yes
?-

In this example, we specify a new fact (Socrates is a man). We then define
that all men are mortal with a rule. Finally, we check to see if Socrates is a
mortal, which evaluates to ‘Yes.’

Later in this chapter, we’ll review logic programming in more depth,
from the perspective of a couple of different languages. Recently, non-
functional languages have begun to integrate logic capabilities (such as
Mercury, shown in Table 13.4).

Table 13.4: Sample logic languages.

Language Year Introduced Focus
PROLOG 1972 Logic programming using Horn clauses.
Gödel 1991 General purpose, logic programming.
Oz 1995 Multi-paradigm concurrent constraint

programming.
Mercury 1995 Multi-paradigm language for logic

programming.

LANGUAGES OF AI

Considering the spectrum of applications of artificial-intelligence applications,
a single language would not provide all of the capabilities necessary. For
example, C is ideal for numerical applications such as those illustrated by
neural networks or genetic algorithms. But the specialized needs of expert
systems make Prolog an ideal choice. Further, for applications that require
dynamicity (such as creating new functions on the fly), LISP provides the
necessary functionality. Some language-to-application mappings are provided
in Table 13.5.

Table 13.5: Artificial intelligence applications and their languages.
Application Language
Expert System POP-11, Prolog, LISP

The Languages of AI 443

Dynamic Applications LISP, Scheme, Dylan
Computer Vision C
Natural Language Systems Prolog, Oz
Evolutionary Systems C, DSLs

In the remainder of this chapter, we’ll dig further into a number of
languages commonly used to build AI applications. This includes LISP,
Scheme, Prolog, Erlang, POP-11, Smalltalk, and a look at some domain-
specific languages that provide functionality useful for AI applications.

The LISP Language
The LISP language is one of the oldest languages still in use today. LISP
shares this distinction with other ancient languages like FORTRAN
and COBOL (COmmon Business Oriented Language). But these other
languages, like LISP, have evolved over the years, and look very different
than their initial offerings. Having said that, the fundamental attributes of
these languages remain. For example, the FORTRAN continues to use the
imperative approach, and LISP is still based on the functional approach.

LISP is one of the most unique languages (within the AI domain and
outside). LISP stands for LISt Processing, as both data and LISP programs
are represented as lists. Further, data and programs can be (and usually are)
represented as lists of lists. With programs and data represented in identical
ways (which makes LISP a homoiconic language), it’s easy to understand how
LISP functions can generate data to be used as another LISP function.

Let’s now dig further into the LISP language, learn about its origin, and
then explore a few example programs.

The History of LISP
John McCarthy (now at Stanford University) introduced the ideas behind
LISP while at MIT in 1958. In 1960, he published a paper which served as
the design for LISP, and implementations began to appear shortly thereafter.
McCarthy’s notation used what was called bracketed M-expressions, but this
notation was abandoned in early implementations for S-expressions, which
are still in use today.

TIP While many consider LISP to be an archaic language, LISP is worthwhile
to learn because of the fundamental ideas upon which it’s based.

LISP quickly consumed the early computers of the 1960s (beginning
with the early vacuum tube computers), which resulted in specialty machines

444 Artificial Intelligence

in the 1970s that were designed for LISP. In particular, LISP required
specialized garbage collection. However, today LISP is able to run on
generally available hardware.

Overview of the LISP Language
Let’s now dig into the LISP language, and explore some of the core concepts
from representing data to representing programs. Note that, as we’ll see,
data and programs are represented identically. In fact, LISP programs can
be combinations of program and data.

Data Representation
As the language’s acronym suggests, everything in LISP is a list. The
following are examples of data in LISP, from the simple, to more complex
representations.

‘() Empty list.
‘(()) List containing an empty list.
‘(1) List with a single atom.
‘(2 4 8 16 32) List with multiple atoms.
‘((1 3 5 7) (2 4 6 8)) List of lists.
‘(LISP (John McCarthy) (MIT) (1958)) List as a structure.

Simple Expressions
Evaluating math expressions in LISP looks very similar to the data
representation example, except that math symbols are provided which
are known in LISP to be math operations. LISP uses what is called prefix
notation, where an operation is specified, followed by the necessary
arguments for the operation. Consider the following examples:

(+ 1 3) Evaluates to 4
(* 5 7) Evaluates to 35
(* (- 7 5) (- 9 4)) Evaluates to 10
(/ 8 2) Evaluates to 4

Note above that each of the examples are examples of lists. As LISP
evaluates the functions, it identifies the operator symbol, and then applies
the subsequent arguments to it.

TIP It’s important to note that every LISP expression returns a value. In fact,
a LISP function can return any number of values.

The Languages of AI 445

Predicates
LISP also includes predicates that provide the ability of introspection. The
atom predicate returns true if the argument is an atom. For example:

(atom 5) Evaluates to True
(atom ()) Evaluates to False

Variables
LISP also supports variables through a number of means. First, let’s look at
the setq means of evaluating a symbol. The setq permits binding a value to
a symbol of a sequence of values to a sequence of symbols, for example:

(setq score 100) Evaluates to 100
(setq score-1 95 score-2 100) Evaluates to 100
(setq thedate ‘(“April” 13 1968)) Evaluates to (“April” 13 1968)

Note in the last example the use of the single quote (or tick) symbol. This
tells the LISP evaluator not to evaluate the list that follows. If the quote had
not been used, then LISP would attempt to evaluate the list (looking for a
function called “April”) in order to bind the resulting value to thedate.

LISP also provides a more complex form of variable assignment called
the let form. In this form, a number of bindings can be temporarily created.
Consider the following example:

(let ((x 5)
 (y 7))
 (+ (* x x) (* y y))) Evaluates to 74

Note that in this example x and y have no value once the evaluation is
complete. We could bind the result to a variable as follows:
(setq var

 (let ((x 5) (y 7))
 (+ (* x x) (* y y))) Evaluates to 74

List Processing
Let’s now look at how LISP performs list construction and processing. We’ve
already seen the simplest way to create a list, through the use of setq. Now
we’ll look at two functions that can be used for list construction. The first

446 Artificial Intelligence

is called cons, which constructs a list from two arguments (with the second
always being an empty list).

(cons 1 ()) Evaluates to (1)
(cons 1 (cons 2 ())) Evaluates to (1 2)

LISP also provides a simpler way to construct lists, called list. This function
is much simpler as shown in the following examples:

(list 1 2 3) Evaluates to (1 2 3)
(list 1 ‘(2 3)) Evaluates to (1 (2 3))
(list ‘(1) ‘(2)) Evaluates to ((1) (2))

Now that we’ve explored some ways to construct lists, let’s look at a few
of the basic list-processing functions provided by LISP. The two basic
operations are called car (to retrieve the first element of a list) and cdr
(to retrieve the remainder of the list without the first element), for
example:

(car ‘(1 2 3)) Evaluates to 1
(cdr ‘(1 2 3)) Evaluates to (2 3)

To retrieve the second atom of the list, we can combine the car and cdr
functions:

(car (cdr ‘(1 2 3))) Evaluates to 2

LISP also provides some simplifications on this theme, by providing functions
that combine these primitive functions for list processing. For example, the
following two operations are identical:

(car (cdr ‘(1 2 3)) Evaluates to 2
(cadr ‘(1 2 3)) Evaluates to 2

The cadr operation is therefore a combination of car and cdr. There’s also
a combination of cdr and cdr called cddr. The following two examples are
also identical:

(cdr (cdr ‘(1 2 3 4))) Evaluates to (3 4)
(cddr ‘(1 2 3 4)) Evaluates to (3 4)

The Languages of AI 447

LISP provides a number of these combination operators, some of which are
shown in Table 13.6.

Table 13.6: LISP operation combinations and their equivalents.
Operation Equivalent
(cadr x) (car (cdr x))
(cdar x) (cdr (car x))
(caar x) (car (car x))
(cddr x) (cdr (cdr x))
(caddr x) (car (cdr (cdr x)))
(caaddr x) (car (car (cdr (cdr x))))

Finally, we can append to lists using the append function. This function
takes two lists and puts them together:

(append ‘(1 2) ‘(3 4)) Evaluates to (1 2 3 4)

Programs as Data
Recall that program and data are the same. Here’s an example that illustrates
this. We start by creating a variable called expr and loading it with a list. We
then use the eval function to evaluate the data as a LISP program.

(setq expr ‘(* 5 5)) Evaluates to (* 5 5)
(eval expr) Evaluates to 25

Now let’s look at how program flow is altered in LISP. We’ll start with a review
of conditionals in LISP, and then look at function creation and iteration.

Conditions
Controlling the flow of a LISP function can be achieved a number of ways.
We’ll look at two methods here, cond and if. The first method we’ll explore
is the if function. The if function is very simple and is made up of a distinct
set of expressions. The format for the if function is:

(if (expr)
 (print “expr is true”)
 (print “expr is false”))

A simple example of this form is:

448 Artificial Intelligence

(if (> 2 1)
 (print “2 is gt 1”)
 (print “1 is gt 2”))

The false portion of the form can be omitted if not necessary, as follows:

(setq name “Elise”)
(if (equal name “Elise”)
 (print “Hi Elise”))

The cond form is slightly more complicated, but permits greater flexibility in
the conditional structure. The cond form can specify as many test clauses as are
necessary. The following example illustrates the cond form with four clauses:

(setq name “Elise”)
(setq salutation
(cond
 ((equal name “Marc”) “Hi Marc.”)
 ((equal name “Megan”) “Hi Megan.”)
 ((equal name “Elise”) “Hi Elise.”)
 ((equal name “Jill”) “HI Jill.”)
 (t “Hi you.”)))
(print salutation) Evaluates to “Hi Elise.”

Note that in the end of the cond form is the ‘else’ (or default) portion of the
conditional. The ‘t’ simply represents TRUE, and as it always represents true,
the value “Hi you.” is returned if no other conditions are met.

Functions in LISP
A function is created in LISP using the defun macro. The format of the
defun macro is as follows:

(defun func-name (parameter*)
 “Optional string to describe function.”
 body-form*)

The func-name can be a sequence of alphabetic characters (and hyphens),
as well as some other special characters. The parameter* represents zero or
more parameters, which is followed by a documentation string (used by the
documentation function). The body of the function then follows.

The Languages of AI 449

Let’s look at a simple example of a function. Recall the quadratic
discriminant (b 2 – 4ac). This can be represented in LISP very simply as:

(defun qd(a b c)
 “Calculate the quadratic discriminant”

 (- (* b b) (* 4.0 a c)))

An example use of this function is shown as:

(setq val (qd 5 4 2))

Now let’s look at a few examples that demonstrate some of the core
features of LISP. We’ll build a set of functions that manipulate a very simple
database (a list of lists). Let’s begin with a definition of our database. Our
simple database (db) will represent a list of records, each record being a list
containing a name followed by an age. We’ll use the defvar function to create
our database with an initial set of records (defvar creates a global variable).

(defvar *db* ‘((TIM 41) (JILL 35) (MEGAN 14) (ELISE 9) (MARC 6)))

Now let’s create three functions that manipulate this database. We’ll create
LISP functions to return the number of records in the database, emit the
names in the database, and add a new record to the database.

Returning the number of records in the database (function num-
records) is a great function to explore recursion in LISP. The function
num-records takes as its input the database. The first thing that the
function does is test for a null list, and if so, it returns 0 (as we’ve reached
the end of the list). Otherwise, it adds one to the result of a recursive call
to num-records.

(defun num-records (x)
 “Return the number of records in the list.”
 (if (null x) 0
 (+ (num-records(cdr x)) 1)))

Let’s say that our input to the function is a database that contains
four records. Figure 13.1 illustrates the recursive call trace along with the
return values. Note at the end, the function reaches the null list, and zero
is returned. At this point, each function adds one to the return of the value
returned by the recursive call.

450 Artificial Intelligence

Now let’s look at another example of a LISP function that is used to emit the
names contained in each of the records (emit-names). This will follow the same
approach and recursively iterate through the records (sublists) of the database
(superlist). This function operates as follows. First, we test to see if the input is
an empty list (using the null function). If it is, we return nil (which is the same
as ‘()) and the process is complete. Otherwise, we set the variable name to the
first atom of the first sublist. Within the let form, we print this name, and then
recursively call emit-names. This recursive call continues until the empty list
results, at which point the call chain unwinds and the process is complete.

(defun emit-names (x)
 “Emit the name portion of each record in the database.”
 (if (null x)
 nil
 (let ((name (caar x)))
 (print name)
 (emit-names (cdr x)))))

The final function that we’ll provide demonstrates the pure simplicity of LISP’s
list-handling functions. In this example, we’ll demonstrate how to add a new
record to the database. This function, add-record, simply appends the new
record to the database, and then uses setq to set the database to this new list.

(defun add-record (x)
 (setq *db* (append *db* x)))

Finally, let’s look at an example of calling these functions. The following three
examples illustrate the use of the three functions (num-records, add-record,
and emit-names).

FIGURE 13.1: Illustrating the recursive nature of the num-records function.

The Languages of AI 451

;;;
(format t “~%Num records : ~D~%” (num-records *db*))
(format t “Current record list:”)
(emit-names *db*)
(format t “~%~%Adding a new record~%”)
(add-record ‘((MADDIE 3)))
(format t “Num records : ~D~%” (num-records *db*))
(format t “~%Record List:”)
(emit-names *db*)

This LISP program results in the following output:

Num records : 5
Current record list:
TIM
JILL
MEGAN
ELISE
MARC
Adding a new record
Num records : 6
Record List:
TIM
JILL
MEGAN
ELISE
MARC
MADDIE

LISP Summary
This introduction to LISP provided a tip of the iceberg of the capabilities
provided by the LISP language. While LISP may be an ancient language
considering the timeline of some of the more recent popular languages, it’s
well worth learning for the unique concepts and features that it provides.

The Scheme Language
The Scheme language, created during the 1970s at MIT, is a modern dialect
of the LISP language. But instead of simply being a functional language, it
was designed to support a number of other programming paradigms such
as imperative and object-oriented.

452 Artificial Intelligence

History of Scheme
The Scheme language was the result of a series of papers by Gerald Jay
Sussman and Guy Steele, Jr. These papers focused on ideas in programming
language design, specifically the design of a simple language that was both
efficient and unconstrained by arbitrary rules. The language that evolved
from these papers illustrated a simple architecture with very few primitive
constructs and all other elements implemented as libraries.
The Scheme language is now standardized through an IEEE standard,
and also through a formal review process called the RxRS (Revised Report
on Scheme). The entire language is described in around 50 pages, with
another roughly 100 dedicated to library discussions. [R6RS] From this
specification, numerous implementations exist including PLT Scheme,
MIT Scheme, Scheme48, and an interactive shell that allows operators to
write scripts and interact with an operating system in Scheme called SCSH
(Scheme Shell).

Overview of the Scheme Language
Let’s now dig into the Scheme language, and explore some of the core
concepts. As you’ll see, Scheme is a very simple language, and while it’s easy
to learn the core ideas of programming in scheme, it’s very difficult to master.
As a dialect of LISP, data and programs are represented identically.

Data Representation
Like LISP, Scheme supports the basic data type of the list. Scheme also
supports integer, real, strings and symbol types (among others). Consider
these examples that illustrate Scheme’s use of lists and atoms.

‘() Empty list
‘(()) List containing an empty list.
‘(1) List with a single atom.
‘(2 4 8 16 32) List with multiple atoms.
‘((1 3 5 7) (2 4 6 8)) List of lists.
‘(Scheme ((Guy Steele Jr.)(Gerald J Sussman)) (MIT) (1975))
 List as a structure.

Simple Expressions
Evaluating math expressions in Scheme is identical to LISP; math symbols
are provided, which are known in Scheme as math operations (primitives).
Scheme uses what is called prefix notation, where an operation is specified,
followed by the necessary arguments for the operation. Consider the
following examples:

The Languages of AI 453

(+ 1 3) Evaluates to 4
(* 5 7) Evaluates to 35
(* (- 7 5) (- 9 4)) Evaluates to 10
(/ 8 2) Evaluates to 4

Each of the examples are examples of lists. As Scheme evaluates the
functions, it identifies the operator symbol, and then applies the subsequent
arguments to it.

TIP Scheme requires no operator precedence rules because operators use the
prefix notation with fully parenthesized operands.

Predicates
Scheme also includes a variety of predicates, which can be used to determine
the type of an object, or the equivalence of two objects. Predicates always
return a boolean, true (#t) or false (#t) value. Predicates are defined as the
type followed by the ‘?’ symbol.
For example, we can identify if an object is a null (or empty) list using:
(null? ‘()) Evaluates to #t (true)

We can also identify if an object refers to a procedure with:
(procedure? list) Evaluates to #t (true)

Finally, we can identify if two objects are equivalent using the eqv?
procedure:
(eqv? 5 (+ 2 3)) Evaluates to #t (true)
(eqv? car cdr) Evaluates to #f (false)

Many other predicates exist, which can be found in the R6RS.

NOTE If the desire is to check if two memory objects are identical (refer to the
same object in memory), then the eq? equivalence operation can be used.

Variables
Let’s look at two examples of variables in Scheme, those that have global
scope and those that have local scope. Variables in global scope are created
using define. This binds a value to a variable as follows:

(define pi 3.1415926)

454 Artificial Intelligence

Variables of local scope can also be created using the let form. This form
has the structure:

(let (var list) (expr))

Here’s a simple example that demonstrates a simple expression with two
locally scoped variables:

(let ((pi 3.1415926) (r 5))
 (* pi (* r r)))

Note that as multiple variable bindings are possible, we can also perform
multiple expressions. Additionally, let forms can be embedded in other
expressions (as well as other let forms).

List Processing
Scheme provides a rich set of operations for list processing. Let’s begin with a
look at Scheme’s list construction operations. The two basic list construction
procedures are cons and list. The cons procedure takes two objects and
joins them together. For example:

(cons ‘a ‘(a b)) Evaluates to (a b c)
(cons ‘(a b) ‘(c d)) Evaluates to ((a b) c d)

Another way to think about cons is that the first argument is the car of the
result and the second argument is the cdr.

The list procedure is much simpler and simply takes a set of arguments
and turns them into a list. For example:

(list ‘a ‘b ‘c) Evaluates to ‘(a b c)
(list ‘a ‘(b c)) Evaluates to ‘(a (b c))
(list ‘a ‘() ‘(a b c)) Evaluates to ‘(a () (a b c))

The fundamental list manipulation procedures are the same as LISP, car and
cdr. The car procedure returns the first object from a list while cdr returns
the tail (all objects except the first). For example:

(car ‘(a b c)) Evaluates to ‘a
(cdr ‘(a b c)) Evaluates to ‘(b c)
(car ‘((a b) (c d))) Evaluates to ‘(a b)
(cdr ‘((a b) (c d))) Evaluates to ‘((c d))

The Languages of AI 455

Scheme also supports combinations of these operators (such as cadr, for (car
(cdr))). See Table 13.6 for more options.

The length procedure can be used to identify the number of objects in
the list. Note that this refers to the number of objects at the root of the list,
and not the members of the sublist. For example:

(length ‘(a b c d (e f))) Evaluates to 5
(length ‘((a b) (c d))) Evaluates to 2
(length ‘()) Evaluates to 0
(length ‘(()())) Evaluates to 2

Finally, to retrieve a specific object from a list, one could use the car/cdr
combinations, or simply use list-ref. This function takes a list and a numeric
argument and returns that object (using the numeric argument as the index)
from the list. Note that the index is base 0, so 0 represents the first object,
etc. For example:

(list-ref ‘(a b c d) 2) Evaluates to ‘c
(list-ref ‘((a b) (c d) (e f)) 1) Evaluates to ‘(c d)

As was illustrated with the LISP language, Scheme is a powerful language
for list processing and manipulation.

Conditions
Scheme supports a number of conditional forms. The two most common are
the if form and the cond form. The if form is the simplest, supporting an
expression for the true case and an expression for the false case, as:

(if (test-expr)
 (expr-for-true-case)
 (expr-for-false-case))

The if form can be demonstrated as follows. The return of the overall
expression is the first object of my-list if my-var is zero; otherwise, the return
object is the remainder of the my-list:

(if (equal? my-var 0)
 (car my-list)
 (cdr my-list))

456 Artificial Intelligence

If more complex conditionals are required, the cond form can be used.
The cond form permits multiple test-expressions as well as a default case
(making this a more flexible version of the switch statement available in many
imperative and object-oriented languages).

(cond (test-expr-1 expr-1)
 (test-expr-2 expr-2)
...
 (else expr-n))

To illustrate the cond form, we implement the sign functionality:

(cond
 ((< my-var 0) -1)
 ((> my-var 0) 1)
 (else 0))

While the if form is much simpler, the cond functionality is recommended
for all but the simplest conditional expressions.

Iteration and Maps
Scheme, as a functional language, can rely on recursion for looping and
iteration. But Scheme also provides some other forms for iteration. Let’s
start with a look at the do loop form that permits iterations similar to the for
loop provided in many imperative languages:

(do
((variable value update) ...)
(test done-expr ...)
cont-expr ...)

In this form, we specify our iteration variable, its initial value, and how we’ll
update the variable at each loop iteration. At each update, we’ll perform
our test, and if the test is true, the loop is completed and we perform any
done-expressions that are available. If the test is false, the loop continues
and any continue-expressions are processed. Let’s look at a simple example
that illustrates the form:

(do ((i 0 (+ i 1)))
 ((equal? i 10) (write “done”) (newline))
 (write i) (newline))

The Languages of AI 457

This example simply iterates, using the i variable, from 0 to 9. During the
iteration, the value is emitted, and at the end, the “done” string is emitted
and the form is complete.

Iteration is typically performed to operate over an indexed object, or
to perform an action some number of times. For cases in which the goal is
to perform an action over a set of data, Scheme provides what is called the
map operation. This is a common operation in functional languages. Recall
that higher-order functions in functional languages support functions as
arguments to other functions. The map function is used to apply a user-
specified function to every element of a list.

A simple example uses a lambda (or anonymous) function, which is
applied to each element of a list:

(map (lambda (x) (* x x)) ‘(0 1 2 3)) Evaluates to ‘(0 1 4 9)

Now let’s look at an example of a user-defined function used in the context
of map. Let’s return to our simple database application from the LISP
introduction. Our simple database contains a list of names and ages, and
our user-defined function (print-names) emits the name from one of the
records in the database.

(define my-list ‘((Megan 14) (Elise 9) (Marc 6)))
(define (print-names x)
 (write (car x)) (newline))

We can then use map to iterate our database with the print-names function
as:

(map print-names my-list)

The map function iterates the list, and invokes the user-defined function for
each object in the list (which is why we extract the name with car instead of
needing to do a caar).

Procedures in Scheme
Scheme provides two types of functions, primitives and procedures.
A primitive is a built-in procedure (fundamental elements of the Scheme
environment), where procedures are user-defined (or provided through
libraries). Examples of primitives include let, car, and the math operations,
such as ‘+’ ,and ‘-‘. Scheme is therefore built from a very basic set of
operations, and from these operations, more complex forms are derived.

458 Artificial Intelligence

Creating functions in Scheme is similar to LISP, but the syntax differs
slightly:

(define (proc parameters*)
 body)

An example procedure, square, takes a single argument and returns the
square of the argument:

(define (square x)
 (* x x))

Now let’s return to our simple database implementation and implement
the procedures that allow us to manipulate the records of the database. The
simple database (db) represents a list of records, where each record contains
a name and an age. We’ll use the define primitive to declare the database
and its initial set of records.

(define db ‘((TIM 41) (JILL 35) (MEGAN 14) (ELISE 9) (MARC 6)))

We’ll implement the same set of functions as implemented for LISP, but we’ll
implement them differently to explore some of Scheme’s features.

The first procedure we’ll implement will return the number of records
in the database (procedure num-records). For LISP, we implemented this
as a recursive function. For Scheme, we’ll use the length procedure to
demonstrate an alternative method to implement this.

(define (num-records x)
 (length x))

Recall that the length procedure returns the number of objects in the
list. Objects in this scenario are the number of sublists (or records in the
database).

To implement the emit-names procedure, we’ll use the map procedure.
This procedure applies a function to each object of a list. For this procedure,
we simply emit the first element of each object (which will represent the
name for the record).

(define (emit-names x)
 (write “Database is”) (newline)

The Languages of AI 459

 (map (lambda (y) (write (car y)) (newline)) x)
 (newline))

Our final procedure is used to add a new record to our database, called
add-record. In this procedure, we’re modifying the contents of an existing
variable, so we use the set! procedure.

(define (add-record x)
 (set! db (append db x)))

Finally, let’s have a look at how we’d invoke these procedures within a
Scheme program. The following Scheme code illustrates the initial creation
of the database and invokes each of the defined procedures:

(define db ‘((TIM 41) (JILL 35) (MEGAN 14) (ELISE 9) (MARC 6)))
(display ‘”Num records : “)
(write (num-records db)) (newline) (newline)
(emit-names db)
(display ‘”Adding a new record”) (newline) (newline)
(add-record ‘((MADDIE 3)))
(display ‘”Num records : “)
(write (num-records db)) (newline) (newline)
(emit-names db)

This Scheme program results in the following output:
Num records : 5
Current Record List:
TIM
JILL
MEGAN
ELISE
MARC
Adding a new record
Num records: 6
Current Record List:
TIM
JILL
MEGAN
ELISE
MARC
MADDIE

460 Artificial Intelligence

Scheme Summary
Like LISP, Scheme is a useful language to learn because of the ideas that are
expressed. While not explored here, Scheme provides continuations which
allow program control to continue at a procedure at any point in the program.
Scheme also allows programmers to define new syntactic forms to extend
the language. How many languages permit extending the syntax of the core
language through the language itself? Scheme is definitely not the simplest
language to master, but it’s worth the effort to explore.

The POP-11 Language
POP-11 is an interesting multi-paradigm language that shares many
characteristics of functional languages. POP-11 is dynamically typed with
garbage collection like functional languages, but shares a block structured
syntax like many imperative languages. POP-11 is also stack-oriented, sharing
a relatively unique feature in language design with the Forth language.

History of POP-11
POP-11 is the result of a series of POP languages developed for research in
Artificial Intelligence at Edinburgh University. POP-11 was implemented in
the mid-1970s on the PDP 11/40 computer on the UNIX operating system, and
was designed as a language specifically for teaching purposes. [Sloman 1996]
POP-11 has advanced as the state of the art in language design and now includes
not only functional aspects, but also object-oriented features and a graphical
library. POP-11 can be found for many operating systems, and while a powerful
language, is not widely used for production software development.

Overview of the POP-11 Language
Let’s now explore some of the features of the POP-11 language. Due to the
size and scope of the language, we’ll restrict this discussion to some of the
basic features that will help illustrate the language and its uses.

Data Representation
POP-11 includes a variety of data objects, from numbers (integers and
decimals) to words, strings, and lists. Sharing a heritage from functional
languages, lists can be complex, containing other data objects, and collections
of these objects in embedded lists.

41 Integer Number
0.707 Decimal Number
7_/11 Ratio

The Languages of AI 461

“Zoe” Word
‘a sample string’ String
[a sample list] List
[simple [embedded list]] List containing a list
{POP-11 {{Robin Popplestone}} {Univsersity of Sussex} {1975}}
 Vector as a Structure

Vector data types include a range of classes of standard operations. Users
can further create their own vector classes.

Predicates
POP-11 provides a way to identify the data type given an object. In
demonstrating this, we’ll also show the print-arrow (=>) of POP-11. This
instructs the interpreter to emit the result of the expression. For example:

dataword(5) => Evaluates to integer
dataword(1.1) => Evaluates to decimal
dataword(1_/2) => Evaluates to ratio
dataword(“Zoe”) => Evaluates to word
dataword(‘test string’) => Evaluates to string
dataword([a test list]’) => Evaluates to pair
dataword({a {test vector}}) => Evaluates to vector
dataword(dataword) => Evaluates to procedure

Simple Expressions
As POP-11 is a multi-paradigm language, expressions can be defined and
evaluated in a number of ways. The developer can use infix notation (as
commonly used in imperative languages) or the prefix notation (as we’ve seen
demonstrated in functional languages such as Scheme or LISP). There are
some differences with infix as we’ll see in the following examples:

5 + 7 => Evaluates to 12
*(3, 4) => Evaluates to 12
10 / 3.0 => Evaluates to 3.33333
10 / 3 => Evaluates to 10_/3
10 – 7 => Evaluates to 3

NOTE An interesting aspect of POP-11 is the error-reporting mechanism
that it provides. POP-11 provides very detailed explanations of errors
when they’re encountered, which can be very helpful for beginner
developers.

462 Artificial Intelligence

Variables
We declare variables in POP-11 using the vars keyword. This allows us to
create any number of variables, comma-delimited, as:

vars x,y;

As variables are dynamically typed, they can be assigned any value, for
example:

[a b c] -> x; Assigns [a b c] to variable x
1.99 -> y; Assigns 1.99 to variable y

Note here that -> is the assignment operator, and the = sign represents a
test of equality.

List Processing
Like the functional languages, POP-11 provides a rich set of procedures
for list processing. Let’s have a look at some of the important aspects of list
processing in POP-11.

First, recall that we can declare a list (and in this case two lists)
simply as:

vars clist1 = [a b c d], clist2=[e f g h];

Concatenating lists is performed using the <> operator. We can combine
the two lists to a new list as:

clist1 <> clist2 -> comblist;
pr(comblist); Evaluates to [a b c d e f g h]

POP-11 also provides a way to merge lists with a little more flexibility than
the <> operator allows. For example, we can combine the two previous lists
with a few additional elements easily:

[x ^^clist1 y ^^clist2 z] -> newlist; Evaluates to [x a b c d y e f g h z]
pr(newlist);

Let’s look at one last useful operation that POP-11 provides for list
construction. The single arrow operation allows a list to be constructed with
values of variables, for example:

The Languages of AI 463

vars x, y, z;
1 -> x;
2 -> y;
3 -> z;
[^x ^y ^z] -> mylist;
mylist => Evaluates to [1 2 3]

POP-11 provides list-manipulation procedures that mimic those provided by
LISP and Scheme. Recall in LISP, the car function returned the first object
from the list and cdr returned the list without the first object. In POP-11,
these functions are hd (to return the head of the list, like car) and tl (to return
the tail of the list, like cdr).

hd([[a b] [c d] [e f]]) => Evaluates to [a b]
tl([[a b] [c d] [e f]]) => Evaluates to [[c d] [e f]]
hd(hd(tl([[a b] [c d] [e f]]))) => Evaluates to c

POP-11 also provides a length function, which identifies the number of
objects in a list. This is demonstrated as follows:

length([[a b] [c d]])=> Evaluates to 2

Conditions
Conditionals in POP-11 follow an imperative block-structured model. The
basic pattern for a conditional in POP-11 is:

if <condition> then
<statements>
endif

The condition can be made up of a number of conditions, separated by
logical operators (such as and, or). Let’s look at a short example of the
conditional:

if length(mylist) > 0 then
mylist =>
endif

This snippet simply tests the length of the list (tests for a non-null list), and if
it’s not empty, prints the contents of the list. An else can also be supplied.

464 Artificial Intelligence

Iteration and Maps
POP-11 provides many of the looping constructs that are found in the
imperative languages. This includes until-do, do-until, repeat, while-do, for,
and others. Let’s look at a couple of examples.

The while-do loop is one of the simplest and most commonly used iterator.
The following example iterates over a list and emits each object. Note that
during the loop, we destroy mylist by setting it to its tail as we emit the head.

[a b c d e f] -> mylist;
vars num;
0 -> num;
while num < length(mylist) do
hd(mylist) =>
tl(mylist) -> mylist;
endwhile;

The for loop provides a bit more flexibility, and is only slightly more complicated.
The following example illustrates iterating through the objects of a list:

[a b c d e f] -> mylist;
for 0->num; step num+1->num;
till num = length(mylist)
do
hd(mylist) =>
tl(mylist) -> mylist;
endfor;

You can see the pattern here used in other languages (start, iterator, end).
This is less compact than in languages like C, but the semantics are roughly
the same.

TIP While POP-11 supports a variety of iteration methods, they are
fundamentally very similar, and in fact, some are simply syntactic
sugar. Syntactic sugar (coined by Peter J. Landin) defines additions to a
language, but do not extend the expressiveness of the language.

As POP-11 supports functional programming, it supports higher-order
functions, and the map procedure. Recall that the map procedure can be used
to apply a function over a list. In POP-11, the maplist procedure can be used:
maplist([-7 89 0 -14 3 1], sign) => Evaluates to [-1 1 0 -1 1 1]

The Languages of AI 465

Pattern Matching
POP-11 provides a nice set of pattern-matching features that can be used for
logic programming, or natural-language programming. Let’s explore some of
the pattern-matching features that are provided by POP-11.

Let’s first look at simple matching in POP-11. Let’s say that we want to
identify if an element exists in a list, and if it does, store a parameter related
to that element. For example, if our list is defined as:

[[tim 41] [jill 35] [megan 14]] => mylist;

The matches keyword can be used to find an element in a list, and potentially
store an element of that sequence. The snippet:

vars age;
mylist matches [== [jill ?age] ==] =>

returns true if the element ‘jill’ is matched in mylist. Further, the ?age
element instructs the matcher to store the following element after the match
in the defined variable. If we now emitted age, such as:

age =>

we’d emit the value 35. The ‘==’ elements indicate that something may
begin or end in the list, and to ignore these elements of the list. This pattern
matcher can be useful in building natural language systems (for example,
the famous Eliza program has been written in POP-11 using the matches
pattern-matcher). For example:

[I hate you] -> inp_sentence;
if inp_sentence matches [I ?verb you ==] then
[why do you ^verb me?] =>
endif;

The result of this snippet is [why do you hate me ?]. You’ll recognize this as a
typical response from ‘bot’ programs, such as Eliza. From this simple snippet,
you can see how easy it is to construct natural-language systems with POP-11.

Procedures in POP-11
Defining procedures in POP-11 is what you would expect from a block-
structure language (such as C or Pascal). The procedure definition includes

466 Artificial Intelligence

a define block, the optional set of arguments that are to be passed in, and
any value that is returned. For example, the following procedure implements
the square (returns the product of the single argument):

define square(num) -> result;
num * num -> result
enddefine;

Demonstrating a call to this function is done very simply as:

square(5) => Evaluates to 25

Where it’s possible to pass multiple arguments to a procedure, it’s also
possible for a procedure to return multiple results. The following procedure
illustrates multiple arguments and multiple returns:

define multi(num1, num2) -> (result1, result2);
num1 -> result1;
num2 -> result2;
enddefine

Calling this procedure as:

vars x, y;
multi(3, 7) -> (x, y);

results in x being bound to 3 and y being bound to 7.
Let’s now return to our simple database application to see how this could

be implemented in POP-11. We’ll begin with the creation of the database,
which is simply a list of lists.

[[TIM 41] [JILL 35] [MEGAN 14] [ELISE 9] [MARC 6]] -> db;

Identifying the number of records in our database can use the length
procedure. This returns the number of objects in the list:

define numrecords(thelist) -> result;
length(thelist) -> result;
enddefine;

Using our previously defined database, we can call this easily as:

The Languages of AI 467

numrecords(db) =>

to emit the number of records.
The procedure to emit the names of the records is provided next

(emitnames). For this procedure, we’ve used an imperative style, iterating
through the database list for a number of times defined by the length
procedure.

define emitnames(thelist);
 vars num;
 0 -> num;
 while num < length(thelist) do
 hd(hd(thelist)) =>
 tl(thelist) -> thelist;
endwhile;
enddefine;

This function can be called as shown here:

emitnames(db);

Let’s look at our final procedure, to add a new record to our database
(addrecord). This procedure simply combines two lists (using the <>
operator) and sets the result back to the original database variable (db).

define addrecord(record);
db <> record -> db;
enddefine;

This procedure is called with a list object (actually a list containing our list
record):

addrecord([[MADDIE 3]]);

Finally, let’s look at the complete application (user calls to our database
procedures) to see the expected output from the POP-11 interpreter. First,
our simple application emits the current names in the database, adds a new
record, and then emits the names again. Finally, we emit the number of
records in the database.

468 Artificial Intelligence

[[TIM 41] [JILL 35] [MEGAN 14] [ELISE 9] [MARC 6]] -> db;
printf(‘Current record list\n’);
emitnames(db);
printf(‘Adding a new record\n’);
addrecord([[MADDIE 3]]);
printf(‘Num records: ‘);
numrecords(db) =>
printf(‘\n’);
printf(‘Current record list\n’);
emitnames(db);

Executing this POP-11 program with our previously defined functions
provides:

;;; DECLARING VARIABLE db
Current record list
** TIM
** JILL
** MEGAN
** ELISE
** MARC
Adding a new record
Num records: ** 6
Current record list
** TIM
** JILL
** MEGAN
** ELISE
** MARC
** MADDIE

POP-11 Summary
POP-11 is an interesting language, first because while old it’s still
useful, and second because it’s an interesting perspective on multi-
paradigm programming. POP-11 supports imperative programming, logic
programming, and functional programming within a single language. A large
task, but POP-11 does it well.

Prolog
Prolog (which stands for “Programming in Logic”) is one of the most
interesting languages in use today. Prolog is a declarative language that

The Languages of AI 469

focuses on logic. Programming in Prolog involves specifying rules and facts
and allowing Prolog to derive a solution. This differs from typical declarative
programming, where a solution is coded. Building a Prolog application
typically involves describing the landscape of the problem (using rules and
facts), and then using goals to invoke execution.

History of Prolog
Prolog was created around 1972 by Alain Colmerauer and Robert Kowalski
as a competitor to the LISP language. LISP was dominant at the time for
artificial-intelligence applications, but Prolog then came. Prolog, as the name
implies, focuses on logic rather typical sequential programming.

The earliest Prolog applications were in the domain of natural-language
programming, as this was the object of research by its creators. Natural-
language programming (otherwise known as computational linguistics)
is supported by a unique feature of Prolog. Prolog includes a built-in
mechanism for parsing context-free grammars, making it ideal for NLP or
parsing grammars (such as the Prolog language itself). In fact, like LISP, a
Prolog interpreter can be easily implemented in Prolog.

Today, Prolog remains a language used primarily by researchers, but the
language has advanced to support multiple programming paradigms. Prolog
is ideal for developing knowledge-based systems (such as expert systems)
and also systems for research into computer algebra. Prolog’s problem-
solving capabilities maintain it as an important language for problems in the
knowledge domain.

Overview of the Prolog Language
Prolog is comprised of two fundamental elements, the database and the
interpreter. The database contains the facts and rules that are used to
describe the problem. The interpreter provides the control in the form of a
deduction method. From this simple description, it’s clear that programming
in Prolog differs from programming in other declarative languages. For this
reason, we’ll sharply focus on the unique features of Prolog for building
knowledge-centered systems.

Data Representation
Prolog doesn’t include data types, per se, but instead what can be referred
to as lexical elements (or sequences of characters in legal combinations).
Some of the important lexical elements of Prolog include atoms, numbers,
variables, and lists.

An atom is a string made up of characters (lower and upper case), digits,
and the underscore. Numbers are simply sequences of digits with an optional

470 Artificial Intelligence

preceding minus sign. Variables have the same format as atoms, except that
the first character is always capitalized. A list is represented as a comma-
delimited set of elements, surrounded by brackets.

person Atom
f_451 Atom
‘A complex atom.’ Atom
86 Number
-451 Number
Person Variable
A_variable Variable
[a, simple, list] List
[a, [list of lists]] List

List Processing
Like the functional languages we’ve explored so far, Prolog provides the
typical set of list-processing predicates. These allow the construction of lists,
manipulation of lists, and also extracting information about lists.

NOTE The following Prolog examples will show the dialog with a Prolog
interpreter. Commands are shown in bold (following the Prolog command
prompt, ?-).

Constructing a list is performed simply as follows:

| ?- [a, b, c, d] = X.
X = [a,b,c,d]
yes
| ?-

The X variable refers to the list [a, b, c, d], which is identified by the Prolog
interpreter. We can also concatenate two lists using the append predicate.
This predicate takes two lists and produces a new list for the variable name
defined (third argument).

| ?- append([[a, b], [c, d]], [[e, f]], Y).
Y = [[a,b],[c,d],[e,f]]
yes
| ?-

The Languages of AI 471

Prolog can also tell us how many objects are in a list, using the length
predicate. The form of this predicate takes two arguments, the first a list,
and the second, a variable which will be used to refer to the length:

| ?- length([a, b, c, [d, e]], Length).
Length = 4
yes
| ?-

Prolog also allows matching an object from a list using the member predicate.
Using this predicate, we get

| ?- member(elise, [marc, jill, megan, elise, marc]).
true ?
yes
| ?-

Finally, Prolog also permits the typical head and tail manipulations of lists.
As in LISP and Scheme, the head of a list is the first element, and the tail of
a list is the remainder. Prolog can extract both the head and the tail of a list
at the same time. In the following example, we create a list, and then extract
the head to variable H and the tail to variable T.

| ?- [a, b, c, d] = [H | T].
H = a
T = [b,c,d]
yes
| ?-

As illustrated here, Prolog provides a rich set of list-processing predicates
matching those provided in the functional languages. Let’s look now at the
features that make the Prolog language unique.

Facts, Rules, and Evaluation
What separates Prolog from all other languages is its built-in ability of
deduction. Let’s start with a look at facts, and how we can define new facts
for the Prolog database. We’ll begin a simple example, and then build up to
more complex facts.

Let’s start with a set of rules describing fruits and vegetables. A fact is
known as a predicate, and consists of a head and some number of arguments.

472 Artificial Intelligence

For example, the following facts define the head as the type of product (fruit
or vegetable) and the argument is the name of the object.

fruit(pear).
fruit(apple).
fruit(tomato).
vegetable(radish).
vegetable(lettuce).
vegetable(tomato).

Each of these predicates is true, so we can query the Prolog database, such
as:

| ?- fruit(pear).
yes

for which Prolog would reply with ‘yes’ (a pear is a fruit). We could also
query whether a pear is a vegetable, and Prolog would return ‘no’ (a pear is
not a vegetable).

| ?- vegetable(pear).
no

Now let’s say we want to know what things are fruits. We could provide a
variable to Prolog (as the argument) and get the things that are fruits, such
as:

| ?- fruit(X).
X = pear
X = apple
X = tomato
yes

You’ll also notice that the tomato is both a fruit and a vegetable. Let’s call
this an oddity, and create a rule to define it as such. What we want to do is
tell Prolog that if a thing is both a fruit and a vegetable, then we’ll classify it
as an oddity. In Prolog, we would create this rule as follows:

oddity(X) :-
fruit(X),
vegetable(X).

The Languages of AI 473

With this new rule, we can ask Prolog if any oddities exist, by the following
query:

| ?- oddity(X).
X = tomato
yes

So let’s look at our rule in more detail. The oddity rule simply says that an
object is an oddity if the object is both a fruit and a vegetable (binding to the
variable X). The :- sequence can be read as IF, and ‘,’ can be read as AND.

Finally, let’s say that we want to know if a thing is a fruit or a vegetable.
We can encode an OR using the semicolon, as follows:

fruit_or_vegetable(X) :-
fruit(X);
vegetable(X).

Invoking this rule as ‘fruit_or_vegetable(X).’ results in the list of both fruits
and vegetables (with tomato being provided twice).

Let’s now look at a more complex example that includes a couple of
levels of rules. An interesting example of Prolog’s deduction capabilities can
be illustrated using genealogy. A simple family tree is shown in Figure 13.2.
This tree shows four generations, with parents at the top and great-grand
children at the bottom.

In the end, we’ll show how to encode rules to deduce the parents of a
child, the grandparents of a child, the children of parents or grandparents,
and others.

Let’s start with facts, and how we’ll encode the family tree information
in Prolog. First, we encode the gender of the individuals in the tree using
the predicate male and female. The following facts encode the gender of a
person:

FIGURE 13.2: A sample family tree for Prolog deduction.

474 Artificial Intelligence

male(maurice).
male(gettis).
male(bud).
male(ernie).
male(tim).
male(ed).
male(marc).
male(greg).

female(katherine).
female(viola).
female(celeta).
female(lila).
female(jill).
female(allison).
female(maria).
female(megan).
female(elise).

Next, we identify the members of the tree that are married using the
married predicate. This relates a male person and a female person in holy
matrimony:

married(maurice, valerie).
married(gettis, viola).
married(bud, celeta).
married(ernie, lila).
married(tim, jill).
married(ed, maria).
married(greg, allison).

The next step is to identify the relationships of the people to one another.
The only relationship that’s necessary to note is the set of parents for a given
individual. From this, we can deduce other relationships, such as grandparent
or grandchild (as we’ll see later).

father(maurice, bud).
father(gettis, celeta).
father(bud, tim).
father(bud, ed).

The Languages of AI 475

father(ernie, jill).
father(ernie, greg).
father(tim, megan).
father(tim, elise).
father(tim, marc).

mother(valerie, bud).
mother(viola, celeta).
mother(celeta, tim).
mother(celeta, ed).
mother(lila, jill).
mother(lila, greg).
mother(jill, megan).
mother(jill, elise).
mother(jill, marc).

The father and mother facts specify the parent followed by the child. The
predicate, father or mother, defines their specific relationship.

Now that we’ve defined our facts, let’s create a set of rules that allow
us to deduce some additional relationships. First, let’s have a look at two
rules that can determine the husband or wife of a given person. To be a
husband, a person of the male gender is married to a person of the female
gender. Similarly, a wife is a female person that is also married to a male
person.

husband(Man, Woman) :-
 male(Man), married(Man, Woman).
wife(Woman, Man) :-
 female(Woman), married(Man, Woman).

The next rule defines whether a person is a parent of a child. In this rule, we
use an OR (;) and simply define that a person is a parent of a child, if that
person is a mother or father of that child.

parent(Parent, Child) :-
 father(Parent, Child); mother(Parent, Child).

We can then use the parent rule to create a new rule for the child test. In this
rule, we define that a person is a child of person if that person is the parent
of the child (using the parent rule).

476 Artificial Intelligence

child(Child, Parent) :-
 parent(Parent, Child).

With the child rule, we can create two other rules to refine the child
relationship. First, we create a son rule, which defines that a son is a male
child of a parent. Similarly, a daughter is a female child of a parent.

son(Child, Parent) :-
 male(Child), child(Child, Parent).
daughter(Child, Parent) :-
 female(Child), child(Child, Parent).

So far, our rules have focused on direct relationships between persons in
the database. Now let’s look at two rules that define indirect relationships
to persons in the database, grandchildren and grandparents. A grandparent
can be defined as the parent of the child’s parent. Conversely, a grandchild
is the child of the grandparent’s child. We can look at these both as parent
relationships, as defined below:

grandparent(Gparent, Gchild) :-
 parent(Gparent, Parent), parent(Parent, Gchild).
grandchild(Gchild, Gparent) :-
 grandparent(Gparent, Gchild).

In the grandparent rule, we match the facts for the grandparent, and find
the children (which are referenced by the Parent variable). Then we use the
parent rule to identify if the specified Gchild is a child of that Parent. The
grandchild rule is then a reverse of the grandparent rule.

Let’s now have a look at this database in action. This is illustrated below
using the GNU prolog interpreter (gprolog), (see Listing 13.8).

Listing 13.8: Querying the family tree database with gprolog.

mtj@camus:~$ gprolog
GNU Prolog 1.2.18
By Daniel Diaz
Copyright (C) 1999-2004 Daniel Diaz
| ?- consult(‘family.pl’).
compiling /home/mtj/family.pl for byte code...
/home/mtj/family.pl compiled, 71 lines read - 5920 bytes written, 51 ms
(10 ms) yes

The Languages of AI 477

| ?- grandchild(marc, X).
X = bud
X = ernie
X = celeta
X = lila
no
| ?- married(bud, X).
X = celeta
yes
| ?- daughter(X, jill).
X = megan
X = elise
no
| ?- son(X, maurice).
X = bud
no
| ?- mother(celeta, X).
X = tim
X = ed
yes
| ?- grandparent(X, tim).
X = maurice
X = gettis
X = valerie
X = viola
(20 ms) no
| ?-

Also of interest is the trace facility provided by gprolog. This allows us
to trace the flow of the application of rules for a given query. For example, the
following query checks to see if a person is a grandparent of another person.
Note here that the variables preceded by underscores are temporary variables
created by Prolog during its rule checking. Note also the call/exit pairs which
determine the relationships along the ways as needed by the specific rules. As
specified above, a grandparent is a person who is the parent of the parent.

Listing 13.9: Querying the family tree database with gprolog with trace enabled.

| ?- trace.
The debugger will first creep -- showing everything (trace)

478 Artificial Intelligence

yes
{trace}
| ?- grandparent(bud, marc).
 1 1 Call: grandparent(bud,marc)
 2 2 Call: parent(bud,_79)
 3 3 Call: father(bud,_103)
 3 3 Exit: father(bud,tim)
 2 2 Exit: parent(bud,tim)
 4 2 Call: parent(tim,marc)
 5 3 Call: father(tim,marc)
 5 3 Exit: father(tim,marc)
 4 2 Exit: parent(tim,marc)
 1 1 Exit: grandparent(bud,marc)
true ?
yes
{trace}
| ?-

Prolog can be used for much more complex relationships, but this
illustrates the power of deduction provided by the Prolog engine.

Arithmetic Expressions
While Prolog supports the arithmetic operators, their use differs from what
you might expect. For example, the following expression is false:

2 * 4 = 8.

This expression is false because ‘2 * 4’ is a compound term and ‘8’ is a
number. Arithmetically, they are the same, but Prolog sees this differently.
If we’re testing the validity of an expression, we instead use the is operator.
For example, the following expression is true, as we’re checking the validity
of the expression using is:

8 is 2 * 4.

We can relate our expression to a variable using the is operator as well.
The following final example illustrates the variety of operations that are
available.

| ?- X is (6 * 2 + 4 ** 3) / 4.

The Languages of AI 479

X = 19.0
yes
| ?-

Finally, let’s look at an example that combines arithmetic expressions with
logic programming. In this example, we’ll maintain facts about the prices of
products, and then a rule that can compute the total cost of a product given
a quantity (again, encoded as a fact).

First, let’s define our initial set of facts that maintain the price list of the
available products (in this case, fruits).

cost(banana, 0.35).
cost(apple, 0.25).
cost(orange, 0.45).
cost(mango, 1.50).

These facts relate (or create a mapping between) a fruit to a per-item
cost (for example, mangos run around $1.50 each). We can also provide a
quantity that we plan to purchase, using another relation for the fruit, for
example:

qty(mango, 4).

We can then add a rule that calculates the total cost of an item purchase:

total_cost(X,Y) :-
 cost(X, Cost),
 qty(X, Quantity),
 Y is Cost * Quantity.

What this rule says is that if we have a product with a cost fact, and a quantity
fact, then we can create a relation to the product cost and quantity values for
the item. We can invoke this from the Prolog interpreter as:

| ?- total_cost(mango, TC).
TC = 6.0
yes
| ?-

This tells us that the total cost for four mangos is $6.00.

480 Artificial Intelligence

Prolog Summary
As we’ve demonstrated here, Prolog is unique language that offers
programming in a semi-traditional imperative paradigm, as well as logic
programming based on first-order predicate calculus. While restricted to
Horn clauses, Prolog is a powerful language that permits the development
of knowledge-based applications. This introduction has only scratched the
surface of Prolog, and the resource section provides more information on
where to go to learn more.

OTHER LANGUAGES

As illustrated by the many examples in C provided by this book, artificial-
intelligence applications are by no means restricted to the traditional
languages of AI. Other popular languages provide some of the powerful
features that were demonstrated for LISP and Scheme. For example, the
Ruby language provides dynamic function creation similar to the lambda
function available in LISP and Scheme. In fact, the lambda keyword remains.
The following example illustrates the lambda function in Ruby.

irb> mulby2 = lambda{ |x| x*2 }
=> #<Proc>
irb> mulby2.call(5)
=> 10

Ruby also provides the Procs method, which creates new procedure
objects:

irb> def mulby(x)
irb> return Proc.new {|n| n*x }
irb> end
=> nil
irb> mulby2 = mulby(2)
=> #<Proc>
irb> mulby2.call(5)
=> 10

The Python language also supports some of the functional features you’ll
find in LISP or Scheme. Recall the map function which allows a function to
be applied to a list of data. Using map, a function is provided (which is to be

The Languages of AI 481

applied to the list), as well as the list itself. The following example illustrates
creating a function that multiples the argument by two, and then applies this
function to a list.

>>> def mulby2(val):
… return val*2
…
>>> mylist = [1, 2, 3, 4, 5]
>>> newlist = map(mulby2, mylist)
>>> print newlist
[2, 4, 6, 8, 10]
>>>

As these short examples illustrate, functional programming is not restricted
solely to functional languages. The newer object-oriented scripting
languages, such as Ruby and Python, have borrowed the key features from
their ancestors and are bringing them into the future.

CHAPTER SUMMARY

Languages are the vehicles by which developers create solutions to
problems. But unfortunately, languages are also religious artifacts that
become the centerpieces of heated debates. But ultimately, languages
are tools, and each has their strengths and weaknesses. This chapter
introduced the major classes of languages for AI, and also discussed four
particular languages that are used in AI application development. The
chapter concluded with a review of some of the features that started in the
older functional languages, but have now been applied to modern domain-
specific languages.

REFERENCES

[R6RS] Sperber, Michael, et al “Revised Report on the Algorithm Language
Scheme,” 9/5/2006.

Available online at http://www.r6r2.org/r6r2_91.pdf
[Sloman 1996] Sloman, Aaron “An Overview of POP-11,” Second Edition.
Available online at http://www.cs.bham.ac.uk/research/projects/poplog/

primer/

482 Artificial Intelligence

RESOURCES

Dybvig, R. Kent. “The Scheme Programming Language,” 2003. The MIT
Press.

GNU Prolog
Available online at http://gnu-prolog.inria.fr/
McCarthy, John. “Recursive Functions of Symbolic Expressions and Their

Computation by Machine.” 1960.
Sloman, Aaron. “Teach Primer – An Overview of POP-11,” 1996.
Available online at http://cs.bham.ac.uk/research/projects/poplog/primer/
Steele, Guy and Sussman, Gerald. “The Original Lambda Papers,” 1975-

1980.
Available online at http://library.readscheme.org/page1.html

EXERCISES
1. Historically, what was the first AI language, and what features made it

ideal for AI programming of the day?
2. What does it mean for a language to be Turing complete?
3. Describe the primary features of functional languages, as described in

this text.
4. Describe the purpose of the map function, which can be found in the

older functional languages, as well as the new domain-specific languages
such as Ruby and Python.

5. Describe how first-class functions are important for AI programming.
6. Define the important characteristics of imperative programming.
7. Describe what is meant by polymorphism for object-oriented

languages.
8. Define one primary difference of logic programming languages, such as

Prolog, to other languages.
9. What feature of LISP introduced the concept of dynamic functions?
10. What is the result of the operation (car (cdr ‘(a, (b, c), d))) in

LISP?
11. What is the result of the operation (cadr ‘(a, (b, c), d, e))) in

LISP?
12. Describe the purpose of the eval function in LISP.
13. Write a function in LISP to return the age given a name for the database

functions.
14. Describe some of the primary differences between Scheme and its

predecessor, LISP.

The Languages of AI 483

15. In Scheme, provide the evaluation for (list ‘(a b) ‘(c d) ’d).
16. In Scheme, what is the evaluation of (length ‘(()))?
17. Provide the result of this Scheme example:
(map (lambda (x) (+ x 1) ‘(1 2 3 4))
18. Create a Scheme function that emits the Fibonacci sequence for a

defined limit.
19. Write a Scheme function that emits the age for a name in the example

database.
20. How does POP-11 compare to LISP and also to imperative languages

like C?
21. Describe the differences in list processing between Scheme and POP-11.
22. Build a simple conversational program in POP-11 that supports simple

English language interactions.
23. Define how the Prolog language is different from other languages

discussed in this chapter.
24. Describe the fundamental list-processing operations provided by

Prolog.
25. Extend the Prolog family tree example for two new rules, grandson and

granddaughter.

A p p e n d i x A ABOUT
THE CD-ROM

• Included on the CD-ROM are simulations, code, videos, figures from
the text, third party software, and other files related to topics in artificial
intelligence.

• See the “README" files for any specific information/system
requirements related to each file folder, but most files will run on
Windows 2000 or higher and Linux.

INDEX

1NN, 185-192
2001: A Space Odyssey, 2
4-Queens problem, 76-80
a priori, 305-307

A
A* search algorithm, 123
A*Search, 57-63

Eight Puzzle, 59-66
Implementation, 61-64
Applications of, 65

A* variants, 65
ACL (FIPA Agent Communicative

Language), 388
ACO algorithm, 424
ACO, 10, 423-430
Activation functions, 285
Active networking, 364
Active Node Transfer System (ANTS),

364
Actuation with effectors, 338
Ada, 437
ADALINE, 250, 265

Adaptive Resonance Theory (ART),
257, 313-322

Adjacency lists, 29-30, 68-70
Adjacency matrix, 28-29
Affective computing, 430-432

Synthesizing emotion, 431-433
Agency, 12
Agent architectures, 366-382
Agent communication, 385-389
Agent environments, 353-356
Agent languages, 382-385
Agent properties and AI, 352-353
Agent systems, 12
Agent taxonomies, 356-366
Agent TCL, 384-385
Agents, 351-353, 404-405
Aglets, 363-364, 379-380, 383-384
AI and games, 15
AI effect, 10
AI@50, 6
AIML, 361-362
AIS, 11
ALGOL, 437

488 Artificial Intelligence

ALife, 11
Alpha parameter, 62
Alpha-beta pruning, 101-106
AM, 166-167
Ananova, 358
Anatomy of an agent, 350-351
And-or graphs, 115
Annealing, 66-68
Ant Colony Optimization (ACO), 10,

199, 423-430
Traveling salesman problem, 423-

424
ACO algorithm, 424
ACO parameters, 430

ANTS, 364
Anytime planning, 343
API, 363, 380, 383, 400
Arcs, 27
ART, 172, 257, 313-322
ART-1, 313-322
ART-2, 313-322
Artificial life, 402-410

Echo, 403
Tierra, 403
Simulated evolution, 403-404
Variations of artificial life, 408
Lindenmayer systems, 408

Artificial Immune Systems (AIS), 11,
398-402

Self-management capabilities, 399-
400

Artificial Intelligence Markup
Language (AIML), 361-362

ART-implementation, 316-322
Asimov, Isaac, 2
A-star algorithm, 57-63
ATLANTIS, 375-376
ATN, 9
Atomic sentences, 153
Augmented Transition Network (ATN), 9

Automatic computing systems, 400
Automatic Mathematician (AM), 165-

168
Avoidance behavior, 341
Axons, 251

B
Backgammon, 116-117
Backpropagation, 250, 257, 265-270

Algorithm, 250, 267-268
Implementation, 268-270
Tuning, 274
Training variants, 274
Weight adjustment variants, 274-

275
Backtracking, 84-85
Backward error propagation, 265
BACON System, 165-167
BASIC, 437
BB1, 377
BBH, 200-201
BBS, 374
Beam-search, 56
Behavior architectures, 373-374
Behavior-Based Systems (BBS), 374
Belief-Desire-Intention (BDI)

architectures, 370-371
Best-First Search (BFS), 50-57
BestFS, 51-54
Beta parameter, 62
BFS, 39-47, 123
Bidirectional Search, 40-41
Bitboard, 110
Blackboard architectures, 369-370
Blank sheets, 4
Bottom-up approach, 7
Braitenburg vehicles, 334-335
Breadth-First Search (BFS), 39-47, 123
Brooks, Rodney, 13, 10, 132
Bug, 403-408

Index 489

Building-Block Hypothesis (BBH),
201-202

C
C language, 437
CA, 393-398
CCD, 337
Cell decomposition, 343-345
Cellular Automata (CA), 393-398

One-dimensional CAs, 394-395
Two-dimensional CAs, 394-396
Conway application, 396-398
Turing completeness, 398
Emergence and organization, 398

centroid, 305-311
CG, 358
Charge-Couple-Device (CCD), 337
ChatterBots, 360
Checkers, 2, 4, 15, 90, 106-109
Checker-board representation, 107
Chess, 2, 4, 15, 25, 90, 95, 109-112, 354
Chess-board representation, 110
Child Machine, 3
Chinook, 107-109
Chunking, 382
Classical Game AI, 106-122

Checkers, 106-109
Chess, 109-112

Clark, Arthur C., 2
Classes of search, 22
Class-node activation, 276
Clustering, 296
Colmeraur, Alain, 9
Common sense, 168
Communication of knowledge, 167
Compound sentences, 154
Computation knowledge discovery,

165-167
Conjunctions, 149
Constraint relaxation, 81

Constraint-satisfaction algorithm, 84-86
Generate and test, 84
Backtracking, 84-85
Forward checking, 85-86

Look ahead, 85-86
Constraint Satisfaction Problems

(CSP), 81-85
Graph coloring, 81-83
Scheduling, 83-84

Constraints, 81
Content-Addressable Memory (CAM),

322-323
Conway, John, 11, 395
Cornell Aeronautical Laboratory, 7
Cost functions, 58-62
Crossover probability, 230
CSP, 81-85
Cube program, 214
Cybernetics, 291
Cycle, 27

D
DAI, 353
DARPA, 332
Dartmouth AI Conference, 4
Data mining application, 2
DE algorithm, 228-230
DE, 227-235
Decision trees, 172-173

Creating, 174-176
Decision-tree learning, 173-176
Declarative knowledge, 144
Decomposition, 330
Deductive reasoning, 151-152
Deep Blue, 110
Deep space 1, 12
Deliberative architectures, 368-369
Delta rule, 262
Demons, 147
Dendral Project, 7

490 Artificial Intelligence

Dendrites, 251
Depth-First Search (DFS), 31-32, 93,

123
Depth-Limited Search (DLS), 33-34
DFS, 31-32, 93, 123
Diagraph, 27-28
Differential Evolution (DE), 227-235

Algorithm, 228-230
Implementation, 230

Discovery spaceship, 2
Disjunctions, 149
Disk-square tables, 112
Distributed Artificial Intelligence

(DAI), 353
Distributed Problem Solving (DPS), 353
Distributed Sequential Computing

(DSC), 381-382
Diversification, 81
DLS, 33-34
Dorigo, Marco, 11
DPS, 353
DSC, 381-382
DUP instruction, 214

E
Echo, 403
Eight Puzzle, 58-65

Demonstration with A*, 64-65
Effectors, 338, 351
Eliza and Parry, 360
Eliza, 6, 9
EMACS, 8
Email filtering, 364-365
End-game database, 109
End-games, 113
Engelman, Carl, 7
Entertainment agents, 358
Entropy, 174
ES, 220-227
Euclidean tour, 70-71

EURISKO, 167
Evolutionary Computation, 16, 195-244

Strategies, 196
Programming, 197
Genetic algorithms, 197-198
Genetic programming, 198
Biological motivation, 199-200
Genetic algorithms, 200-220
Genetic Programming (GP), 212-

220
Evolutionary Strategies (ES), 220-

227
Differential Evolution (DE), 227-

235
Particle Swarm Optimization

(PSO), 236-244
Evolvable Hardware, 244

Evolutionary neural networks, 416-422
Genetically evolved neural

networks, 416-422
Evolutionary Strategies (ES), 220-227

Algorithm, 221-223
Implementation, 223-227

Evolutionary strategies algorithm, 221-
223

Evolvable hardware, 244

F
Feedforward, 256, 276, 301
Field-of-View (FOV), 125, 130-131
Fifteen puzzle, 59
Fifth Generation Computer Systems

Project, 156-157
Finite State Machine (FSM), 130-131
FIPA, 388
First-Order and Prolog, 148, 155
First-Order Logic (Predicate Logic),

152-162
First-person shooter (FPS), 13, 172-

173, 355-356

Index 491

Fitness-proportionate selection, 201
FOL, 152-163
FORTRAN, 437
Forward checking, 83-85
Forward propagation, 265
Four Color Theorem, 83
FOV, 127
FPS, 13, 172-173, 355-356
Frames, 146-148

Generic, 146
Instance, 146
Longbowman, 146
Pikeman, 147

FSM, 131-132, 360
Functional programming, 434-435
Fuzzy control, 415-416
Fuzzy logic, 410-416
Fuzzy logic mapping, 411-414
Fuzzy logic operators, 414-415
Fuzzy systems, 410-416

Fuzzy logic mapping, 411-414
Fuzzy logic, 410-416

Fuzzy logic operators, 414-415
Fuzzy control, 415-416

G
GA, 199-200, 200-220
Game agents, 358-359
Game of Life, 11, 395-396
Game theory, 90
General Problem Solver (GPS), 4
General search paradigms, 31
General state space search, 22
Generalization, 268, 273
Generate and Test method, 31-32, 84
Genetic algorithms, 197-199, 200-220,

212-220
Implementation, 204-211

Genetic Programming (GP), 198, 212-
220

Implementation, 215-220
Genetic recombination, 202
Go, 114-115
Goal generation, 115
Go-Board representation, 112
GOFAI, 9
Goldblach’s conjecture, 166
Good-old-fashioned-AI, 9
GP, 212-220
Graph algorithms, 32
Graph coloring, 81-83
Graphs, 27
Group or distributed robotics, 345

H
HAL, 2-3
Hart, Tim, 6
Haskell, 435
Hebb, Donald, 7
Hebb’s rule, 291-296

Implementation, 292-296
Hebbian learning, 7, 172, 290-291
Helper APIs, 31-32
Hidden-node activation, 277
Hill-climbing search, 65-66
History of AI, 1
Holland, John, 9, 403
Homer, 376-377
Hopfield auto-associator algorithm,

323-324
Hopfield auto-associative model, 322-

327
Content-Addressable Memory

(CAM), 322-323
Hopfield auto-associator algorithm,

323-324
Hopfield implementation, 324-327

Hopfield implementation, 324-327
Horn clauses, 9
HTML, 163-164

492 Artificial Intelligence

HTTP, 350, 353
Hybrid agents, 366
Hybrid architectures, 371
Hybrid models, 17
Hyperplane, 258

I
ID3, 36-37, 173, 176,
Imperative programming, 437
Information gathering and filtering, 365
Information retrieval and KR, 157
Informed search, 15, 41-87

Best-First Search (BFS), 50-57
A*Search, 57-63
Hill-climbing search, 65-66

Integrated Management Console, 401-
403

Intelligent agents, 349-389
Anatomy of an agent, 350-351
Agent properties and AI, 351-353
Agent environments, 353-356
Agent taxonomies, 356-366
Agent architectures, 366-382
Agent languages, 382-385
Agent communication, 385-389

Intelligent agents, 17, 132
Intensification, 80
Interdisciplinary R&D, 12
Interface agents, 356-357
iProlog, 148-149
Iterative Deepening Search (IDS),

36-37

J
Java, 363, 379-380
Java Virtual Machine (JVM), 379-380
JVM, 379-380

K
Karel, 346

Karel++, 346
Kismet, 331
k-Means, 304
k-Means algorithm, 305-307
k-Means clustering, 257, 304-313

k-Means algorithm, 305-307
k-Means implementation, 307-313
k-Means implementation, 307-313
Knowledge Query and Manipulation

Language (KQML), 385-387
Knowledge Representation (KR), 15,

143-169
Types of knowledge, 144
Role of knowledge, 144-145
Semantic networks, 145-146
Frames, 146-147
Propositional logic, 149-152
First-Order Logic (Predicate

Logic), 152-163
Computation knowledge discovery,

165-167
Ontology, 167

Communication of knowledge, 167
Common sense, 168

Kohonen self-organizing maps, 257
Koza, John, 198
KQML, 385-387
KQML performatives, 387
KR, 143-159

L
LAMA, 346
Language taxonomy, 433-442
Languages of AI, 17
Last-In-First-Out (LIFO), 32
Layered behavior architectures, 130-131
Least-Mean-Squares (LMS) Learning,

250, 257, 262-265
Learning algorithm, 262-263
Implementation, 263-265

Index 493

Lenat, Doug, 168
Levin, Mike, 6
LIFO queue, 32
LIFO stack, 32
Lindenmayer systems, 408-410
Linear discriminants, 257-258
Linear genetic programming, 212
Linear separable problems, 257
LISP, 6-8, 167, 200, 365, 385-386, 435-

436, 443-451
History of, 443-444
Data representation, 444
Simple expressions, 444
Predicates, 445
Variables, 445
List processing, 445-446
Conditions, 447-448
Functions, 448-449

LMS, 262-266
Logic programming, 441-442
LOGO, 346
Loki, 120-121
Look ahead, 84-85
Loop, 27
L-systems, 408-410
Luna 2, 331

M
Machine learning, 16, 172-192

Machine-learning algorithms, 171-
172

Supervised learning, 172-173
Unsupervised learning, 176-181
Nearest Neighbor Classification

(1NN), 185-192
Machine-learning algorithms, 171-172
Maclisp, 7
Macsyma, 7
Management console, 399
Mark I, 259

Mark I, Ferranti, 4
Markov models, 177
Markov chains, 177-181

Word generation with, 179-180
Implementation, 180-181

Martin, William, 7
Maxims agent, 365
McCarthy, John, 6, 9
Mechanical Intelligence, 2
Messengers, 380-381
Messy and Scruffy approaches to AI, 10
Meta-knowledge, 144
Min-conflicts search, 86
Minimax algorithm, 92-106

Implementation for Tic-Tac-Toe,
98-101

Alpha-beta pruning, 101-106
Minimax search with alpha-beta

pruning, 111
Minsky, Marvin, 8, 146
MIT, 7
ML, 435
MLP, 254-256, 265
Mobile agents, 362-363
Mobile architectures, 371-372
Mobility-based evaluation, 112
Modus Ponens, 149
Modus Tollens, 149
Moses, Joel, 7
Motion planning, 342-343
Movement and path-finding, 121-122
Movement planning, 342-345
MSE, 262
MUL instruction, 214
Multi-layer neural network, 273
Multi-layer perceptron (MLP), 250,

254-256
Multi-Prob-Cut (MPC), 113
Mutation, 232-233
MYCIN, 8

494 Artificial Intelligence

N
NASA, 12
Natural Language Processing (NLP), 9
Natural Language Understanding

(NLU), 9
Nearest Neighbor Classification (1NN),

185-192
Neat and Scruffy approaches to AI, 9
Neural network topology, 269
Neural Networks I, 16, 249-285

Short history, 249-250
Biological motivation, 250-251
Fundamentals, 251-252
Perceptron, 257-261
Least-Mean-Squares (LMS)

Learning, 262-265
Learning with backpropagation,

265-270
Probabilistic Neural Networks

(PNN), 276-281
Other Neural Network

Architectures, 281-283
Neural Networks II, 17, 289-327

Unsupervised learning, 289-290
Hebbian learning, 290-291

Simple Competitive Learning, 296-313
k-Means clustering, 304-305
Adaptive Resonance Theory (ART),

313-322
Hopfield Auto-associative model,

322-327
Neurogammon, 116-117
Newell, Alan, 4
Nim, 26-27
NLP, 9
NLU, 9
Non-Player-Character (NPC), 124-134
Non-zero-sum game, 90
NPC behavior, 129-130
NPC, 124-134, 352-354, 356-358

N-puzzle, 60, 91
N-Queens problem, 50-56
N-Queens problem, 77-78

O
OAA, 377
Object avoidance behavior, 341
Object-oriented programming (OOP),

438
Obliq, 382
One-dimensional CAs, 392-393
Ontology, 165
OOP, 438
Open Agent Architectures (OAA), 377
Open dynamics engine, 346
Opening book database, 110-111
Opening knowledge, 112
Othello, 112-113

P
Papert, Seymour, 8
Particle Swarm Optimization (PSO),

236-244
Algorithm, 236-238
Implementation, 238-244

Pattern recognition, 273-274
Pattern-based evaluation, 112
PDP-6, 6
Perceptron, 7
Perceptron implementation, 260-261
Perceptron learning algorithm, 259
“Perceptrons” paper, 8, 250
Perceptron rule, 259
Perceptron with sensors, 337-338
Perceptron, 257-261
Phenotypic algorithm, 222
Planner, 136
PNN, 276-281
PNN classifier function, 277-279
Poker, 90, 109, 118-121

Index 495

POP-11, 361, 437, 460-468
History of, 460
Data representation, 460-462
Variables, 462
List processing, 462-463
Conditions, 463-464
Iteration and maps, 464
Pattern matching, 465
Procedures, 465-468

Potential fields, 344-345
Predicate logic, 152-163
Principal Variation Search (PVS), 108
Prinz, Dietrich, 4
Probabilistic Neural Networks (PNN),

275-281
Algorithm, 275-277

Procedural attachment, 147-148
Procedural knowledge, 144
Procedural Reasoning System (PRS),

378-379
Prodigy, 144
Prolog, 9, 155-157, 160-161, 468-481
History of, 469

Data representation, 469-470
List processing, 470-471

Facts, rules, and evaluation, 471-480
Proof-number search, 115
Propositional logic, 149-152
Propositions, 149
PRS, 378-379
PSO, 236-244
PSO algorithm, 236-238
PSO implementation, 238-244
Python map function, 435

Q
Quantifiers, 155

R
Radial-Basis Form (RBF), 277

RAPT, 346
Ray, Tom, 403
RBF, 277
RBS, 136-139
RDF, 164
Reactive agent, 358
Reactive architectures, 367-368
Reactive control system architecture,

340
Real-time strategy AI, 123, 136
Recombination, 232-233
Recurrent neural network, 283
Remote agent, 12
Replacement, 232-233
Resource Description Framework

(RDF), 164
Reversi, 112
Robot programming languages, 346
Robot simulators, 346
Robotics, 329-346

Introduction, 329-334
Braitenburg vehicles, 334-335
Natural sensing and control, 336-

337
Perceptron with sensors, 337-338
Actuation with effectors, 338
Robotic control systems, 338-339
Simple control architectures, 339-

342
Movement planning, 342-345
Group or distributed robotics, 345
Robot programming languages, 346
Robot simulators, 346

Robotic control systems, 338-339
Rosenblatt, Frank, 7
Rossum’s Universal Robots, 2
Roulette wheel selection, 178-179, 201-

202, 208-211
Roussel, Phillipe, 9
Ruby, 436

496 Artificial Intelligence

Rule traverse, 161
Rule-based programming, 136
Rule-Based Systems (RBS), 136-139

S
SA, 66-68
Samuel, Arthur, 5, 106
Scheduling as a CSP, 83-84
Scheme, 435, 451-459

History of, 452
Simple expressions, 452-453
Predicates, 453
Variables, 453
Iteration and maps, 456-457
Conditions, 455
Procedures, 457-459

Scrabble, 120-121
Search, 22-23, 29-45, 50-67, 75-81, 86
Classes of search, 22
General state space search, 22
Search in physical space, 22
Search in a puzzle space, 23
Search in adversarial game space, 25
Uninformed search, 29-45
Iterative Deepening Search (IDS),

36-37
Search in adversarial game space, 25
Depth-First Search (DFS), 31-32
Search functions (common orders), 30
Depth-Limited Search (DLS), 33-34
Iterative Deepening Search (IDS),

36-37
Breadth-First Search (BFS), 38-39
Bidirectional search, 40-41
Uniform-Cost Search (UCS), 41-42
Best-First Search (BFS), 50-57
Beam-search, 56
A*Search, 57-58
Informed search, 41-87
Hill-climbing Search, 65-66

Tabu search, 75-81
Min-conflicts search, 86
Principal Variation Search (PVS), 108
Multi-Prob-Cut (MPC), 113
Proof-Number Search, 115
Search functions (common orders), 30
Search in adversarial game space, 25
Search in a puzzle space, 23

Towers of Hanoi puzzle, 23-25
Search in physical space, 22
Seek power behavior, 343
Semantic networks, 145-146
Semantic web, 163-164
S-expressions, 198, 200, 212
Shaft encoder, 339
Shannon number, 4
Shannon, Claude, 4
Shaw, J.C., 4
Shortliffe, 8
SHRDLU, 6
Sigmoid function, 270
Sigmoid squashing function, 267-268
Simbad, 346
Simon, Herbert, 4
Simple competitive learning, 296-313

Vector quantization, 297-298
Vector quantization

implementation, 297-305
Simple control architectures, 339-342
Simulated Annealing (SA), 66-68
Simulated annealing algorithm, 67-68
Simulated annealing demonstration,

70-75
Simulated evolution, 403-404
Single-layer perceptron (SLP), 250,

252-254
Sliding window, 281
SLP, 254-256
Smalltalk, 383
SMTP, 350, 353

Index 497

SOAR, 382
Solar System, 157-159
Speech recognition, 281
Stanford University, 7-8
Static board evaluation, 111-112
Static evaluation function, 108
Static state machine, 129-130
Strachey, Christopher, 4
Strategic AI, 133-134
Strong AI, 5-7, 15, 143
Subsumption architectures, 131, 372-

373
Subsumption control system

architecture, 340-342
Supervised learning, 16, 172-173, 257
Supervised learning algorithm, 260
Supervised neural network

algorithms, 16
Swarm intelligence, 11, 237
Synaptic junctions, 251
Synthesizing emotion, 431-432
Synthetic agents, 357-358
Systems approach, 12-15

T
Table lookup, 124-125
Tabu list, 75
Tabu search, 75-81

Variants, 80-87
Tabu list, 75
Tabu search algorithm, 77-79

Tabu search algorithm, 77-79
Taxonomy of robotics, 332-334
TCL, 384-385
TD, 115
TD-Gammon, 116-117
Team AI, 132-133
Telescript, 382-383
Temporal Difference (TD) learning,

115

Tesla, Nikola, 330
Test query, 162
The Logic Theorist, 4
Threshold Logic Unit (TLU), 258
Tic-Tac-Toe, 90-96
Tierra, 403
Time-series Processing Architecture,

282
TLU, 258
Touchpoint, 399-401
Touchpoint autonomic managers, 400-

401
Towers of Hanoi problem, 23-25, 91,

204-211
Traveling Salesman Problem (TSP), 68-

75, 423-424
Trees, 27
Truth table, 149-151
Truth values, 152
TSP, 68-75, 423-429
Turing, Alan, 3-4
Turing complete, 393
Turing completeness, 398
Turing machine, 3
Turing test, 360
Two-dimensional CAs, 395-396
Two-player games, 89-91

U
UCS, 41-45
UML, 146
Unified Modeling Language (UML),

146
Uniform-Cost Search (UCS), 41-42
Uninformed Search, 15, 29-45

Helper APIs, 31-32
General search paradigms, 31
Depth-First Search (DFS), 31-32
Generate and Test method, 31-32

UnrealEngine, 358

498 Artificial Intelligence

UnrealScript, 358
Unsupervised learning, 16, 176-181,

257, 289-290
UseNet, 357
User assistance agent, 364-366

Email filtering, 364-365
Information gathering and filtering,

365
Other user-assistance applications,

365-366

V
VanMelles, Bill, 8
Variables, 81, 101, 154-155
Variations of artificial life, 408
Vector quantization, 305
Video game AI, 121-139

Movement and path-finding, 123-
124

Viking11, 331
Virtual character agents, 357-358

W
Web spider, 350-351
Weiner, Norbert, 291
Weizenbaum, Joseph, 6-7
Werbos, Paul John, 9
Widrow-Hoff rule, 262
Winner-takes-all, 268, 273, 276, 300
Woods, Bill, 9
Word-form learning, 177-180
XML, 389-399
XOR problem, 8
Zero-address architecture, 213
Zero-sum game, 89-90
Zobrist hashing, 109

	Front Matter
	Copyright
	Acknowledgments
	Table of Contents
	Body
	Index
	Back Matter

