
Software Engineering
A  P R A C T I T I O N E R ’ S  A P P R O A C H



McGraw-Hill Series in Computer Science

Senior Consulting Editor
C. L. Liu, National Tsing Hua

University

Consulting Editor
Allen B. Tucker, Bowdoin

College

Fundamentals of Computing
and Programming

Computer Organization and
Architecture

Systems and Languages
Theoretical Foundations
Software Engineering and

Databases
Artificial Intelligence

Networks, Parallel and
Distributed Computing

Graphics and Visualization
The MIT Electrical and

Computer Science Series

Software Engineering and
Databases

Atzeni, Ceri, Paraborschi, 
and Torlone, 
Database Systems, 1/e

Mitchell, Machine 
Learning, 1/e

Musa, Iannino, 
and Okumoto, 
Software Reliability, 1/e

Pressman, Software
Engineering: A Beginner’s
Guide, 1/e

Pressman, Software
Engineering: A Practioner’s
Guide, 5/e

Ramakrishnan/Gehrke,
Database Management
Systems, 2/e

Schach, Classical and Object-
Oriented Software
Engineering with UML 
and C++, 4/e

Schach, Classical and Object-
Oriented Software
Engineering with UML and
Java, 1/e



Software Engineering
A  P R A C T I T I O N E R ’ S  A P P R O A C H

FIFTH EDITION

Roger S. Pressman, Ph.D.

Boston   Burr Ridge, IL   Dubuque, IA   Madison, WI
New York   San Francisco   St. Louis

Bangkok   Bogotá   Caracas   Lisbon   London   Madrid   Mexico City
Milan   New Delhi   Seoul   Singapore   Sydney   Taipei   Toronto



SOFTWARE ENGINEERING
Published by McGraw-Hill, an imprint of The McGraw-Hill Companies, Inc. 1221 Avenue of the
Americas, New York, NY, 10020. Copyright/2001, 1997, 1992, 1987, 1982, by The McGraw-Hill Com-
panies, Inc. All rights reserved. No part of this publication may be reproduced or distributed in any
form or by any means, or stored in a database or retrieval system, without the prior written consent
of The McGraw-Hill Companies, Inc., including, but not limited to, in any network or other electronic
storage or transmission, or broadcast for distance learning.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 0 DOC/DOC 0 9 8 7 6 5 4 3 2 1 0

ISBN 0073655783

Publisher: Thomas Casson
Executive editor: Betsy Jones
Developmental editor: Emily Gray
Marketing manager: John Wannemacher
Project manager: Karen J. Nelson
Production supervisor: Heather Burbridge
Coordinator freelance design: Keith McPherson
Supplement coordinator: Rose Range
New media: Christopher Styles
Cover design: Rhiannon Erwin
Cover illustrator: Joseph Gilians
Compositor: Carlisle Communications, Ltd.
Typeface: 8.5/13.5 Leawood
Printer: R. R. Donnelley & Sons Company

Library of Congress Cataloging-in-Publication Data
Pressman, Roger S.

Software engineering: a practitioner’s approach / Roger S. Pressman.—5th ed.
p. cm.— (McGraw-Hill series in computer science)

Includes index.
ISBN 0-07-365578-3
1. Software engineering. I. Title. II. Series.

QA76.758.P75 2001
005.1—dc21

00-036133

http://www.mhhe.com

McGraw-Hill Higher Education
A Division of The McGraw-Hill Companies



To my parents



vi

R oger S. Pressman is an internationally recognized authority in software process

improvement and software engineering technologies. For over three decades, he has

worked as a software engineer, a manager, a professor, an author, and a consultant, focus-

ing on software engineering issues.

As an industry practitioner and manager, Dr. Pressman worked on the development of

CAD/CAM systems for advanced engineering and manufacturing applications. He has also

held positions with responsibility for scientific and systems programming.

After receiving a Ph.D. in engineering from the University of Connecticut, Dr. Pressman

moved to academia where he became Bullard Associate Professor of Computer Engineering

at the University of Bridgeport and director of the university's Computer-Aided Design and

Manufacturing Center. 

Dr. Pressman is currently president of R.S. Pressman & Associates, Inc., a consulting

firm specializing in software engineering methods and training. He serves as principle con-

sultant, helping companies establish effective software engineering practices. He also

designed and developed the company’s software engineering training and process improve-

ment products—Essential Software Engineering, a complete video curriculum that is among

the industry's most comprehensive treatments of the subject, and Process Advisor, a self-

directed system for software engineering process improvement. Both products are used

by hundreds of companies worldwide.

Dr. Pressman has written many technical papers, is a regular contributor to industry

periodicals, and is author of six books. In addition to Software Engineering: A Practitioner's

Approach, he has written A Manager's Guide to Software Engineering (McGraw-Hill), an

award-winning book that uses a unique Q&A format to present management guidelines

for instituting and understanding software engineering technology; Making Software Engi-

neering Happen (Prentice-Hall), the first book to address the critical management problems

associated with software process improvement; and Software Shock (Dorset House), a treat-

ment that focuses on software and its impact on business and society. Dr. Pressman is on

the Editorial Boards of IEEE Software and the Cutter IT Journal, and for many years, was

editor of the “Manager” column in IEEE Software.

Dr. Pressman is a well-known speaker, keynoting a number of major industry confer-

ences. He has presented tutorials at the International Conference on Software Engineer-

ing and at many other industry meetings. He is a member of the ACM, IEEE, and Tau Beta

Pi, Phi Kappa Phi, Eta Kappa Nu, and Pi Tau Sigma.

ABOUT THE AUTHOR



vii

Preface xxv

PART ONE The Product and the Process 1

CHAPTER 1 The Product 3

CHAPTER 2 The Process 19

PART TWO Managing Software Projects 53

CHAPTER 3 Project Management Concepts 55

CHAPTER 4 Software Process and Project Metrics 79

CHAPTER 5 Software Project Planning 113

CHAPTER 6 Risk Analysis and Management 145

CHAPTER 7 Project Scheduling and Tracking 165

CHAPTER 8 Software Quality Assurance 193

CHAPTER 9 Software Configuration Management 225

PART THREE Conventional Methods for Software Engineering 243

CHAPTER 10 System Engineering 245

CHAPTER 11 Analysis Concepts and Principles 271

CHAPTER 12 Analysis Modeling 299

CHAPTER 13 Design Concepts and Principles 335

CHAPTER 14 Architectural Design 365

CHAPTER 15 User Interface Design 401

CHAPTER 16 Component-Level Design 423

CHAPTER 17 Software Testing Techniques 437

CHAPTER 18 Software Testing Strategies 477

CHAPTER 19 Technical Metrics for Software 507

PART FOUR Object-Oriented Software Engineering 539

CHAPTER 20 Object-Oriented Concepts and Principles 541

CHAPTER 21 Object-Oriented Analysis 571

CHAPTER 22 Object-Oriented Design 603

CONTENTS AT A GLANCE



CONTENTS AT A GLANCEviii

CHAPTER 23 Object-Oriented Testing 631

CHAPTER 24 Technical Metrics for Object-Oriented Systems 653

PART FIVE Advanced Topics in Software Engineering 671

CHAPTER 25 Formal Methods 673

CHAPTER 26 Cleanroom Software Engineering 699

CHAPTER 27 Component-Based Software Engineering 721

CHAPTER 28 Client/Server Software Engineering 747

CHAPTER 29 Web Engineering 769

CHAPTER 30 Reengineering 799

CHAPTER 31 Computer-Aided Software Engineering 825

CHAPTER 32 The Road Ahead 845



ix

PART ONE—THE PRODUCT AND THE PROCESS 1

CHAPTER 1 THE PRODUCT 3

1.1 The Evolving Role of Software 4
1.2 Software 6

1.2.1 Software Characteristics 6
1.2.2 Software Applications 9

1.3 Software: A Crisis on the Horizon? 11
1.4 Software Myths 12
1.5 Summary 15
REFERENCES 15
PROBLEMS AND POINTS TO PONDER 16
FURTHER READINGS AND INFORMATION SOURCES 17

CHAPTER 2 THE PROCESS 19

2.1 Software Engineering: A Layered Technology 20
2.1.1 Process, Methods, and Tools 20
2.1.2  A Generic View of Software Engineering 21

2.2 The Software Process 23
2.3 Software Process Models 26
2.4 The Linear Sequential Model 28
2.5 The Prototyping Model 30
2.6 The RAD Model 32
2.7 Evolutionary Software Process Models 34

2.7.1 The Incremental Model 35
2.7.2 The Spiral Model 36
2.7.3 The WINWIN Spiral Model 38
2.7.4 The Concurrent Development Model 40

2.8 Component-Based Development 42
2.9 The Formal Methods Model 43
2.10 Fourth Generation Techniques 44
2.11 Process Technology 46
2.12 Product and Process 46
2.13 Summary 47
REFERENCES 47
PROBLEMS AND POINTS TO PONDER 49
FURTHER READINGS AND INFORMATION SOURCES 50

TABLE OF CONTENTS



CONTENTSx

PART TWO—MANAGING SOFTWARE PROJECTS 53

CHAPTER 3 PROJECT MANAGEMENT CONCEPTS 55

3.1 The Management Spectrum 56
3.1.1 The People 56
3.1.2 The Product 57
3.1.2 The Process 57
3.1.3 The Project 57

3.2 People 58
3.2.1 The Players 58
3.2.2 Team Leaders 59
3.2.3 The Software Team 60
3.2.4 Coordination and Communication Issues 65

3.3 The Product 67
3.3.1 Software Scope 67
3.3.2 Problem Decomposition 67

3.4 The Process 68
3.4.1 Melding the Product and the Process 69
3.4.2 Process Decomposition 70

3.5 The Project 71
3.6 The W5HH Principle 73
3.7 Critical Practices 74
3.8 Summary 74
REFERENCES 75
PROBLEMS AND POINTS TO PONDER 76
FURTHER READINGS AND INFORMATION SOURCES 77

CHAPTER 4 SOFTWARE PROCESS AND PROJECT METRICS 79

4.1 Measures, Metrics, and Indicators 80
4.2 Metrics in the Process and Project Domains 81

4.2.1 Process Metrics and Software Process Improvement 82
4.2.2 Project Metrics 86

4.3 Software Measurement 87
4.3.1 Size-Oriented Metrics 88
4.3.2 Function-Oriented Metrics 89
4.3.3 Extended Function Point Metrics 91

4.4 Reconciling Different Metrics Approaches 94
4.5 Metrics for Software Quality 95

4.5.1 An Overview of Factors That Affect Quality 95
4.5.2 Measuring Quality 96
4.5.3 Defect Removal Efficiency 98

4.6 Integrating Metrics Within the Software Engineering Process 98
4.6.1 Arguments for Software Metrics 99
4.6.2 Establishing a Baseline 100
4.6.3 Metrics Collection, Computation, and Evaluation 100

4.7 Managing Variation: Statistical Quality Control 100
4.8 Metrics for Small Organizations 104
4.9 Establishing a Software Metrics Program 105
4.10 Summary 107
REFERENCES 107



CONTENTS xi

PROBLEMS AND POINTS TO PONDER 109
FURTHER READINGS AND INFORMATION SOURCES 110

CHAPTER 5 SOFTWARE PROJECT PLANNING 113

5.1 Observations on Estimating 114
5.2 Project Planning Objectives 115
5.3 Software Scope 115

5.3.1 Obtaining Information Necessary for Scope 116
5.3.2 Feasibility 117
5.3.3 A Scoping Example 118

5.4 Resources 120
5.4.1 Human Resources 121
5.4.2 Reusable Software Resources 121
5.4.3 Environmental Resources 122

5.5 Software Project Estimation 123
5.6 Decomposition Techniques 124

5.6.1 Software Sizing 124
5.6.2 Problem-Based Estimation 126
5.6.3 An Example of LOC-Based Estimation 128
5.6.4 An Example of FP-Based Estimation 129
5.6.4 Process-Based Estimation 130
5.6.5 An Example of Process-Based Estimation 131

5.7  Empirical Estimation Models 132
5.7.1 The Structure of Estimation Models 132
5.7.2 The COCOMO Model 133
5.7.3 The Software Equation 135

5.8 The Make/Buy Decision 136
5.8.1 Creating a Decision Tree 137
5.8.2 Outsourcing 138

5.9 Automated Estimation Tools 139
5.10  Summary 140
REFERENCES 140
PROBLEMS AND POINTS TO PONDER 141
FURTHER READINGS AND INFORMATION SOURCES 142

CHAPTER 6 RISK ANALYSIS AND MANAGEMENT 145

6.1 Reactive versus Proactive Risk Strategies 146
6.2 Software Risks 146
6.3 Risk Identification 148

6.3.1 Assessing Overall Project Risk 149
6.3.2 Risk Components and Drivers 149

6.4 Risk Projection 151
6.4.1 Developing a Risk Table 151
6.4.2 Assessing Risk Impact 153
6.4.3 Risk Assessment 154

6.5 Risk Refinement 156
6.6 Risk Mitigation, Monitoring, and Management 156
6.7 Safety Risks and Hazards 158
6.8 The RMMM Plan 159
6.9 Summary 159
REFERENCES 160



CONTENTSxii

PROBLEMS AND POINTS TO PONDER 161
FURTHER READINGS AND INFORMATION SOURCES 162

CHAPTER 7 PROJECT SCHEDULING AND TRACKING 165

7.1 Basic Concepts 166
7.1.1 Comments on “Lateness” 167
7.2.1 Basic Principles 168

7.2 The Relationship Between People and Effort 170
7.2.1 An Example 170
7.2.2 An Empirical Relationship 171
7.2.3 Effort Distribution 172

7.3 Defining a Task Set for the Software Project 172
7.3.1 Degree of Rigor 173
7.3.2 Defining Adaptation Criteria 174
7.3.3 Computing a Task Set Selector Value 175
7.3.4 Interpreting the TSS Value and Selecting the Task Set 176

7.4 Selecting Software Engineering Tasks 177
7.5 Refinement of Major Tasks 178
7.6 Defining a Task Network 180
7.7 Scheduling 181

7.7.1 Timeline Charts 182
7.7.2 Tracking the Schedule 185

7.8 Earned Value Analysis 186
7.9 Error Tracking 187
7.10 The Project Plan 189
7.11 Summary 189
REFERENCES 189
PROBLEMS AND POINTS TO PONDER 190
FURTHER READINGS AND INFORMATION SOURCES 192

CHAPTER 8 SOFTWARE QUALITY ASSURANCE 193

8.1 Quality Concepts 194
8.1.1 Quality 195
8.1.2 Quality Control 196
8.1.3 Quality Assurance 196
8.1.4 Cost of Quality 196

8.2 The Quality Movement 198
8.3 Software Quality Assurance 199

8.3.1 Background Issues 200
8.3.2 SQA Activities 201

8.4 Software Reviews 202
8.4.1 Cost Impact of Software Defects 203
8.4.2 Defect Amplification and Removal 204

8.5 Formal Technical Reviews 205
8.5.1 The Review Meeting 206
8.5.2 Review Reporting and Record Keeping 207
8.5.3 Review Guidelines 207

8.6 Formal Approaches to SQA 209
8.7 Statistical Software Quality Assurance 209
8.8  Software Reliability 212

8.8.1 Measures of Reliability and Availability 212
8.8.2 Software Safety 213



CONTENTS xiii

8.9 Mistake-Proofing for Software 214
8.10 The ISO 9000 Quality Standards 216

8.10.1 The ISO Approach to Quality Assurance Systems 217
8.10.2 The ISO 9001 Standard 217

8.11 The SQA Plan 218
8.12 Summary 219
REFERENCES 220
PROBLEMS AND POINTS TO PONDER 221
FURTHER READINGS AND INFORMATION SOURCES 222

CHAPTER 9 SOFTWARE CONFIGURATION MANAGEMENT 225

9.1 Software Configuration Management 226
9.1.1 Baselines 227
9.1.2 Software Configuration Items 228

9.2 The SCM Process 230
9.3 Identification of Objects in the Software Configuration 230
9.4 Version Control 232
9.5 Change Control 234
9.6 Configuration Audit 237
9.7 Status Reporting 237
9.8 SCM Standards 238
9.9 Summary 238
REFERENCES 239
PROBLEMS AND POINTS TO PONDER 239
FURTHER READINGS AND  INFORMATION SOURCES 240

PART THREE—CONVENTIONAL METHODS FOR SOFTWARE ENGINEERING 243

CHAPTER 10 SYSTEM ENGINEERING 245

10.1 Computer-Based Systems 246
10.2 The System Engineering Hierarchy 248

10.2.1 System Modeling 249
10.2.2 System Simulation 251

10.3 Business Process Engineering: An Overview 251
10.4 Product Engineering: An Overview 254
10.5 Requirements Engineering 256

10.5.1 Requirements Elicitation 256
10.5.2 Requirements Analysis and Negotiation 258
10.5.3 Requirements Specification 259
10.5.4 System Modeling 259
10.5.5 Requirements Validation 260
10.5.6 Requirements Management 261

10.6 System Modeling 262
10.7 Summary 265
REFERENCES 267
PROBLEMS AND POINTS TO PONDER 267
FURTHER READINGS AND INFORMATION SOURCES 269



CONTENTSxiv

CHAPTER 11 ANALYSIS CONCEPTS AND PRINCIPLES 271

11.1 Requirements Analysis 272
11.2 Requirements Elicitation for Software 274

11.2.1 Initiating the Process 274
11.2.2 Facilitated Application Specification Techniques 275
11.2.3 Quality Function Deployment 279
11.2.4 Use-Cases 280

11.3 Analysis Principles 282
11.3.1 The Information Domain 283
11.3.2 Modeling 285
11.3.3 Partitioning 286
11.3.4 Essential and Implementation Views 288

11.4 Software Prototyping 289
11.4.1 Selecting the Prototyping Approach 289
11.4.2 Prototyping Methods and Tools 290

11.5 Specification 291
11.5.1 Specification Principles 291
11.5.2 Representation 292
11.5.3 The Software Requirements Specification 293

11.6 Specification Review 294
11.7 Summary 294
REFERENCES 295
PROBLEMS AND POINTS TO PONDER 296
FURTHER READINGS AND INFORMATION SOURCES 297

CHAPTER 12 ANALYSIS MODELING 299

12.1 A Brief History 300
12.2 The Elements of the Analysis Model 301
12.3 Data Modeling 302

12.3.1 Data Objects, Attributes, and Relationships 302
12.3.2 Cardinality and Modality 305
12.3.3 Entity/Relationship Diagrams 307

12.4 Functional Modeling and Information Flow 309
12.4.1 Data Flow Diagrams 311
12.4.2 Extensions for Real-Time Systems 312
12.4.3 Ward and Mellor Extensions 312
12.4.4 Hatley and Pirbhai Extensions 315

12.5 Behavioral Modeling 317
12.6  The Mechanics of Structured Analysis 319

12.6.1 Creating an Entity/Relationship Diagram 319
12.6.2 Creating a Data Flow Model 321
12.6.3 Creating a Control Flow Model 324
12.6.4 The Control Specification 325
12.6.5 The Process Specification 327

12.7 The Data Dictionary 328
12.8 Other Classical Analysis Methods 330
12.9 Summary 331
REFERENCES 331
PROBLEMS AND POINTS TO PONDER 332
FURTHER READINGS AND INFORMATION SOURCES 334



CONTENTS xv

CHAPTER 13 DESIGN CONCEPTS AND PRINCIPLES 335

13.1 Software Design and Software Engineering 336
13.2 The Design Process 338

13.2.1 Design and Software Quality 338
13.2.2 The Evolution of Software Design 339

13.3 Design Principles 340
13.4 Design Concepts 341

13.4.1 Abstraction 342
13.4.2 Refinement 343
13.4.3 Modularity 343
13.4.4 Software Architecture 346
13.4.5 Control Hierarchy 347
13.4.6 Structural Partitioning 348
13.4.7 Data Structure 349
13.4.8 Software Procedure 351
13.4.9 Information Hiding 351

13.5 Effective Modular Design 352
13.5.1 Functional Independence 352
13.5.2 Cohesion 353
13.5.3 Coupling 354

13.6 Design Heuristics for Effective Modularity 355
13.7 The Design Model 357
13.8 Design Documentation 358
13.9 Summary 359
REFERENCES 359
PROBLEMS AND POINTS TO PONDER 361
FURTHER READINGS AND INFORMATION SOURCES 362

CHAPTER 14 ARCHITECTURAL DESIGN 365

14.1 Software Architecture 366
14.1.1 What Is Architecture? 366
14.1.2 Why Is Architecture Important? 367

14.2 Data Design 368
14.2.1 Data Modeling, Data Structures, Databases, and the Data

Warehouse 368
14.2.2 Data Design at the Component Level 369

14.3 Architectural Styles 371
14.3.1 A Brief Taxonomy of Styles and Patterns 371
14.3.2 Organization and Refinement 374

14.4 Analyzing Alternative Architectural Designs 375
14.4.1 An Architecture Trade-off Analysis Method 375
14.4.2 Quantitative Guidance for Architectural Design 376
14.4.3 Architectural Complexity 378

14.5 Mapping Requirements into a Software Architecture 378
14.5.1 Transform Flow 379
14.5.2 Transaction Flow 380

14.6 Transform Mapping 380
14.6.1 An Example 380
14.6.2 Design Steps 381

14.7  Transaction Mapping 389
14.7.1 An Example 390
14.7.2 Design Steps 390



CONTENTSxvi

14.8 Refining the Architectural Design 394
14.9 Summary 395
REFERENCES 396
PROBLEMS AND POINTS TO PONDER 397
FURTHER READINGS AND INFORMATION SOURCES 399

CHAPTER 15 USER INTERFACE DESIGN 401

15.1 The Golden Rules 402
15.1.1 Place the User in Control 402
15.1.2 Reduce the User’s Memory Load 404
15.1.3 Make the Interface Consistent 404

15.2 User Interface Design 405
15.2.1 Interface Design Models 405
15.2.2 The User Interface Design Process 407

15.3 Task Analysis and Modeling 408
15.4 Interface Design Activities 410

15.4.1 Defining Interface Objects and Actions 410
15.4.2 Design Issues 413

15.5 Implementation Tools 415
15.6 Design Evaluation 416
15.7 Summary 418
REFERENCES 418
PROBLEMS AND POINTS TO PONDER 419
FURTHER READINGS AND INFORMATION SOURCES 420

CHAPTER 16 COMPONENT-LEVEL DESIGN 423

16.1 Structured Programming 424
16.1.1 Graphical Design Notation 425
16.1.2 Tabular Design Notation 427
16.1.3 Program Design Language 429
16.1.4 A PDL Example 430

16.2 Comparison of Design Notation 432
16.3 Summary 433
REFERENCES 433
PROBLEMS AND POINTS TO PONDER 434
FURTHER READINGS AND INFORMATION SOURCES 435

CHAPTER 17 SOFTWARE TESTING TECHNIQUES 437

17.1 Software Testing Fundamentals 438
17.1.1 Testing Objectives 439
17.1.2 Testing Principles 439
17.1.3 Testability 440

17.2 Test Case Design 443
17.3 White-Box Testing 444
17.4 Basis Path Testing 445

17.4.1 Flow Graph Notation 445
17.4.2 Cyclomatic Complexity 446
17.4.3 Deriving Test Cases 449
17.4.4 Graph Matrices 452

17.5 Control Structure Testing 454
17.5.1 Condition Testing 454



CONTENTS xvii

17.5.2 Data Flow Testing 456
17.5.3 Loop Testing 458

17.6 Black-Box Testing 459
17.6.1 Graph-Based Testing Methods 460
17.6.2 Equivalence Partitioning 463
17.6.3 Boundary Value Analysis 465
17.6.4 Comparison Testing 465
17.6.5 Orthogonal Array Testing 466

17.7 Testing for Specialized Environments, Architectures, and Applications 468
17.7.1 Testing GUIs 469
17.7.2 Testing of Client/Server Architectures 469
17.7.3 Testing Documentation and Help Facilities 469
17.7.4 Testing for Real-Time Systems 470

17.8 Summary 472
REFERENCES 473
PROBLEMS AND POINTS TO PONDER 474
FURTHER READINGS AND INFORMATION SOURCES 475

CHAPTER 18 SOFTWARE TESTING STRATEGIES 477

18.1 A Strategic Approach to Software Testing 478
18.1.1 Verification and Validation 479
18.1.2 Organizing for Software Testing 479
18.1.3 A Software Testing Strategy 480
18.1.4 Criteria for Completion of Testing 482

18.2 Strategic Issues 484
18.3 Unit Testing 485

18.3.1 Unit Test Considerations 485
18.3.2 Unit Test Procedures 487

18.4 Integration Testing 488
18.4.1 Top-down Integration 488
18.4.2 Bottom-up Integration 490
18.4.3 Regression Testing 491
18.4.4 Smoke Testing 492
18.4.5 Comments on Integration Testing 493
18.4.6 Integration Test Documentation 494

18.5 Validation Testing 495
18.5.1 Validation Test Criteria 495
18.5.2 Configuration Review 496
18.5.3 Alpha and Beta Testing 496

18.6 System Testing 496
18.6.1 Recovery Testing 497
18.6.2 Security Testing 497
18.6.3 Stress Testing 498
18.6.4 Performance Testing 498

18.7  The Art of Debugging 499
18.7.1 The Debugging Process 499
18.7.2 Psychological Considerations 500
18.7.3 Debugging Approaches 501

18.8 Summary 502
REFERENCES 503
PROBLEMS AND POINTS TO PONDER 504
FURTHER READINGS AND INFORMATION SOURCES 505



CONTENTSxviii

CHAPTER 19 TECHNICAL METRICS FOR SOFTWARE 507

19.1 Software Quality 508
19.1.1 McCall’s Quality Factors 509
19.1.2 FURPS 511
19.1.3 ISO 9126 Quality Factors 513
19.1.4 The Transition to a Quantitative View 513

19.2 A Framework for Technical Software Metrics 514
19.2.1 The Challenge of Technical Metrics 514
19.2.2 Measurement Principles 515
19.2.3 The Attributes of Effective Software Metrics 516

19.3 Metrics for the Analysis Model 517
19.3.1 Function-Based Metrics 518
19.3.2 The Bang Metric 520
19.3.3 Metrics for Specification Quality 522

19.4  Metrics for the Design Model 523
19.4.1 Architectural Design Metrics 523
19.4.2 Component-Level Design Metrics 526
19.4.3 Interface Design Metrics 530

19.5 Metrics for Source Code 531
19.6 Metrics for Testing 532
19.7 Metrics for Maintenance 533
19.8 Summary 534
REFERENCES 534
PROBLEMS AND POINTS TO PONDER 536
FURTHER READING AND OTHER INFORMATION SOURCES 537

PART FOUR—OBJECT-ORIENTED SOFTWARE ENGINEERING 539

CHAPTER 20 OBJECT-ORIENTED CONCEPTS AND PRINCIPLES 541

20.1 The Object-Oriented Paradigm 542
20.2 Object-Oriented Concepts 544

20.2.1 Classes and Objects 546
20.2.2 Attributes 547
20.2.3 Operations, Methods, and Services 548
20.2.4 Messages 548
20.2.5 Encapsulation, Inheritance, and Polymorphism 550

20.3 Identifying the Elements of an Object Model 553
20.3.1 Identifying Classes and Objects 553
20.3.2 Specifying Attributes 557
20.3.3 Defining Operations 558
20.3.4 Finalizing the Object Definition 559

20.4 Management of Object-Oriented Software Projects 560
20.4.1 The Common Process Framework for OO 560
20.4.2 OO Project Metrics and Estimation 562
20.4.3 An OO Estimating and Scheduling Approach 564
20.4.4 Tracking Progress for an OO Project 565

20.5 Summary 566
REFERENCES 566
PROBLEMS AND POINTS TO PONDER 567
FURTHER READINGS AND INFORMATION SOURCES 568



CONTENTS xix

CHAPTER 21 OBJECT-ORIENTED ANALYSIS 571

21.1 Object-Oriented Analysis 572
21.1.1 Conventional vs. OO Approaches 572
21.1.2 The OOA Landscape 573
21.1.3 A Unified Approach to OOA 575

21.2 Domain Analysis 576
21.2.1 Reuse and Domain Analysis 577
21.2.2 The Domain Analysis Process 577

21.3 Generic Components of the OO Analysis Model 579
21.4 The OOA Process 581

21.4.1 Use-Cases 581
21.4.2 Class-Responsibility-Collaborator Modeling 582
21.4.3 Defining Structures and Hierarchies 588
21.4.4 Defining Subjects and Subsystems 590

21.5 The Object-Relationship Model 591
21.6 The Object-Behavior Model 594

21.6.1 Event Identification with Use-Cases 594
21.6.2 State Representations 595

21.7 Summary 598
REFERENCES 599
PROBLEMS AND POINTS TO PONDER 600
FURTHER READINGS AND INFORMATION SOURCES 601

CHAPTER 22 OBJECT-ORIENTED DESIGN 603

22.1 Design for Object-Oriented Systems 604
22.1.1 Conventional vs. OO Approaches 605
22.1.2 Design Issues 607
22.1.3 The OOD Landscape 608
22.1.4 A Unified Approach to OOD 610

22.2 The System Design Process 611
22.2.1 Partitioning the Analysis Model 612
22.2.2 Concurrency and Subsystem Allocation 613
22.2.3 The Task Management Component 614
22.2.4 The User Interface Component 615
22.2.5 The Data Management Component 615
22.2.6 The Resource Management Component 616
22.2.7 Intersubsystem Communication 616

22.3 The Object Design Process 618
22.3.1 Object Descriptions 618
22.3.2 Designing Algorithms and Data Structures 619
22.3.3 Program Components and Interfaces 621

22.4 Design Patterns 624
22.4.1 Describing a Design Pattern 624
22.4.2 Using Patterns in Design 625

22.5 Object-Oriented Programming 625
22.6 Summary 626
REFERENCES 627
PROBLEMS AND POINTS TO PONDER 628
FURTHER READINGS AND INFORMATION SOURCES 629



CONTENTSxx

CHAPTER 23 OBJECT-ORIENTED TESTING 631

23.1 Broadening the View of Testing 632
23.2 Testing OOA and OOD Models 633

23.2.1 Correctness of OOA and OOD Models 633
23.2.2 Consistency of OOA and OOD Models 634

23.3 Object-Oriented Testing Strategies 636
23.3.1 Unit Testing in the OO Context 636
23.3.2 Integration Testing in the OO Context 637
23.3.3 Validation Testing in an OO Context 637

23.4 Test Case Design for OO Software 637
23.4.1 The Test Case Design Implications of OO Concepts 638
23.4.2 Applicability of Conventional Test Case Design 

Methods 638
23.4.3 Fault-Based Testing 639
23.4.4 The Impact of OO Programming on Testing 640
23.4.5 Test Cases and the Class Hierarchy 641
23.4.6 Scenario-Based Test Design 641
23.4.7 Testing Surface Structure and Deep Structure 643

23.5 Testing Methods Applicable at the Class Level 644
23.5.1 Random Testing for OO Classes 644
23.5.2 Partition Testing at the Class Level 644

23.6 Interclass Test Case Design 645
23.6.1 Multiple Class Testing 645
23.6.2 Tests Derived from Behavior Models 647

23.7 Summary 648
REFERENCES 649
PROBLEMS AND POINTS TO PONDER 649
FURTHER READINGS AND INFORMATION SOURCES 650

CHAPTER 24 TECHNICAL METRICS FOR OBJECT-ORIENTED 
SYSTEMS 653

24.1 The Intent of Object-Oriented Metrics 654
24.2 The Distinguishing Characteristics of Object-Oriented Metrics 654

24.2.1 Localization 655
24.2.2 Encapsulation 655
24.2.3 Information Hiding 655
24.2.4 Inheritance 656
24.2.5 Abstraction 656

24.3 Metrics for the OO Design Model 656
24.4 Class-Oriented Metrics 658

24.4.1 The CK Metrics Suite 658
24.4.2 Metrics Proposed by Lorenz and Kidd 661
24.4.3 The MOOD Metrics Suite 662

24.5 Operation-Oriented Metrics 664
24.6 Metrics for Object-Oriented Testing 664
24.7 Metrics for Object-Oriented Projects 665
24.8 Summary 666
REFERENCES 667
PROBLEMS AND POINTS TO PONDER 668
FURTHER READINGS AND INFORMATION SOURCES 669



CONTENTS xxi

PART FIVE—ADVANCED TOPICS IN SOFTWARE ENGINEERING 671

CHAPTER 25 FORMAL METHODS 673

25.1 Basic Concepts 674
25.1.1 Deficiencies of Less Formal Approaches 675
25.1.2 Mathematics in Software Development 676
25.1.3 Formal Methods Concepts 677

25.2 Mathematical Preliminaries 682
25.2.1 Sets and Constructive Specification 683
25.2.2 Set Operators 684
25.2.3 Logic Operators 686
25.2.4 Sequences 686

25.3 Applying Mathematical Notation for Formal Specification 687
25.4 Formal Specification Languages 689
25.5 Using Z to Represent an Example Software Component 690
25.6 The Ten Commandments of Formal Methods 693
25.7 Formal Methods—The Road Ahead 694
25.8 Summary 695
REFERENCES 695
PROBLEMS AND POINTS TO PONDER 696
FURTHER READINGS AND INFORMATION SOURCES 697

CHAPTER 26 CLEANROOM SOFTWARE ENGINEERING 699

26.1 The Cleanroom Approach 700
26.1.1 The Cleanroom Strategy 701
26.1.2 What Makes Cleanroom Different? 703

26.2 Functional Specification 703
26.2.1 Black-Box Specification 705
26.2.2 State-Box Specification 705
26.2.3 Clear-Box Specification 706

26.3 Cleanroom Design 706
26.3.1 Design Refinement and Verification 707
26.3.2 Advantages of Design Verification 710

26.4 Cleanroom Testing 712
26.4.1 Statistical Use Testing 712
26.4.2 Certification 714

26.5 Summary 714
REFERENCES 715
PROBLEMS AND POINTS TO PONDER 716
FURTHER READINGS AND INFORMATION SOURCES 717

CHAPTER 27 COMPONENT-BASED SOFTWARE ENGINEERING 721

27.1 Engineering of Component-Based Systems 722
27.2 The CBSE Process 724
27.3 Domain Engineering 725

27.3.1 The Domain Analysis Process 726
27.3.2 Characterization Functions 727
27.3.3 Structural Modeling and Structure Points 728

27.4 Component-Based Development 730
27.4.1 Component Qualification, Adaptation, and 

Composition 730



CONTENTSxxii

27.4 2 Component Engineering 734
27.4.3 Analysis and Design for Reuse 734

27.5 Classifying and Retrieving Components 735
27.5.1 Describing Reusable Components 736
27.5.2 The Reuse Environment 738

27.6 Economics of CBSE 739
27.6.1 Impact on Quality, Productivity, and Cost 739
27.6.2 Cost Analysis Using Structure Points 741
27.6.3 Reuse Metrics 741

27.7 Summary 742
REFERENCES 743
PROBLEMS AND POINTS TO PONDER 744
FURTHER READINGS AND INFORMATION SOURCES 745

CHAPTER 28 CLIENT/SERVER SOFTWARE ENGINEERING 747

28.1 The Structure of Client/Server Systems 748
28.1.1 Software Components for c/s Systems 750
28.1.2 The Distribution of Software Components 750
28.1.3 Guidelines for Distributing Application Subsystems 752
28.1.4 Linking c/s Software Subsystems 753
28.1.5 Middleware and Object Request Broker Architectures 753

28.2 Software Engineering for c/s Systems 755
28.3 Analysis Modeling Issues 755
28.4 Design for c/s Systems 755

28.4.1 Architectural Design for Client/Server Systems 756
28.4.2 Conventional Design Approaches for Application 

Software 757
28.4.3 Database Design 758
28.4.4 An Overview of a Design Approach 759
28.4.5 Process Design Iteration 761

28.5 Testing Issues 761
28.5.1 Overall c/s Testing Strategy 762
28.5.2 c/s Testing Tactics 763

28.6 Summary 764
REFERENCES 764
PROBLEMS AND POINTS TO PONDER 765
FURTHER READINGS AND INFORMATION SOURCES 766

CHAPTER 29 WEB ENGINEERING 769

29.1 The Attributes of Web-Based Applications 771
29.1.1 Quality Attributes 773
29.1.2 The Technologies 773

29.2 The WebE Process 774
29.3 A Framework for WebE 775
29.4 Formulating/Analyzing Web-Based Systems 776

29.4.1 Formulation 776
29.4.2 Analysis 778

29.5 Design for Web-Based Applications 779
29.5.1 Architectural Design 780
29.5.2 Navigation Design 783
29.5.3 Interface Design 785



CONTENTS xxiii

29.6 Testing Web-Based Applications 786
29.7 Management Issues 787

29.7.1 The WebE Team 788
29.7.2 Project Management 789
29.7.3 SCM Issues for WebE 792

29.8 Summary 794
REFERENCES 795
PROBLEMS AND POINTS TO PONDER 796
FURTHER READINGS AND INFORMATION SOURCES 797

CHAPTER 30 REENGINEERING 799

30.1 Business Process Reengineering 800
30.1.1 Business Processes 800
30.1.2 Principles of Business Process Reengineering 801
30.1.3 A BPR Model 802
30.1.4 Words of Warning 804

30.2 Software Reengineering 804
30.2.1 Software Maintenance 804
30.2.2 A Software Reengineering Process Model 805

30.3 Reverse Engineering 809
30.3.1 Reverse Engineering to Understand Processing 810
30.3.2 Reverse Engineering to Understand Data 811
30.3.3 Reverse Engineering User Interfaces 812

30.4 Restructuring 813
30.4.1 Code Restructuring 814
30.4.2 Data Restructuring 814

30.5 Forward Engineering 814
30.5.1 Forward Engineering for Client/Server Architectures 816
30.5.2 Forward Engineering for Object-Oriented Architectures 817
30.5.3 Forward Engineering User Interfaces 818

30.6 The Economics of Reengineering 819
30.7 Summary 820
REFERENCES 820
PROBLEMS AND POINTS TO PONDER 822
FURTHER READINGS AND INFORMATION SOURCES 823

CHAPTER 31 COMPUTER-AIDED SOFTWARE ENGINEERING 825

31.1 What is CASE? 826
31.2 Building Blocks for CASE 826
31.3 A Taxonomy of CASE Tools 828
31.4 Integrated CASE Environments 833
31.5 The Integration Architecture 834
31.6 The CASE Repository 836

31.6.1 The Role of the Repository in I-CASE 836
31.6.2 Features and Content 837

31.7 Summary 841
REFERENCES 842
PROBLEMS AND POINTS TO PONDER 842
FURTHER READINGS AND INFORMATION SOURCES 843



CONTENTSxxiv

CHAPTER 32 THE ROAD AHEAD 845

32.1 The Importance of Software—Revisited 846
32.2 The Scope of Change 847
32.3 People and the Way They Build Systems 847
32.4 The "New" Software Engineering Process 848
32.5 New Modes for Representing Information 849
32.6 Technology as a Driver 851
32.7 A Concluding Comment 852
REFERENCES 853
PROBLEMS AND POINTS TO PONDER 853
FURTHER READINGS AND INFORMATION SOURCES 853



PREFACE

xxv

When a computer software succeeds—when it meets the needs of the people

who use it, when it performs flawlessly over a long period of time, when it is

easy to modify and even easier to use—it can and does change things for the better.

But when software fails—when its users are dissatisfied, when it is error prone, when

it is difficult to change and even harder to use—bad things can and do happen. We

all want to build software that makes things better, avoiding the bad things that lurk

in the shadow of failed efforts. To succeed, we need discipline when software is

designed and built. We need an engineering approach.

In the 20 years since the first edition of this book was written, software engineer-

ing has evolved from an obscure idea practiced by a relatively small number of zealots

to a legitimate engineering discipline. Today, it is recognized as a subject worthy of

serious research, conscientious study, and tumultuous debate. Throughout the indus-

try, software engineer has replaced programmer as the job title of preference. Software

process models, software engineering methods, and software tools have been adopted

successfully across a broad spectrum of industry applications. 

Although managers and practitioners alike recognize the need for a more disci-

plined approach to software, they continue to debate the manner in which discipline

is to be applied. Many individuals and companies still develop software haphazardly,

even as they build systems to service the most advanced technologies of the day.

Many professionals and students are unaware of modern methods. And as a result,

the quality of the software that we produce suffers and bad things happen. In addi-

tion, debate and controversy about the true nature of the software engineering

approach continue. The status of software engineering is a study in contrasts. Atti-

tudes have changed, progress has been made, but much remains to be done before

the discipline reaches full maturity.

The fifth edition of Software Engineering: A Practitioner's Approach is intended to

serve as a guide to a maturing engineering discipline. The fifth edition, like the four

editions that preceded it, is intended for both students and practitioners, retaining its

appeal as a guide to the industry professional and a comprehensive introduction to

the student at the upper level undergraduate or first year graduate level. The format

and style of the fifth edition have undergone significant change, making the presen-

tation more reader-friendly and the content more easily accessible.

The fifth edition is considerably more than a simple update. The book has been

revised to accommodate the dramatic growth in the field and to emphasize new and

important software engineering practices. In addition, a comprehensive Web site has

been developed to complement the content of the book. The Web site, which I call
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SepaWeb, can be found at http://www.mhhe.com/pressman. Designed to be used

in conjunction with the fifth edition of Software Engineering: A Practitioner's Approach,

SepaWeb provides a broad array of software engineering resources that will benefit

instructors, students, and industry professionals.

Like all Web sites, SepaWeb will evolve over time, but the following major con-

tent areas will always be present: (1) a broad array of instructor resources including

a comprehensive on-line Instructor’s Guide and supplementary teaching materials

(e.g., slide presentations to supplement lectures, video-based instructional aids); (2)

a wide variety of student resources including an extensive on-line learning center

(encompassing study guides, Web-based resources, and self-tests), an evolving col-

lection of “tiny tools,” a case study, and additional supplementary content; and (3) a

detailed collection of professional resources including outlines (and samples of) soft-

ware engineering documents and other work products, a useful set of software engi-

neering checklists, a catalog of software engineering (CASE) tools, a comprehensive

collection of Web-based resources, and an “adaptable process model” that provides

a detailed task breakdown of the software engineering process. In addition, Sepa-

Web will contain other goodies that are currently in development.

The 32 chapters of the fifth edition have been organized into five parts. This has

been done to compartmentalize topics and assist instructors who may not have the

time to complete the entire book in one term. Part One, The Product and the Process,

presents an introduction to the software engineering milieu. It is intended to intro-

duce the subject matter, and more important, to present concepts that will be nec-

essary for later chapters. Part Two, Managing Software Projects, presents topics that

are relevant to those who plan, manage, and control a software development proj-

ect. Part Three, Conventional Methods for Software Engineering, presents the clas-

sical analysis, design, and testing methods that some view as the “conventional”

school of software engineering. Part Four, Object-Oriented Software Engineering,

presents object-oriented methods across the entire software engineering process,

including analysis, design, and testing. Part Five, Advanced Software Engineering

Topics, presents dedicated chapters that address formal methods, cleanroom soft-

ware engineering, component-based software engineering, client/server software

engineering, Web engineering, reengineering, and CASE.

The five-part organization of the fifth edition enables an instructor to "cluster" top-

ics based on available time and student need. An entire one-term course can be built

around one or more of the five parts. For example, a "design course" might empha-

size only Part Three or Part Four; a "methods course" might present selected chap-

ters in Parts Three, Four, and Five. A "management course" would stress Parts One

and Two. By organizing the fifth edition in this way, I attempted to provide an instruc-

tor with a number of teaching options. SepaWeb can and should be used to supple-

ment the content that is chosen from the book.

An Instructor's Guide for Software Engineering: A Practitioner's Approach is avail-

able from SepaWeb. The Instructor's Guide presents suggestions for conducting var-
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ious types of software engineering courses, recommendations for a variety of soft-

ware projects to be conducted in conjunction with a course, solutions to selected

problems, and a number of teaching aids. 

A comprehensive video curriculum, Essential Software Engineering, is available to

complement this book. The video curriculum has been designed for industry train-

ing and has been modularized to enable individual software engineering topics to be

presented on an as-needed, when-needed basis. Further information on the video

can be obtained by mailing the request card at the back of this book.1

My work on the five editions of Software Engineering: A Practitioner’s Approach has

been the longest continuing technical project of my life. Even when the writing stops,

information extracted from the technical literature continues to be assimilated and

organized. For this reason, my thanks to the many authors of books, papers, and arti-

cles as well as a new generation of contributors to electronic media (newsgroups, e-

newsletters, and the World Wide Web) who have provided me with additional insight,

ideas, and commentary over the past 20 years. Many have been referenced within

the pages of each chapter. All deserve credit for their contribution to this rapidly evolv-

ing field. I also wish to thank the reviewers of the fifth edition: Donald H. Kraft,

Louisiana State University; Panos E. Livadas, University of Florida; Joseph Lambert,

Pennsylvania State University; Kenneth L. Modesitt, University of Michigan—Dear-

born; and, James Purtilo, University of Maryland. Their comments and criticism have

been invaluable. Special thanks and acknowledgement also go to Bruce Maxim of

the University of Michigan—Dearborn, who assisted me in developing the Web site

that accompanies this book. Bruce is responsible for much of its design and peda-

gogical content.

The content of the fifth edition of Software Engineering: A Practitioner's Approach

has been shaped by industry professionals, university professors, and students who

have used earlier editions of the book and have taken the time to communicate their

suggestions, criticisms, and ideas. My thanks to each of you. In addition, my personal

thanks go to our many industry clients worldwide, who certainly teach me as much

or more than I can teach them. 

As the editions of this book have evolved, my sons, Mathew and Michael, have

grown from boys to men. Their maturity, character, and success in the real world

have been an inspiration to me. Nothing has filled me with more pride. And finally,

to Barbara, my love and thanks for encouraging still another edition of "the book." 

Roger S. Pressman 

1 If the request card is missing, please visit the R. S. Pressman & Associates, Inc. Web site at
http://www.rspa.com/ese or e-mail a request for information to info@rspa.com.
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USING THIS BOOK

The fifth edition of Software Engineering: A Practitioner’s Approach (SEPA) has been

redesigned to enhance your reading experience and to provide integrated links to the

SEPA Web site, http://www.mhhe.com/pressman/. SepaWeb contains a wealth of useful

supplementary information for readers of the book and a broad array of resources (e.g.,

an Instructor’s Guide, classroom slides, and video supplements) for instructors who have

adopted SEPA for classroom use. 

A comprehensive video curriculum, Essential Software Engineering, is available to com-

plement this book. The video curriculum has been designed for industry training and has

been modularized to enable individual software engineering topics to be presented on an

as-needed, when-needed basis. Further information on the video can be obtained by mail-

ing the request card at the back of this book.1

Throughout the book, you will encounter marginal icons that should be interpreted in

the following manner:

Used to emphasize an
important point in the
body of the text.

Practical advice from
the real world of
software engineering.

Where can I
find the

answer?
?

XRef
Provides an important
cross reference within
the book.

The keypoint icon will help you
to find important points quickly.

The advice icon provides prag-
matic guidance that can help
you make the right decision or
avoid common problems while
building software.

The question mark icon asks
common questions that are
answered in the body of the
text.

The xref icon will point you to
another part of the book where
information relevant to the cur-
rent discussion can be found.

The quote icon presents inter-
esting quotes that have rele-
vance to the topic at hand.

The WebRef icon provides
direct pointers to important
software engineering related
Web sites.

The SepaWeb pointer indicates
that further information about
the noted topic is available at
the SEPA Web site.

The SepaWeb.checklists icon
points you to detailed checklists
that will help you to assess the
software engineering work
you’re doing and the work
products you produce.

The SepaWeb.documents
icon points you to detailed doc-
ument outlines, descriptions
and examples contained within
the SEPA Web site.

“Important words”

WebRef
For pointers that will take
you directly to Web
resources

A selected topic

1 If the card is missing, please visit the R.S. Pressman & Associates, Inc. Web site at
http://www.rspa.com/ese, or e-mail to info@rspa.com. 
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P A R T

In this part of Software Engineering: A Practitioner’s Approach, you’ll
learn about the product that is to be engineered and the process
that provides a framework for the engineering technology. The

following questions are addressed in the chapters that follow:

• What is computer software . . . really?

• Why do we struggle to build high-quality computer-based
systems?

• How can we categorize application domains for computer
software?

• What myths about software still exist?

• What is a “software process”?

• Is there a generic way to assess the quality of a process?

• What process models can be applied to software develop-
ment?

• How do linear and iterative process models differ?

• What are their strengths and weaknesses?

• What advanced process models have been proposed for soft-
ware engineering work?

Once these questions are answered, you’ll be better prepared to
understand the management and technical aspects of the engi-
neering discipline to which the remainder of this book is dedicated.

THE PRODUCT AND
THE PROCESS

One
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The warnings began more than a decade before the event, but no one paid

much attention. With less than two years to the deadline, the media

picked up the story. Then government officials voiced their concern, busi-

ness and industry leaders committed vast sums of money, and finally, dire warn-

ings of pending catastrophe penetrated the public’s consciousness. Software,

in the guise of the now-infamous Y2K bug, would fail and, as a result, stop the

world as we then knew it.

As we watched and wondered during the waning months of 1999, I couldn’t

help thinking of an unintentionally prophetic paragraph contained on the first

page of the fourth edition of this book. It stated:

Computer software has become a driving force. It is the engine that drives business

decision making. It serves as the basis for modern scientific investigation and engi-

neering problem solving. It is a key factor that differentiates modern products and

services. It is embedded in systems of all kinds: transportation, medical, telecom-

munications, military, industrial processes, entertainment, office products, . . . the

list is almost endless. Software is virtually inescapable in a modern world. And as

we move into the twenty-first century, it will become the driver for new advances in

everything from elementary education to genetic engineering.

1 THE PRODUCT

What is it? Computer software is

the product that software engi-

neers design and build. It encom-

passes programs that execute within a computer

of any size and architecture, documents that

encompass hard-copy and virtual forms, and

data that combine numbers and text but also

includes representations of pictorial, video, and

audio information.

Who does it? Software engineers build it, and virtu-

ally everyone in the industrialized world uses it

either directly or indirectly.

Why is it important? Because it affects nearly every

aspect of our lives and has become pervasive in

our commerce, our culture, and our everyday

activities.

What are the steps? You build computer software

like you build any successful product, by apply-

ing a process that leads to a high-quality result

that meets the needs of the people who will use

the product. You apply a software engineering

approach.

What is the work product? From the point of view of

a software engineer, the work product is the pro-

grams, documents, and data that are computer

software. But from the user’s viewpoint, the work

product is the resultant information that somehow

makes the user’s world better.

How do I ensure that I’ve done it right? Read the

remainder of this book, select those ideas appli-

cable to the software that you build, and apply

them to your work.

Q U I C K
L O O K
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In the five years since the fourth edition of this book was written, the role of soft-

ware as the “driving force” has become even more obvious. A software-driven Inter-

net has spawned its own $500 billion economy. In the euphoria created by the promise

of a new economic paradigm, Wall Street investors gave tiny “dot-com” companies

billion dollar valuations before these start-ups produced a dollar in sales. New 

software-driven industries have arisen and old ones that have not adapted to the new

driving force are now threatened with extinction. The United States government has

litigated against the software’s industry’s largest company, just as it did in earlier eras

when it moved to stop monopolistic practices in the oil and steel industries.

Software’s impact on our society and culture continues to be profound. As its

importance grows, the software community continually attempts to develop tech-

nologies that will make it easier, faster, and less expensive to build high-quality com-

puter programs. Some of these technologies are targeted at a specific application

domain (e.g., Web-site design and implementation); others focus on a technology

domain (e.g., object-oriented systems); and still others are broad-based (e.g., oper-

ating systems such as LINUX). However, we have yet to develop a software technol-

ogy that does it all, and the likelihood of one arising in the future is small. And yet,

people bet their jobs, their comfort, their safety, their entertainment, their decisions,

and their very lives on computer software. It better be right. 

This book presents a framework that can be used by those who build computer

software—people who must get it right. The technology encompasses a process, a

set of methods, and an array of tools that we call software engineering.

1.1 THE EVOLVING ROLE OF SOFTWARE

Today, software takes on a dual role. It is a product and, at the same time, the vehi-

cle for delivering a product. As a product, it delivers the computing potential embod-

ied by computer hardware or, more broadly, a network of computers that are accessible

by local hardware. Whether it resides within a cellular phone or operates inside a

mainframe computer, software is an information transformer—producing, manag-

ing, acquiring, modifying, displaying, or transmitting information that can be as sim-

ple as a single bit or as complex as a multimedia presentation. As the vehicle used

to deliver the product, software acts as the basis for the control of the computer (oper-

ating systems), the communication of information (networks), and the creation and

control of other programs (software tools and environments). 

Software delivers the most important product of our time—information. Software

transforms personal data (e.g., an individual’s financial transactions) so that the data

can be more useful in a local context; it manages business information to enhance

competitiveness; it provides a gateway to worldwide information networks (e.g., Inter-

net) and provides the means for acquiring information in all of its forms.

The role of computer software has undergone significant change over a time span

of little more than 50 years. Dramatic improvements in hardware performance, pro-

“Ideas and
technological
discoveries are the
driving engines of
economic growth.”
The Wall Street
Journal

Software is both a
product and a vehicle
for delivering a
product.
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found changes in computing architectures, vast increases in memory and storage

capacity, and a wide variety of exotic input and output options have all precipitated

more sophisticated and complex computer-based systems. Sophistication and com-

plexity can produce dazzling results when a system succeeds, but they can also pose

huge problems for those who must build complex systems. 

Popular books published during the 1970s and 1980s provide useful historical

insight into the changing perception of computers and software and their impact on

our culture. Osborne [OSB79] characterized a "new industrial revolution."  Toffler

[TOF80] called the advent of microelectronics part of "the third wave of change" in

human history, and Naisbitt [NAI82] predicted a transformation from an industrial

society to an "information society."  Feigenbaum and McCorduck [FEI83] suggested

that information and knowledge (controlled by computers) would be the focal point

for power in the twenty-first century, and Stoll [STO89] argued that the "electronic

community" created by networks and software was the key to knowledge interchange

throughout the world. 

As the 1990s began, Toffler [TOF90] described a "power shift" in which old power

structures (governmental, educational, industrial, economic, and military) disinte-

grate as computers and software lead to a "democratization of knowledge." Yourdon

[YOU92] worried that U.S. companies might loose their competitive edge in software-

related businesses and predicted “the decline and fall of the American programmer.”

Hammer and Champy [HAM93] argued that information technologies were to play a

pivotal role in the “reengineering of the corporation.” During the mid-1990s, the per-

vasiveness of computers and software spawned a rash of books by “neo-Luddites”

(e.g., Resisting the Virtual Life, edited by James Brook and Iain Boal and The Future

Does Not Compute by Stephen Talbot). These authors demonized the computer, empha-

sizing legitimate concerns but ignoring the profound benefits that have already been

realized. [LEV95] 

During the later 1990s, Yourdon [YOU96] re-evaluated the prospects for the

software professional and suggested the “the rise and resurrection” of the Ameri-

can programmer. As the Internet grew in importance, his change of heart proved

to be correct. As the twentieth century closed, the focus shifted once more, this

time to the impact of the Y2K “time bomb” (e.g., [YOU98b], [DEJ98], [KAR99]).

Although the predictions of the Y2K doomsayers were incorrect, their popular

writings drove home the pervasiveness of software in our lives. Today, “ubiquitous

computing” [NOR98] has spawned a generation of information appliances that

have broadband connectivity to the Web to provide “a blanket of connectedness

over our homes, offices and motorways” [LEV99]. Software’s role continues to

expand.

The lone programmer of an earlier era has been replaced by a team of software

specialists, each focusing on one part of the technology required to deliver a com-

plex application. And yet, the same questions asked of the lone programmer are being

asked when modern computer-based systems are built:

5

“For I dipped into the
future, far as the
human eye could
see, Saw the vision
of the world, and all
the wonder that
would be.”  
Tennyson

“Computers make it
easy to do a lot of
things, but most of
the things that they
make it easier to do
don't need to be
done.”
Andy Rooney



PART ONE THE PRODUCT AND THE PROCESS6

• Why does it take so long to get software finished?

• Why are development costs so high?

• Why can't we find all the errors before we give the software to customers?

• Why do we continue to have difficulty in measuring progress as software is

being developed?

These, and many other questions,1 are a manifestation of the concern about soft-

ware and the manner in which it is developed—a concern that has lead to the adop-

tion of software engineering practice.

1.2 SOFTWARE 

In 1970, less than 1 percent of the public could have intelligently described what

"computer software" meant. Today, most professionals and many members of the

public at large feel that they understand software. But do they?

A textbook description of software might take the following form: Software is (1)

instructions (computer programs) that when executed provide desired function and per-

formance,  (2) data structures that enable the programs to adequately manipulate infor-

mation, and (3) documents that describe the operation and use of the programs. There

is no question that other, more complete definitions could be offered. But we need

more than a formal definition.

1.2.1 Software Characteristics

To gain an understanding of software (and ultimately an understanding of software

engineering), it is important to examine the characteristics of software that make it

different from other things that human beings build. When hardware is built, the

human creative process (analysis, design, construction, testing) is ultimately trans-

lated into a physical form. If we build a new computer, our initial sketches, formal

design drawings, and breadboarded prototype evolve into a physical product (chips,

circuit boards, power supplies, etc.).

Software is a logical rather than a physical system element. Therefore, software

has characteristics that are considerably different than those of hardware:

1. Software is developed or engineered, it is not manufactured in the classical

sense.

Although some similarities exist between software development and hardware man-

ufacture, the two activities are fundamentally different. In both activities, high qual-

How should
we define

software?
?

1 In an excellent book of essays on the software business, Tom DeMarco [DEM95] argues the coun-
terpoint. He states: “Instead of asking ‘why does software cost so much?’ we need to begin ask-
ing ‘What have we done to make it possible for today’s software to cost so little?’ The answer to
that question will help us continue the extraordinary level of achievement that has always distin-
guished the software industry.”

Software is
engineered, not
manufactured.
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ity is achieved through good design, but the manufacturing phase for hardware can

introduce quality problems that are nonexistent (or easily corrected) for software.

Both activities are dependent on people, but the relationship between people applied

and work accomplished is entirely different (see Chapter 7). Both activities require

the construction of a "product" but the approaches are different.

Software costs are concentrated in engineering. This means that software proj-

ects cannot be managed as if they were manufacturing projects. 

2. Software doesn't "wear out."

Figure 1.1 depicts failure rate as a function of time for hardware. The relationship,

often called the "bathtub curve," indicates that hardware exhibits relatively high fail-

ure rates early in its life (these failures are often attributable to design or manufac-

turing defects); defects  are corrected and the failure rate drops to a steady-state level

(ideally, quite low) for some period of time. As time passes, however, the failure rate

rises again as hardware components suffer from the cumulative affects of dust, vibra-

tion, abuse, temperature extremes, and many other environmental maladies. Stated

simply, the hardware begins to wear out.

Software is not susceptible to the environmental maladies that cause hardware to

wear out. In theory, therefore, the failure rate curve for software should take the form of

the “idealized curve” shown in Figure 1.2. Undiscovered defects will cause high failure

rates early in the life of a program. However, these are corrected (ideally, without intro-

ducing other errors) and the curve flattens as shown.The idealized curve is a gross over-

simplification of actual failure models (see Chapter 8 for more information) for software.

However, the implication is clear—software doesn't wear out. But it does deteriorate!

This seeming contradiction can best be explained by considering the “actual curve”

shown in Figure 1.2. During its life, software will undergo change (maintenance). As

7
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changes are made, it is likely that some new defects will be introduced, causing the

failure rate curve to spike as shown in Figure 1.2. Before the curve can return to the

original steady-state failure rate, another change is requested, causing the curve to

spike again. Slowly, the minimum failure rate level begins to rise—the software is

deteriorating due to change.

Another aspect of wear illustrates the difference between hardware and software.

When a hardware component wears out, it is replaced by a spare part. There are no

software spare parts. Every software failure indicates an error in design or in the

process through which design was translated into machine executable code. There-

fore, software maintenance involves considerably more complexity than hardware

maintenance.

3. Although the industry is moving toward component-based assembly, most

software continues to be custom built.

Consider the manner in which the control hardware for a computer-based product

is designed and built. The design engineer draws a simple schematic of the digital

circuitry, does some fundamental analysis to assure that proper function will be

achieved, and then goes to the shelf where catalogs of digital components exist. Each

integrated circuit (called an IC or a chip) has a part number, a defined and validated

function, a well-defined interface, and a standard set of integration guidelines. After

each component is selected, it can be ordered off the shelf.

As an engineering discipline evolves, a collection of standard design components

is created. Standard screws and off-the-shelf integrated circuits are only two of thou-

sands of standard components that are used by mechanical and electrical engineers

as they design new systems. The reusable components have been created so that the

engineer can concentrate on the truly innovative elements of a design, that is, the

FIGURE 1.2
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actual failure
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Most software
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custom built.

Software engineering
methods strive to
reduce the magnitude
of the spikes and the
slope of the actual
curve in Figure 1.2.
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parts of the design that represent something new. In the hardware world, component

reuse is a natural part of the engineering process. In the software world, it is some-

thing that has only begun to be achieved on a broad scale.

A software component should be designed and implemented so that it can be

reused in many different programs. In the 1960s, we built scientific subroutine libraries

that were reusable in a broad array of engineering and scientific applications. These

subroutine libraries reused well-defined algorithms in an effective manner but had a

limited domain of application. Today, we have extended our view of reuse to encom-

pass not only algorithms but also data structure. Modern reusable components encap-

sulate both data and the processing applied to the data, enabling the software engineer

to create new applications from reusable parts. For example, today's graphical user

interfaces are built using reusable components that enable the creation of graphics

windows, pull-down menus, and a wide variety of interaction mechanisms. The data

structure and processing detail required to build the interface are contained with a

library of reusable components for interface construction.

1.2.2 Software Applications

Software may be applied in any situation for which a prespecified set of procedural

steps (i.e., an algorithm) has been defined (notable exceptions to this rule are expert

system software and neural network software). Information content and determinacy

are important factors in determining the nature of a software application. Content

refers to the meaning and form of incoming and outgoing information. For example,

many business applications use highly structured input data (a database) and pro-

duce formatted “reports.”  Software that controls an automated machine (e.g., a

numerical control) accepts discrete data items with limited structure and produces

individual machine commands in rapid succession.

Information determinacy refers to the predictability of the order and timing of infor-

mation. An engineering analysis program accepts data that have a predefined order,

executes the analysis algorithm(s) without interruption, and produces resultant data

in report or graphical format.  Such applications are determinate. A multiuser oper-

ating system, on the other hand, accepts inputs that have varied content and arbi-

trary timing, executes algorithms that can be interrupted by external conditions, and

produces output that varies as a function of environment and time.  Applications with

these characteristics are indeterminate.

It is somewhat difficult to develop meaningful generic categories for software appli-

cations.  As software complexity grows, neat compartmentalization disappears.  The

following software areas indicate the breadth of potential applications:  

System software. System software is a collection of programs written to service

other programs.  Some system software (e.g., compilers, editors, and file manage-

ment utilities) process complex, but determinate, information structures.  Other sys-

tems applications (e.g., operating system components, drivers, telecommunications

9
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processors) process largely indeterminate data.  In either case, the system software

area is characterized by heavy interaction with computer hardware; heavy usage by

multiple users; concurrent operation that requires scheduling, resource sharing, and

sophisticated process management; complex data structures; and multiple external

interfaces.

Real-time software. Software that monitors/analyzes/controls real-world events

as they occur is called real time. Elements of real-time software include a data gath-

ering component that collects and formats information from an external environ-

ment, an analysis component that transforms information as required by the

application, a control/output component that responds to the external environment,

and a monitoring component that coordinates all other components so that real-time

response (typically ranging from 1 millisecond to 1 second) can be maintained. 

Business software. Business information processing is the largest single software

application area. Discrete "systems" (e.g., payroll, accounts receivable/payable, inven-

tory) have evolved into management information system (MIS) software that accesses

one or more large databases containing business information.  Applications in this

area restructure existing data in a way that facilitates business operations or man-

agement decision making. In addition to conventional data processing application,

business software applications also encompass interactive computing (e.g., point-

of-sale transaction processing).

Engineering and scientific software. Engineering and scientific software have

been characterized by "number crunching" algorithms. Applications range from astron-

omy to volcanology, from automotive stress analysis to space shuttle orbital dynam-

ics, and from molecular biology to automated manufacturing.  However, modern

applications within the engineering/scientific area are moving away from conven-

tional numerical algorithms.  Computer-aided design, system simulation, and other

interactive applications have begun to take on real-time and even system software

characteristics. 

Embedded software. Intelligent products have become commonplace in nearly

every consumer and industrial market. Embedded software resides in read-only mem-

ory and is used to control products and systems for the consumer and industrial mar-

kets. Embedded software can perform very limited and esoteric functions (e.g., keypad

control for a microwave oven) or provide significant function and control capability

(e.g., digital functions in an automobile such as fuel control, dashboard displays, and

braking systems).

Personal computer software. The personal computer software market has bur-

geoned over the past two decades. Word processing, spreadsheets, computer graph-

ics, multimedia, entertainment, database management, personal and business financial

applications, external network, and database access are only a few of hundreds of

applications.

Web-based software. The Web pages retrieved by a browser are software that

incorporates executable instructions (e.g., CGI, HTML, Perl, or Java), and data (e.g.,

One of the most
comprehensive libraries of
shareware/freeware can
be found at 
www.shareware.com
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hypertext and a variety of visual and audio formats). In essence, the network becomes

a massive computer providing an almost unlimited software resource that can be

accessed by anyone with a modem.

Artificial intelligence software. Artificial intelligence (AI) software makes use

of nonnumerical algorithms to solve complex problems that are not amenable to

computation or straightforward analysis. Expert systems, also called knowledge-

based systems, pattern recognition (image and voice), artificial neural networks,

theorem proving, and game playing are representative of applications within this

category.

1.3  SOFTWARE: A CRISIS  ON THE HORIZON?

Many industry observers (including this author) have characterized the problems

associated with software development as a "crisis." More than a few books (e.g.,

[GLA97], [FLO97], [YOU98a]) have recounted the impact of some of the more spec-

tacular software failures that have occurred over the past decade. Yet, the great suc-

cesses achieved by the software industry have led many to question whether the term

software crisis is still appropriate. Robert Glass, the author of a number of books on

software failures, is representative of those who have had a change of heart. He states

[GLA98]: “I look at my failure stories and see exception reporting, spectacular fail-

ures in the midst of many successes, a cup that is [now] nearly full.”

It is true that software people succeed more often than they fail. It also true that

the software crisis predicted 30 years ago never seemed to materialize. What we

really have may be something rather different. 

The word crisis is defined in Webster's Dictionary as “a turning point in the course of

anything; decisive or crucial time, stage or event.” Yet, in terms of overall software qual-

ity and the speed with which computer-based systems and products are developed,

there has been no "turning point," no "decisive time," only slow, evolutionary change,

punctuated by explosive technological changes in disciplines associated with software.  

The word crisis has another definition: "the turning point in the course of a disease,

when it becomes clear whether the patient will live or die." This definition may give us

a clue about the real nature of the problems that have plagued software development. 

What we really have might be better characterized as a chronic affliction.2 The

word affliction is defined as "anything causing pain or distress." But the definition of

the adjective chronic is the key to our argument: "lasting a long time or recurring

often; continuing indefinitely." It is far more accurate to describe the problems we

have endured in the software business as a chronic affliction than a crisis.  

Regardless of what we call it, the set of problems that are encountered in the devel-

opment of computer software is not limited to software that "doesn't function 

11

2 This terminology was suggested by Professor Daniel Tiechrow of the University of Michigan in a
talk presented in Geneva, Switzerland, April 1989.

“The most likely way
for the world to be
destroyed, most
experts agree, is by
accident. That's
where we come in;
we're computer
professionals. We
cause accidents.” 
Nathaniel
Borenstein
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properly."  Rather, the affliction encompasses problems associated with how we

develop software, how we support a growing volume of existing software, and how

we can expect to keep pace with a growing demand for more software. 

We live with this affliction to this day—in fact, the industry prospers in spite of it.

And yet, things would be much better if we could find and broadly apply a cure.

1.4  SOFTWARE MYTHS

Many causes of a software affliction can be traced to a mythology that arose during

the early history of software development. Unlike ancient myths that often provide

human lessons well worth heeding, software myths propagated misinformation and

confusion.  Software myths had a number of attributes that made them insidious; for

instance, they  appeared to be reasonable statements of fact (sometimes containing

elements of truth), they had an intuitive feel, and they were often promulgated by

experienced practitioners who "knew the score."

Today, most knowledgeable professionals recognize myths for what they are—

misleading attitudes that have caused serious problems for managers and technical

people alike. However, old attitudes and habits are difficult to modify, and remnants

of software myths are still believed.

Management myths. Managers with software responsibility, like managers in most

disciplines, are often under pressure to maintain budgets, keep schedules from slip-

ping, and improve quality. Like a drowning person who grasps at a straw, a software

manager often grasps at belief in a software myth, if that belief will lessen the pres-

sure (even temporarily).

Myth: We already have a book that's full of standards and procedures for building

software, won't that provide my people with everything they need to know?

Reality: The book of standards may very well exist, but is it used? Are software

practitioners aware of its existence? Does it reflect modern software engineering prac-

tice? Is it complete? Is it streamlined to improve time to delivery while still main-

taining a focus on quality? In many cases, the answer to all of these questions is "no." 

Myth: My people have state-of-the-art software development tools, after all, we

buy them the newest computers. 

Reality: It takes much more than the latest model mainframe, workstation, or PC

to do high-quality software development.  Computer-aided software engineering

(CASE) tools are more important than hardware for achieving good quality and pro-

ductivity, yet the majority of software developers still do not use them effectively.

Myth: If we get behind schedule, we can add more programmers and catch up

(sometimes called the Mongolian horde concept). 

Reality: Software development is not a mechanistic process like manufacturing.

In the words of Brooks [BRO75]:  "adding people to a late software project makes it

“In the absence of
meaningful standards, 
a new industry like
software comes to
depend instead on
folklore.”

Tom DeMarco
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later." At first, this statement may seem counterintuitive. However, as new people

are added, people who were working must spend time educating the newcomers,

thereby reducing the amount of time spent on productive development effort.  Peo-

ple can be added but only in a planned and well-coordinated manner.

Myth: If I decide to outsource3 the software project to a third party, I can just relax

and let that firm build it.

Reality: If an organization does not understand how to manage and control software

projects internally, it will invariably struggle when it outsources software projects. 

Customer myths. A customer who requests computer software may be a person

at the next desk, a technical group down the hall, the marketing/sales department,

or an outside company that has requested software under contract. In many cases,

the customer believes myths about software because software managers and prac-

titioners do little to correct misinformation. Myths lead to false expectations (by the

customer) and ultimately, dissatisfaction with the developer.

Myth: A general statement of objectives is sufficient to begin writing programs—

we can fill in the details later. 

Reality: A poor up-front definition is the major cause of  failed software efforts.  A

formal and detailed description of the information domain, function, behavior, per-

formance, interfaces, design constraints, and validation criteria is essential.  These

characteristics can be determined only after thorough communication between cus-

tomer and developer.

Myth: Project requirements continually change, but change can be easily accom-

modated because software is flexible.

Reality: It is true that software requirements change, but the impact of change

varies with the time at which it is introduced.  Figure 1.3 illustrates the impact of

change. If serious attention is given to up-front definition, early requests for change

can be accommodated easily.  The customer can review requirements and recom-

mend modifications with relatively little impact on cost.  When changes are requested

during software design, the cost impact grows rapidly.  Resources have been com-

mitted and a design framework has been established.  Change can cause upheaval

that requires additional resources and major design modification, that is, additional

cost.  Changes in function, performance, interface, or other characteristics during

implementation (code and test) have a severe impact on cost.  Change, when requested

after software is in production, can be over an order of  magnitude more expensive

than the same change requested earlier.
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The Software Project
Managers Network at 
www.spmn.com can
help you dispel these and
other myths.

XRef
The management and
control of change is
considered in detail in
Chapter 9.

3 The term “outsourcing” refers to the widespread practice of contracting software development
work to a third party—usually a consulting firm that specializes in building custom software for
its clients.
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start. You may not be
able to develop every
detail, but the more
you know, the less risk
you take.
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Practitioner's myths. Myths that are still believed by software practitioners have

been fostered by 50 years of programming culture. During the early days of software,

programming was viewed as an art form.  Old ways and attitudes die hard.

Myth: Once we write the program and get it to work, our job is done. 

Reality: Someone once said that "the sooner you begin 'writing code', the longer

it'll take you to get done." Industry data ([LIE80], [JON91], [PUT97]) indicate that

between 60 and 80 percent of all effort expended on software will be expended after

it is delivered to the customer for the first time. 

Myth: Until I get the program "running" I have no way of assessing its quality. 

Reality: One of the most effective software quality assurance mechanisms can be

applied from the inception of a project—the formal technical review. Software reviews

(described in Chapter 8) are a "quality filter" that have been found to be more effec-

tive than testing for finding certain classes of software defects.

Myth: The only deliverable work product for a successful project is the working

program. 

Reality: A working program is only one part of a software configuration that includes

many elements.  Documentation provides a foundation for successful engineering

and, more important, guidance for software support.

Myth: Software engineering will make us create voluminous and unnecessary doc-

umentation and will invariably slow us down.

Reality: Software engineering is not about creating documents. It is about creat-

ing quality. Better quality leads to reduced rework. And reduced rework results in

faster delivery times.

Many software professionals recognize the fallacy of the myths just described. Regret-

tably, habitual attitudes and methods foster poor management and technical practices,

even when reality dictates a better approach.  Recognition of software realities is the

first step toward formulation of practical solutions for software engineering.
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software engineering
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“Will we have time to
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1.5  SUMMARY

Software has become the key element in the evolution of computer-based systems

and products.  Over the past 50 years, software has evolved from a specialized prob-

lem solving and information analysis tool to an industry in itself.  But early “pro-

gramming” culture and history have created a set of problems that persist today.

Software has become the limiting factor in the continuing evolution of computer-

based systems.  Software is composed of programs, data, and documents. Each of

these items comprises a configuration that is created as part of the software engi-

neering process.  The intent of software engineering is to provide a framework for

building software with higher quality. 
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PROBLEMS AND POINTS TO PONDER

1.1. Software is the differentiating characteristic in many computer-based products

and systems. Provide examples of two or three products and at least one system in

which software, not hardware, is the differentiating element.

1.2. In the 1950s and 1960s, computer programming was an art form learned in an

apprenticelike environment. How have the early days affected software development

practices today? 

1.3. Many authors have discussed the impact of the "information era." Provide a

number of examples (both positive and negative) that indicate the impact of software

on our society. Review one of the pre-1990 references in Section 1.1 and indicate

where the author’s predictions were right and where they were wrong.

1.4. Choose a specific application and indicate: (a) the software application category

(Section 1.2.2) into which it fits; (b) the data content associated with the application;

and (c) the information determinacy of the application.

1.5. As software becomes more pervasive, risks to the public (due to faulty pro-

grams) become an increasingly significant concern. Develop a realistic doomsday

scenario (other than Y2K) where the failure of a computer program could do great

harm (either economic or human).

1.6. Peruse the Internet newsgroup comp.risks and prepare a summary of risks to

the public that have recently been discussed. An alternate source is Software Engi-

neering Notes published by the ACM.

1.7. Write a paper summarizing recent advances in one of the leading edge soft-

ware application areas. Potential choices include: advanced Web-based applications,

virtual reality, artificial neural networks, advanced human interfaces, intelligent agents.

1.8. The “myths” noted in Section 1.4 are slowly fading as the years pass, but oth-

ers are taking their place. Attempt to add one or two “new” myths to each category. 



CHAPTER 1 THE PRODUCT

FURTHER READINGS AND INFORMATION SOURCES

Literally thousands of books are written about computer software. The vast major-

ity discuss programming languages or software applications, but a few discuss soft-

ware itself. Pressman and Herron (Software Shock, Dorset House, 1991) presented an

early discussion (directed at the layperson) of software and the way professionals

build it. 

Negroponte's (Being Digital, Alfred A. Knopf, 1995) best-selling book provides a

view of computing and its overall impact in the twenty-first century. Books by Nor-

man [NOR98] and Bergman (Information Appliances and Beyond, Academic Press/Mor-

gan Kaufmann, 2000) suggest that the widespread impact of the PC will decline as

information appliances and pervasive computing connect everyone in the indus-

trialized world and almost every “appliance” that they own to a new Internet

infrastructure.

Minasi (The Software Conspiracy: Why Software Companies Put out Faulty Products,

How They Can Hurt You, and What You Can Do, McGraw-Hill, 2000) argues that the

“modern scourge” of software bugs can be eliminated and suggests ways to accom-

plish this. DeMarco (Why Does Software Cost So Much? Dorset House, 1995) has pro-

duced a collection of amusing and insightful essays on software and the process

through which it is developed. 

A wide variety of information sources on software-related topics and manage-

ment is available on the Internet. An up-to-date list of World Wide Web references

that are relevant to software can be found at the SEPA Web site:

http://www.mhhe.com/engcs/compsci/pressman/resources/product.mhtml
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In a fascinating book that provides an economist’s view of software and soft-

ware engineering, Howard Baetjer, Jr. [BAE98], comments on the software

process:

Because software, like all capital, is embodied knowledge, and because that knowl-

edge is initially dispersed, tacit, latent, and incomplete in large measure, software

development is a social learning process. The process is a dialogue in which the

knowledge that must become the software is brought together and embodied in the

software. The process provides interaction between users and designers, between

users and evolving tools, and between designers and evolving tools [technology]. It

is an iterative process in which the evolving tool itself serves as the medium for com-

munication, with each new round of the dialogue eliciting more useful knowledge

from the people involved.

Indeed, building computer software is an iterative learning process, and the
outcome, something that Baetjer would call “software capital,” is an embodi-
ment of knowledge collected, distilled, and organized as the process is con-
ducted.

2 THE PROCESS

What is it? When you build a

product or system, it’s important

to go through a series of pre-

dictable steps—a road map that helps you create

a timely, high-quality result. The road map that

you follow is called a ‘software process.’

Who does it? Software engineers and their man-

agers adapt the process to their needs and then

follow it. In addition, the people who have

requested the software play a role in the software

process.

Why is it important? Because it provides stability,

control, and organization to an activity that can,

if left uncontrolled, become quite chaotic.

What are the steps? At a detailed level, the process

that you adopt depends on the software you’re

building. One process might be appropriate for

creating software for an aircraft avionics system,

while an entirely different process would be indi-

cated for the creation of a Web site.

What is the work product? From the point of view

of a software engineer, the work products are the

programs, documents, and data produced as a

consequence of the software engineering activi-

ties defined by the process.

How do I ensure that I’ve done it right? A number of

software process assessment mechanisms enable

organizations to determine the “maturity” of a

software process. However, the quality, timeliness,

and long-term viability of the product you build

are the best indicators of the efficacy of the process

that you use.

Q U I C K
L O O K
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But what exactly is a software process from a technical point of view? Within the

context of this book, we define a software process as a framework for the tasks that

are required to build high-quality software. Is process synonymous with software engi-

neering? The answer is “yes” and “no.” A software process defines the approach that

is taken as software is engineered. But software engineering also encompasses tech-

nologies that populate the process—technical methods and automated tools.  

More important, software engineering is performed by creative, knowledgeable

people who should work within a defined and mature software process that is appro-

priate for the products they build and the demands of their marketplace. The intent

of this chapter is to provide a survey of the current state of the software process and

pointers to more detailed discussion of management and technical topics presented

later in this book.

2.1 SOFTWARE ENGINEERING: A LAYERED TECHNOLOGY

Although hundreds of authors have developed personal definitions of software engi-

neering, a definition proposed by Fritz Bauer [NAU69] at the seminal conference on

the subject still serves as a basis for discussion:

[Software engineering is] the establishment and use of sound engineering principles in

order to obtain economically software that is reliable and works efficiently on real machines.

Almost every reader will be tempted to add to this definition. It says little about the

technical aspects of software quality; it does not directly address the need for cus-

tomer satisfaction or timely product delivery; it omits mention of the importance of

measurement and metrics; it does not state the importance of a mature process. And

yet, Bauer’s definition provides us with a baseline. What “sound engineering princi-

ples” can be applied to computer software development? How do we “economically”

build software so that it is “reliable”? What is required to create computer programs

that work “efficiently” on not one but many different “real machines”?  These are the

questions that continue to challenge software engineers.

The IEEE [IEE93] has developed a more comprehensive definition when it states:

Software Engineering: (1) The application of a systematic, disciplined, quantifiable approach

to the development, operation, and maintenance of software; that is, the application of

engineering to software. (2) The study of approaches as in (1).

2.1.1 Process, Methods, and Tools

Software engineering is a layered technology. Referring to Figure 2.1, any engineer-

ing approach (including software engineering) must rest on an organizational com-

mitment to quality. Total quality management and similar philosophies foster a

continuous process improvement culture, and this culture ultimately leads to the

How do we
define

software
engineering?

?

“More than a
discipline or a body
of knowledge,
engineering is a
verb, an action
word, a way of
approaching a
problem.”
Scott Whitmire
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development of increasingly more mature approaches to software engineering. The

bedrock that supports software engineering is a quality focus.

The foundation for software engineering is the process layer. Software engineer-

ing process is the glue that holds the technology layers together and enables rational

and timely development of computer software. Process defines a framework for a set

of key process areas (KPAs) [PAU93] that must be established for effective delivery of

software engineering technology. The key process areas form the basis for manage-

ment control of software projects and establish the context in which technical meth-

ods are applied, work products (models, documents, data, reports, forms, etc.) are

produced, milestones are established, quality is ensured, and change is properly man-

aged. 

Software engineering methods provide the technical how-to's for building soft-

ware. Methods encompass a broad array of tasks that include requirements analy-

sis, design, program construction, testing, and support. Software engineering methods

rely on a set of basic principles that govern each area of the technology and include

modeling activities and other descriptive techniques.

Software engineering tools provide automated or semi-automated support for the

process and the methods. When tools are integrated so that information created by

one tool can be used by another, a system for the support of software development,

called computer-aided software engineering, is established. CASE combines software,

hardware, and a software engineering database (a repository containing important

information about analysis, design, program construction, and testing) to create a

software engineering environment analogous to CAD/CAE (computer-aided

design/engineering) for hardware.

2.1.2  A Generic View of Software Engineering

Engineering is the analysis, design, construction, verification, and management of

technical (or social) entities. Regardless of the entity to be engineered, the following

questions must be asked and answered:

• What is the problem to be solved? 

• What characteristics of the entity are used to solve the problem?
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• How will the entity (and the solution) be realized?

• How will the entity be constructed?

• What approach will be used to uncover errors that were made in the design

and construction of the entity?

• How will the entity be supported over the long term, when corrections, adap-

tations, and enhancements are requested by users of the entity.

Throughout this book, we focus on a single entity—computer software.  To engineer

software adequately, a software engineering process must be defined. In this section,

the generic characteristics of the software process are considered. Later in this chap-

ter, specific process models are addressed.

The work associated with software engineering can be categorized into three

generic phases, regardless of application area, project size, or complexity. Each phase

addresses one or more of the questions noted previously.  

The definition phase focuses on what. That is, during definition, the software engi-

neer attempts to identify what information is to be processed, what function and per-

formance are desired, what system behavior can be expected, what interfaces are to

be established, what design constraints exist, and what validation criteria are required

to define a successful system. The key requirements of the system and the software

are identified. Although the methods applied during the definition phase will vary

depending on the software engineering paradigm (or combination of paradigms) that

is applied, three major tasks will occur in some form: system or information engi-

neering (Chapter 10), software project planning (Chapters 3, 5, 6, and 7), and require-

ments analysis (Chapters 11, 12, and 21).

The development phase focuses on how. That is, during development a software

engineer attempts to define how data are to be structured, how function is to be imple-

mented within a software architecture, how procedural details are to be implemented,

how interfaces are to be characterized, how the design will be translated into a pro-

gramming language (or nonprocedural language), and how testing will be performed.

The methods applied during the development phase will vary, but three specific tech-

nical tasks should always occur: software design (Chapters 13–16, and 22), code gen-

eration, and software testing (Chapters 17, 18, and 23).

The support phase focuses on change associated with error correction, adaptations

required as the software's environment evolves, and changes due to enhancements

brought about by changing customer requirements. The support phase reapplies the

steps of the definition and development phases but does so in the context of existing

software. Four types of change are encountered during the support phase:

Correction. Even with the best quality assurance activities, it is likely that the

customer will uncover defects in the software. Corrective maintenance changes

the software to correct defects. 

Adaptation. Over time, the original environment (e.g., CPU, operating system,

business rules, external product characteristics) for which the software was

Software is engineered
by applying three
distinct phases that
focus on definition,
development, and
support.

“Einstein argued that
there must be a
simplified
explanation of
nature, because God
is not capricious or
arbitrary. No such
faith comforts the
software engineer.
Much of the
complexity that he
must master is
arbitrary
complexity.”
Fred Brooks 

WebRef
Crosstalk is a journal that
provides pragmatic
software engineering
advice and comment. On-
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www.stsc.hill.af.mil
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developed is likely to change.  Adaptive maintenance results in modification to

the software to accommodate changes to its external environment.

Enhancement. As software is used, the customer/user will recognize addi-

tional functions that will provide benefit. Perfective maintenance extends the

software beyond its original functional requirements.

Prevention. Computer software deteriorates due to change, and because of

this, preventive maintenance, often called software reengineering, must be con-

ducted to enable the software to serve the needs of its end users. In essence,

preventive maintenance makes changes to computer programs so that they can

be more easily corrected, adapted, and enhanced.

In addition to these support activities, the users of software require continuing sup-

port. In-house technical assistants, telephone-help desks, and application-specific

Web sites are often implemented as part of the support phase. 

Today, a growing population of legacy programs1 is forcing many companies to

pursue software reengineering strategies (Chapter 30). In a global sense, software

reengineering is often considered as part of business process reengineering.

The phases and related steps described in our generic view of software engineer-

ing are complemented by a number of umbrella activities. Typical activities in this cat-

egory include:

• Software project tracking and control

• Formal technical reviews

• Software quality assurance

• Software configuration management

• Document preparation and production

• Reusability management

• Measurement

• Risk management

Umbrella activities are applied throughout the software process and are discussed in

Parts Two and Five of this book. 

2.2 THE SOFTWARE PROCESS

A software process can be characterized as shown in Figure 2.2.  A common process

framework is established by defining a small number of framework activities that are

applicable to all software projects, regardless of their size or complexity. A number

of task sets—each a collection of software engineering work tasks, project milestones,
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work products, and quality assurance points—enable the framework activities to be

adapted to the characteristics of the software project and the requirements of the

project team. Finally, umbrella activities—such as software quality assurance, soft-

ware configuration management, and measurement2—overlay the process model.

Umbrella activities are independent of any one framework activity and occur through-

out the process. 

In recent years, there has been a significant emphasis on “process maturity.” The

Software Engineering Institute (SEI) has developed a comprehensive model predi-

cated on a set of software engineering capabilities that should be present as organ-

izations reach different levels of process maturity. To determine an organization’s

current state of process maturity, the SEI uses an assessment that results in a five

point grading scheme. The grading scheme determines compliance with a capability

maturity model (CMM) [PAU93] that defines key activities required at different levels

of process maturity. The SEI approach provides a measure of the global effectiveness

of a company's software engineering practices and establishes five process maturity

levels that are defined in the following manner:

Level 1: Initial. The software process is characterized as ad hoc and occa-

sionally even chaotic. Few processes are defined, and success depends on indi-

vidual effort. 

Level 2: Repeatable. Basic project management processes are established

to track cost, schedule, and functionality. The necessary process discipline is

in place to repeat earlier successes on projects with similar applications.

Tasks

Milestones, deliverables

SQA points

Task sets

Framework activities

Umbrella activities

Common process framework
FIGURE 2.2
The software
process

Select a common
process framework
that is tuned to the
product, the people,
and the project.

2 These topics are discussed in detail in later chapters.
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Level 3: Defined. The software process for both management and engi-

neering activities is documented, standardized, and integrated into an organi-

zationwide software process. All projects use a documented and approved

version of the organization's process for developing and supporting software.

This level includes all characteristics defined for level 2.

Level 4: Managed. Detailed measures of the software process and product

quality are collected. Both the software process and products are quantitatively

understood and controlled using detailed measures. This level includes all char-

acteristics defined for level 3.

Level 5: Optimizing. Continuous process improvement is enabled by quan-

titative feedback from the process and from testing innovative ideas and tech-

nologies. This level includes all characteristics defined for level 4.

The five levels defined by the SEI were derived as a consequence of evaluating

responses to the SEI assessment questionnaire that is based on the CMM. The results

of the questionnaire are distilled to a single numerical grade that provides an indi-

cation of an organization's process maturity.  

The SEI has associated key process areas (KPAs) with each of the maturity levels.

The KPAs describe those software engineering functions (e.g., software project plan-

ning, requirements management) that must be present to satisfy good practice at a

particular level. Each KPA is described by identifying the following characteristics:

• Goals—the overall objectives that the KPA must achieve.

• Commitments—requirements (imposed on the organization) that must be met

to achieve the goals or provide proof of intent to comply with the goals.

• Abilities—those things that must be in place (organizationally and technically)

to enable the organization to meet the commitments.

• Activities—the specific tasks required to achieve the KPA function.

• Methods for monitoring implementation—the manner in which the activities

are monitored as they are put into place.

• Methods for verifying implementation—the manner in which proper practice

for the KPA can be verified.

Eighteen KPAs (each described using these characteristics) are defined across the

maturity model and mapped into different levels of process maturity. The following

KPAs should be achieved at each process maturity level:3

Process maturity level 2

• Software configuration management

• Software quality assurance
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www.sei.cmu.edu

3 Note that the KPAs are additive. For example, process maturity level 4 contains all level 3 KPAs
plus those noted for level 2.
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• Software subcontract management

• Software project tracking and oversight

• Software project planning

• Requirements management

Process maturity level 3

• Peer reviews

• Intergroup coordination

• Software product engineering

• Integrated software management

• Training program

• Organization process definition

• Organization process focus

Process maturity level 4

• Software quality management

• Quantitative process management

Process maturity level 5

• Process change management

• Technology change management

• Defect prevention

Each of the KPAs is defined by a set of key practices that contribute to satisfying its

goals. The key practices are policies, procedures, and activities that must occur before

a key process area has been fully instituted. The SEI defines key indicators as "those

key practices or components of key practices that offer the greatest insight into whether

the goals of a key process area have been achieved." Assessment questions are

designed to probe for the existence (or lack thereof) of a key indicator.

2.3 SOFTWARE PROCESS MODELS

To solve actual problems in an industry setting, a software engineer or a team of engi-

neers must incorporate a development strategy that encompasses the process, meth-

ods, and tools layers described in Section 2.1.1 and the generic phases discussed in

Section 2.1.2. This strategy is often referred to as a process model or a software engi-

neering paradigm. A process model for software engineering is chosen based on the

nature of the project and application, the methods and tools to be used, and the con-

trols and deliverables that are required. In an intriguing paper on the nature of the

software process, L. B. S. Raccoon [RAC95] uses fractals as the basis for a discussion

of the true nature of the software process. 

“Too often, software
work follows the
first law of bicycling:
No matter where
you're going, it's
uphill and against
the wind.” 
author unknown

WebRef
A tabular version of the
complete SEI-CMM,
including all goals,
commitments, abilities, and
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sepo.nosc.mil/
CMMmatrices.html
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All software development can be characterized as a problem solving loop (Figure

2.3a) in which four distinct stages are encountered: status quo, problem definition,

technical development, and solution integration. Status quo “represents the current

state of affairs” [RAC95]; problem definition identifies the specific problem to be solved;

technical development solves the problem through the application of some technol-

ogy, and solution integration delivers the results (e.g., documents, programs, data,

new business function, new product) to those who requested the solution in the first

place. The generic software engineering phases and steps defined in Section 2.1.2

easily map into these stages.

This problem solving loop applies to software engineering work at many different

levels of resolution. It can be used at the macro level when the entire application is

considered, at a mid-level when program components are being engineered, and
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even at the line of code level. Therefore, a fractal4 representation can be used to pro-

vide an idealized view of process. In Figure 2.3b, each stage in the problem solving

loop contains an identical problem solving loop, which contains still another prob-

lem solving loop (this continues to some rational boundary; for software, a line of

code). 

Realistically, it is difficult to compartmentalize activities as neatly as Figure 2.3b

implies because cross talk occurs within and across stages. Yet, this simplified view

leads to a very important idea: regardless of the process model that is chosen for a

software project, all of the stages—status quo, problem definition, technical develop-

ment, and solution integration—coexist simultaneously at some level of detail. Given

the recursive nature of Figure 2.3b, the four stages discussed apply equally to the

analysis of a complete application and to the generation of a small segment of code.

Raccoon [RAC95] suggests a “Chaos model” that  describes “software develop-

ment [as] a continuum from the user to the developer to the technology.” As work

progresses toward a complete system, the stages are applied recursively to user needs

and the developer’s technical specification of the software.

In the sections that follow, a variety of different process models for software engi-

neering are discussed. Each represents an attempt to bring order to an inherently

chaotic activity. It is important to remember that each of the models has been char-

acterized in a way that (ideally) assists in the control and coordination of a real soft-

ware project. And yet, at their core, all of the models exhibit characteristics of the

Chaos model.

2.4 THE LINEAR SEQUENTIAL MODEL

Sometimes called the classic life cycle or the waterfall model, the linear sequential model

suggests a systematic, sequential approach5 to software development that begins at

the system level and progresses through analysis, design, coding, testing, and sup-

port. Figure 2.4 illustrates the linear sequential model for software engineering. Mod-

eled after a conventional engineering cycle, the linear sequential model encompasses

the following activities:

System/information engineering and modeling. Because software is always

part of a larger system (or business), work begins by establishing requirements for

all system elements and then allocating some subset of these requirements to soft-

ware. This system view is essential when software must interact with other elements

such as hardware, people, and databases. System engineering and analysis encom-

pass requirements gathering at the system level with a small amount of top level

4 Fractals were originally proposed for geometric representations. A pattern is defined and then 
applied recursively at successively smaller scales; patterns fall inside patterns.

5 Although the original waterfall model proposed by Winston Royce [ROY70] made provision for
“feedback loops,” the vast majority of organizations that apply this process model treat it as if it
were strictly linear.

All stages of a
software process—
status quo, problem
definition, technical
development, and
solution integration—
coexist simultaneously
at some level of detail.
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design and analysis. Information engineering encompasses requirements gathering

at the strategic business level and at the business area level.

Software requirements analysis. The requirements gathering process is intensi-

fied and focused specifically on software. To understand the nature of the program(s)

to be built, the software engineer ("analyst") must understand the information domain

(described in Chapter 11) for the software, as well as required function, behavior, per-

formance, and interface. Requirements for both the system and the software are doc-

umented and reviewed with the customer.

Design. Software design is actually a multistep process that focuses on four distinct

attributes of a program: data structure, software architecture, interface representa-

tions, and procedural (algorithmic) detail. The design process translates requirements

into a representation of the software that can be assessed for quality before coding

begins. Like requirements, the design is documented and becomes part of the soft-

ware configuration.

Code generation. The design must be translated into a machine-readable form.

The code generation step performs this task. If design is performed in a detailed man-

ner, code generation can be accomplished mechanistically.

Testing. Once code has been generated, program testing begins. The testing process

focuses on the logical internals of the software, ensuring that all statements have

been tested, and on the functional externals; that is, conducting tests to uncover

errors and ensure that defined input will produce actual results that agree with required

results.

Support. Software will undoubtedly undergo change after it is delivered to the cus-

tomer (a possible exception is embedded software). Change will occur because errors

have been encountered, because the software must be adapted to accommodate

changes in its external environment (e.g., a change required because of a new oper-

ating system or peripheral device), or because the customer requires functional or

performance enhancements. Software support/maintenance reapplies each of the

preceding phases to an existing program rather than a new one.
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The linear sequential model is the oldest and the most widely used paradigm for

software engineering. However, criticism of the paradigm has caused even active

supporters to question its efficacy [HAN95]. Among the problems that are sometimes

encountered when the  linear sequential model is applied are:

1. Real projects rarely follow the sequential flow that the model proposes.

Although the linear model can accommodate iteration, it does so indirectly.

As a result, changes can cause confusion as the project team proceeds.

2. It is often difficult for the customer to state all requirements explicitly. The

linear sequential model requires this and has difficulty accommodating the

natural uncertainty that exists at the beginning of many projects.

3. The customer must have patience. A working version of the program(s) will

not be available until late in the project time-span. A major blunder, if unde-

tected until the working program is reviewed, can be disastrous. 

In an interesting analysis of actual projects Bradac [BRA94], found that the linear

nature of the classic life cycle leads to  “blocking states” in which some project team

members must wait for other members of the team to complete dependent tasks. In

fact, the time spent waiting can exceed the time spent on productive work! The block-

ing state tends to be more prevalent at the beginning and end of a linear sequential

process. 

Each of these problems is real. However, the classic life cycle paradigm has a def-

inite and important place in software engineering work. It provides a template into

which methods for analysis, design, coding, testing, and support can be placed. The

classic life cycle remains a widely used procedural model for software engineering.

While it does have weaknesses, it is significantly better than a haphazard approach

to software development.

2.5 THE PROTOTYPING MODEL

Often, a customer defines a set of general objectives for software but does not iden-

tify detailed input, processing, or output requirements. In other cases, the developer

may be unsure of the efficiency of an algorithm, the adaptability of an operating sys-

tem, or the form that human/machine interaction should take. In these, and many

other situations, a prototyping paradigm may offer the best approach.

The prototyping paradigm (Figure 2.5) begins with requirements gathering. Devel-

oper and customer meet and define the overall objectives for the software, identify

whatever requirements are known, and outline areas where further definition is

mandatory. A "quick design" then occurs. The quick design focuses on a representa-

tion of those aspects of the software that will be visible to the customer/user (e.g.,

input approaches and output formats). The quick design leads to the construction of

Why does
the linear

model sometimes
fail?

?
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a prototype. The prototype is evaluated by the customer/user and used to refine

requirements for the software to be developed. Iteration occurs as the prototype is

tuned to satisfy the needs of the customer, while at the same time enabling the devel-

oper to better understand what needs to be done.

Ideally, the prototype serves as a mechanism for identifying software requirements.

If a working prototype is built, the developer attempts to use existing program frag-

ments or applies tools (e.g., report generators, window managers) that enable work-

ing programs to be generated quickly.

But what do we do with the prototype when it has served the purpose just

described? Brooks [BRO75] provides an answer:

In most projects, the first system built is barely usable. It may be too slow, too big, awkward

in use or all three. There is no alternative but to start again, smarting but smarter, and build

a redesigned version in which these problems are solved . . . When a new system concept

or new technology is used, one has to build a system to throw away, for even the best plan-

ning is not so omniscient as to get it right the first time. The management question, there-

fore, is not whether to build a pilot system and throw it away. You will do that. The only

question is whether to plan in advance to build a throwaway, or to promise to deliver the

throwaway to customers . . .

The prototype can serve as "the first system." The one that Brooks recommends

we throw away. But this may be an idealized view. It is true that both customers and

developers like the prototyping paradigm. Users get a feel for the actual system and
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developers get to build something immediately. Yet, prototyping can also be prob-

lematic for the following reasons:

1. The customer sees what appears to be a working version of the software,

unaware that the prototype is held together “with chewing gum and baling

wire,” unaware that in the rush to get it working no one has considered over-

all software quality or long-term maintainability. When informed that the

product must be rebuilt so that high levels of quality can be maintained, the

customer cries foul and demands that "a few fixes" be applied to make the

prototype a working product. Too often, software development management

relents.

2. The developer often makes implementation compromises in order to get a

prototype working quickly. An inappropriate operating system or program-

ming language may be used simply because it is available and known; an

inefficient algorithm may be implemented simply to demonstrate capability.

After a time, the developer may become familiar with these choices and for-

get all the reasons why they were inappropriate. The less-than-ideal choice

has now become an integral part of the system.

Although problems can occur, prototyping can be an effective paradigm for soft-

ware engineering. The key is to define the rules of the game at the beginning; that is,

the customer and developer must both agree that the prototype is built to serve as a

mechanism for defining requirements. It is then discarded (at least in part) and the

actual software is engineered with an eye toward quality and maintainability.

2.6 THE RAD MODEL

Rapid application development (RAD) is an incremental software development process

model that emphasizes an extremely short development cycle. The RAD model is a

“high-speed” adaptation of the linear sequential model in which rapid development

is achieved by using component-based construction. If requirements are well under-

stood and project scope is constrained, the RAD process enables a development team

to create a “fully functional system” within very short time periods (e.g., 60 to 90 days)

[MAR91]. Used primarily for information systems applications, the RAD approach

encompasses the following phases [KER94]:

Business modeling. The information flow among business functions is modeled in

a way that answers the following questions: What information drives the business

process? What information is generated? Who generates it? Where does the infor-

mation go? Who processes it? Business modeling is described in more detail in Chap-

ter 10.

Data modeling. The information flow defined as part of the business modeling phase

is refined into a set of data objects that are needed to support the business. The char-

Resist pressure to
extend a rough
prototype into a
production product.
Quality almost always
suffers as a result.
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acteristics (called attributes) of each object are identified and the relationships between

these objects defined. Data modeling is considered in Chapter 12.

Process modeling. The data objects defined in the data modeling phase are trans-

formed to achieve the information flow necessary to implement a business function.

Processing descriptions are created for adding, modifying, deleting, or retrieving a

data object.

Application generation. RAD assumes the use of fourth generation techniques

(Section 2.10). Rather than creating software using conventional third generation

programming languages the RAD process works to reuse existing program compo-

nents (when possible) or create reusable components (when necessary). In all cases,

automated tools are used to facilitate construction of the software.

Testing and turnover. Since the RAD process emphasizes reuse, many of the pro-

gram components have already been tested. This reduces overall testing time. How-

ever, new components must be tested and all interfaces must be fully exercised.
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The RAD process model is illustrated in Figure 2.6. Obviously, the time constraints

imposed on a RAD project demand “scalable scope” [KER94]. If a business applica-

tion can be modularized in a way that enables each major function to be completed

in less than three months (using the approach described previously), it is a candidate

for RAD. Each major function can be addressed by a separate RAD team and then

integrated to form a whole. 

Like all process models, the RAD approach has drawbacks [BUT94]:

• For large but scalable projects, RAD requires sufficient human resources to

create the right number of RAD teams.

• RAD requires developers and customers who are committed to the rapid-fire

activities necessary to get a system complete in a much abbreviated time

frame. If commitment is lacking from either constituency, RAD projects will

fail.

• Not all types of applications are appropriate for RAD. If a system cannot be

properly modularized, building the components necessary for RAD will be

problematic. If high performance is an issue and performance is to be

achieved through tuning the interfaces to system components, the RAD

approach may not work.

• RAD is not appropriate when technical risks are high. This occurs when a new

application makes heavy use of new technology or when the new software

requires a high degree of interoperability with existing computer programs.

2.7 EVOLUTIONARY SOFTWARE PROCESS MODELS

There is growing recognition that software, like all complex systems, evolves over a

period of time [GIL88]. Business and product requirements often change as devel-

opment proceeds, making a straight path to an end product unrealistic; tight market

deadlines make completion of a comprehensive software product impossible, but a

limited version must be introduced to meet competitive or business pressure;  a set

of core product or system requirements is well understood, but the details of prod-

uct or system extensions have yet to be defined. In these and similar situations, soft-

ware engineers need a process model that has been explicitly designed to

accommodate a product that evolves over time.

The linear sequential model (Section 2.4) is designed for straight-line develop-

ment. In essence, this waterfall approach assumes that a complete system will be

delivered after the linear sequence is completed. The prototyping model (Section

2.5) is designed to assist the customer (or developer) in understanding require-

ments. In general, it is not designed to deliver a production system. The evolu-

tionary nature of software is not considered in either of these classic software

engineering paradigms.

XRef
RAD makes heavy use of
reusable components.
For further information
on component-based
development, see
Chapter 27.
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Evolutionary models are iterative. They are characterized in a manner that enables

software engineers to develop increasingly more complete versions of the software.

2.7.1 The Incremental Model

The incremental model combines elements of the linear sequential model (applied

repetitively) with the iterative philosophy of prototyping. Referring to Figure 2.7, the

incremental model applies linear sequences in a staggered fashion as calendar time

progresses. Each linear sequence produces a deliverable “increment” of the software

[MDE93]. For example, word-processing software developed using the incremental

paradigm might deliver basic file management, editing, and document production

functions in the first increment; more sophisticated editing and document production

capabilities in the second increment; spelling and grammar checking in the third

increment; and advanced page layout capability in the fourth increment. It should be

noted that the process flow for any increment can incorporate the prototyping para-

digm. 

When an incremental model is used, the first increment is often a core product.

That is, basic requirements are addressed, but many supplementary features (some

known, others unknown) remain undelivered. The core product is used by the cus-

tomer (or undergoes detailed review). As a result of use and/or evaluation, a plan is

developed for the next increment. The plan addresses the modification of the core

product to better meet the needs of the customer and the delivery of additional 

features and functionality. This process is repeated following the delivery of each

increment, until the complete product is produced.
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The incremental process model, like prototyping (Section 2.5) and other evolu-

tionary approaches, is iterative in nature. But unlike prototyping, the incremental

model focuses on the delivery of an operational product with each increment. Early

increments are stripped down versions of the final product, but they do provide capa-

bility that serves the user and also provide a platform for evaluation by the user. 

Incremental development is particularly useful when staffing is unavailable for a

complete implementation by the business deadline that has been established for the

project. Early increments can be implemented with fewer people. If the core product

is well received, then additional staff (if required) can be added to implement the next

increment. In addition, increments can be planned to manage technical risks. For

example, a major system might require the availability of new hardware that is under

development and whose delivery date is uncertain. It might be possible to plan early

increments in a way that avoids the use of this hardware, thereby enabling partial

functionality to be delivered to end-users without inordinate delay.

2.7.2 The Spiral Model

The spiral model, originally proposed by Boehm [BOE88], is an evolutionary software

process model that couples the iterative nature of prototyping with the controlled and

systematic aspects of the linear sequential model. It provides the potential for rapid

development of incremental versions of the software. Using the spiral model, soft-

ware is developed in a series of incremental releases. During early iterations, the

incremental release might be a paper model or prototype. During later iterations,

increasingly more complete versions of the engineered system are produced.

A spiral model is divided into a number of framework activities, also called task

regions.6 Typically, there are between three and six task regions. Figure 2.8 depicts a

spiral model that contains six task regions:

• Customer communication—tasks required to establish effective communi-

cation between developer and customer.

• Planning—tasks required to define resources, timelines, and other project-

related information.

• Risk analysis—tasks required to assess both technical and management

risks.

• Engineering—tasks required to build one or more representations of the

application.

• Construction and release—tasks required to construct, test, install, and

provide user support (e.g., documentation and training).

When you encounter a
difficult deadline that
cannot be changed,
the incremental model
is a good paradigm to
consider.

6 The spiral model discussed in this section is a variation on the model proposed by Boehm. For
further information on the original spiral model, see [BOE88]. More recent discussion of Boehm’s
spiral model can be found in [BOE98].

Framework activities
apply to every
software project you
undertake, regardless
of size or complexity.
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• Customer evaluation—tasks required to obtain customer feedback based

on evaluation of the software representations created during the engineering

stage and implemented during the installation stage.

Each of the regions is populated by a set of work tasks, called a task set, that are

adapted to the characteristics of the project to be undertaken. For small projects, the

number of work tasks and their formality is low. For larger, more critical projects,

each task region contains more work tasks that are defined to achieve a higher level

of formality. In all cases, the umbrella activities (e.g., software configuration man-

agement and software quality assurance) noted in Section 2.2 are applied. 

As this evolutionary process begins, the software engineering team moves around

the spiral in a clockwise direction, beginning at the center. The first circuit around

the spiral might result in the development of a product specification; subsequent

passes around the spiral might be used to develop a prototype and then progressively

more sophisticated versions of the software. Each pass through the planning region

results in adjustments to the project plan. Cost and schedule are adjusted based on

feedback derived from customer evaluation. In addition, the project manager adjusts

the planned number of iterations required to complete the software.

Unlike classical process models that end when software is delivered, the spiral

model can be adapted to apply throughout the life of the computer software. An alter-

native view of the spiral model can be considered by examining the project entry point

axis, also shown in Figure 2.8. Each cube placed along the axis can be used to rep-

resent the starting point for different types of projects. A “concept development 
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project” starts at the core of the spiral and will continue (multiple iterations occur

along the spiral path that bounds the central shaded region) until concept develop-

ment is complete. If the concept is to be developed into an actual product, the process

proceeds through the next cube (new product development project entry point) and

a “new development project” is initiated. The new product will evolve through a num-

ber of iterations around the spiral, following the path that bounds the region that has

somewhat lighter shading than the core. In essence, the spiral, when characterized

in this way, remains operative until the software is retired. There are times when the

process is dormant, but whenever a change is initiated, the process starts at the appro-

priate entry point (e.g., product enhancement).

The spiral model is a realistic approach to the development of large-scale systems

and software. Because software evolves as the process progresses, the developer and

customer better understand and react to risks at each evolutionary level. The spiral model

uses prototyping as a risk reduction mechanism but, more important, enables the devel-

oper to apply the prototyping approach at any stage in the evolution of the product. It

maintains the systematic stepwise approach suggested by the classic life cycle but incor-

porates it into an iterative framework that more realistically reflects the real world. The

spiral model demands a direct consideration of technical risks at all stages of the proj-

ect and, if properly applied, should reduce risks before they become problematic.

But like other paradigms, the spiral model is not a panacea. It may be difficult to

convince customers (particularly in contract situations) that the evolutionary approach

is controllable. It demands considerable risk assessment expertise and relies on this

expertise for success. If a major risk is not uncovered and managed, problems will

undoubtedly occur. Finally, the model has not been used as widely as the linear

sequential or prototyping paradigms. It will take a number of years before efficacy of

this important paradigm can be determined with absolute certainty.

2.7.3 The WINWIN Spiral Model

The spiral model discussed in Section 2.7.2 suggests a framework activity that

addresses customer communication. The objective of this activity is to elicit project

requirements from the customer. In an ideal context, the developer simply asks the

customer what is required and the customer provides sufficient detail to proceed.

Unfortunately, this rarely happens. In reality, the customer and the developer enter

into a process of negotiation, where the customer may be asked to balance func-

tionality, performance, and other product or system characteristics against cost and

time to market.

The best negotiations strive for a “win-win” result.7 That is, the customer wins by

getting the system or product that satisfies the majority of the customer’s needs and

the developer wins by working to realistic and achievable budgets and deadlines.

Eliciting software
requirements demands
negotiation. Successful
negotiation occurs
when both sides
“win”.

7 Dozens of books have been written on negotiating skills (e.g., [FIS91], [DON96], [FAR97]). It is
one of the more important things that a young (or old) engineer or manager can learn.  Read one.

XRef
Evolutionary models,
such as the spiral
model, are particularly
well-suited to the
development of object-
oriented systems. See
Part Four for details.
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Boehm’s WINWIN spiral model [BOE98] defines a set of negotiation activities at

the beginning of each pass around the spiral. Rather than a single customer com-

munication activity, the following activities are defined:

1. Identification of the system or subsystem’s key “stakeholders.”8

2. Determination of the stakeholders’ “win conditions.”

3. Negotiation of the stakeholders’ win conditions to reconcile them into a set of

win-win conditions for all concerned (including the software project team).

Successful completion of these initial steps achieves a win-win result, which becomes

the key criterion for proceeding to software and system definition. The WINWIN spi-

ral model is illustrated in Figure 2.9.

In addition to the emphasis placed on early negotiation, the WINWIN spiral model

introduces three process milestones, called anchor points [BOE96], that help estab-

lish the completion of one cycle around the spiral and provide decision milestones

before the software project proceeds. 

In essence, the anchor points represent three different views of progress as the

project traverses the spiral. The first anchor point, life cycle objectives (LCO), defines

a set of objectives for each major software engineering activity. For example, as part

of LCO, a set of objectives establishes the definition of top-level system/product

requirements. The second anchor point, life cycle architecture (LCA), establishes objec-

tives that must be met as the system and software architecture is defined. For exam-

ple, as part of LCA, the software project team must demonstrate that it has evaluated

the applicability of off-the-shelf and reusable software components and considered

their impact on architectural decisions. Initial operational capability (IOC) is the third
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anchor point and represents a set of objectives associated with the preparation of the

software for installation/distribution, site preparation prior to installation, and assis-

tance required by all parties that will use or support the software. 

2.7.4 The Concurrent Development Model

The concurrent development model, sometimes called concurrent engineering, has

been described in the following manner by Davis and Sitaram [DAV94]:

Project managers who track project status in terms of the major phases [of the classic life
cycle] have no idea of the status of their projects.  These are examples of trying to track
extremely complex sets of activities using overly simple models. Note that although . . . [a
large] project is in the coding phase, there are personnel on the project involved in activities
typically associated with many phases of development simultaneously. For example, 
. . . personnel are writing requirements, designing, coding, testing, and integration  testing
[all at the same time]. Software engineering process models by Humphrey and Kellner
[[HUM89], [KEL89]] have shown the concurrency that exists for activities occurring during
any one phase. Kellner's more recent work [KEL91] uses statecharts [a notation that repre-
sents the states of a process] to represent the concurrent relationship existent among activ-
ities associated with a specific event (e.g., a requirements change during late development),
but fails to capture the richness of concurrency that exists across all software development
and management activities in the project. . . . Most software development process models
are driven by time; the later it is, the later in the development process you are. [A concur-
rent process model] is driven by user needs, management decisions, and review results.  

The concurrent process model can be represented schematically as a series of  major

technical activities, tasks, and their associated states. For example, the engineering

activity defined for the spiral model (Section 2.7.2) is accomplished by invoking the

following tasks: prototyping and/or analysis modeling, requirements specification,

and design.9

Figure 2.10 provides a schematic representation of one activity with the concur-

rent process model. The activity—analysis—may be in any one of the states10 noted

at any given time. Similarly, other activities (e.g., design or customer communica-

tion) can be represented in an analogous manner. All activities exist concurrently but

reside in different states. For example, early in a project the customer communication

activity (not shown in the figure) has completed its first iteration and exists in the

awaiting changes state. The analysis activity (which existed in the none state while

initial customer communication was completed) now makes a transition into the

under development state. If, however, the customer indicates that changes in

requirements must be made, the analysis activity moves from the under develop-

ment state into the awaiting changes state.

The concurrent process model defines a series of events that will trigger transi-

tions from state to state for each of the software engineering activities. For example,

9 It should be noted that analysis and design are complex tasks that require substantial discussion. 
Parts Three and Four of this book consider these topics in detail.

10 A state is some externally observable mode of behavior.
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during early stages of design, an inconsistency in the analysis model is uncovered.

This generates the event analysis model correction which will trigger the analysis activ-

ity from the done state into the awaiting changes state.

The concurrent process model is often used as the paradigm for the develop-

ment of client/server11 applications (Chapter 28). A client/server system is com-

posed of a set of functional components. When applied to client/server, the

concurrent process model defines activities in two dimensions [SHE94]: a system

dimension and a component dimension. System level issues are addressed using

three activities: design, assembly, and use. The component dimension is addressed

with two activities: design and realization. Concurrency is achieved in two ways:

(1) system and component activities occur simultaneously and can be modeled

using the state-oriented approach described previously; (2) a typical client/server

application is implemented with many components, each of which can be designed

and realized concurrently.   

In reality, the concurrent process model is applicable to all types of software devel-

opment and provides an accurate picture of the current state of a project. Rather than
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11 In a client/server applications, software functionality is divided between clients (normally PCs)
and a server (a more powerful computer) that typically maintains a centralized database.
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confining software engineering activities to a sequence of events, it defines a net-

work of activities. Each activity on the network exists simultaneously with other activ-

ities. Events generated within a given activity or at some other place in the activity

network trigger transitions among the states of an activity.

2.8 COMPONENT-BASED DEVELOPMENT

Object-oriented technologies (Part Four of this book) provide the technical frame-

work for a component-based process model for software engineering. The object-

oriented paradigm emphasizes the creation of classes that encapsulate both data and

the algorithms used to manipulate the data. If properly designed and implemented,

object-oriented classes are reusable across different applications and computer-based

system architectures.

The component-based development (CBD) model (Figure 2.11) incorporates many

of the characteristics of the spiral model. It is evolutionary in nature [NIE92], demand-

ing an iterative approach to the creation of software. However, the component-based

development model composes applications from prepackaged software components

(called classes).

The engineering activity begins with the identification of candidate classes. This

is accomplished by examining the data to be manipulated by the application and the

algorithms that will be applied to accomplish the manipulation.12 Corresponding data

and algorithms are packaged into a class. 
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12 This is a simplified description of class definition. For a more detailed discussion, see Chapter 20.
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Classes created in past software engineering projects are stored in a class

library or repository (Chapter 31). Once candidate classes are identified, the class

library is searched to determine if these classes already exist. If they do, they are

extracted from the library and reused. If a candidate class does not reside in the

library, it is engineered using object-oriented methods (Chapters 21–23).  The first

iteration of the application to be built is then composed, using classes extracted

from the library and any new classes built to meet the unique needs of the appli-

cation. Process flow then returns to the spiral and will ultimately re-enter the

component assembly iteration during subsequent passes through the engineer-

ing activity.

The component-based development model leads to software reuse, and reusabil-

ity provides software engineers with a number of measurable benefits. Based on stud-

ies of reusability, QSM Associates, Inc., reports component assembly leads to a 70

percent reduction in development cycle time; an 84 percent reduction in project cost,

and a productivity index of 26.2, compared to an industry norm of 16.9. [YOU94]

Although these results are a function of the robustness of the component library, there

is little question that the component-based development model provides significant

advantages for software engineers.

The unified software development process [JAC99] is representative of a number of

component-based development models that have been proposed in the industry.

Using the Unified Modeling Language (UML), the unified process defines the compo-

nents that will be used to build the system and the interfaces that will connect the

components. Using a combination of iterative and incremental development, the uni-

fied process defines the function of the system by applying a scenario-based approach

(from the user point of view). It then couples function with an architectural frame-

work that identifies the form the the software will take.

2.9 THE FORMAL METHODS MODEL

The formal methods model encompasses a set of activities that leads to formal math-

ematical specification of computer software. Formal methods enable a software engi-

neer to specify, develop, and verify a computer-based system by applying a rigorous,

mathematical notation. A variation on this approach, called cleanroom software engi-

neering [MIL87, DYE92], is currently applied by some software development organi-

zations.

When formal methods (Chapters 25 and 26) are used during development, they

provide a mechanism for eliminating many of the problems that are difficult to

overcome using other software engineering paradigms. Ambiguity, incomplete-

ness, and inconsistency can be discovered and corrected more easily, not through

ad hoc review but through the application of mathematical analysis. When formal

methods are used during design, they serve as a basis for program verification and
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therefore enable the software engineer to discover and correct errors that might

go undetected.

Although it is not destined to become a mainstream approach, the formal meth-

ods model offers the promise of defect-free software. Yet, the following concerns

about its applicability in a business environment have been voiced:

1. The development of formal models is currently quite time consuming and

expensive.

2. Because few software developers have the necessary background to apply

formal methods, extensive training is required.

3. It is difficult to use the models as a communication mechanism for techni-

cally unsophisticated customers.

These concerns notwithstanding, it is likely that the formal methods approach will

gain adherents among software developers who must build safety-critical software

(e.g., developers of aircraft avionics and medical devices) and among developers that

would suffer severe economic hardship should software errors occur.   

2.10  FOURTH GENERATION TECHNIQUES

The term fourth generation techniques (4GT) encompasses a broad array of soft-

ware tools that have one thing in common: each enables the software engineer

to specify some characteristic of software at a high level. The tool then automat-

ically generates source code based on the developer's specification. There is lit-

tle debate that the higher the level at which software can be specified to a machine,

the faster a program can be built. The 4GT paradigm for software engineering

focuses on the ability to specify software using specialized language forms or a

graphic notation that describes the problem to be solved in terms that the cus-

tomer can understand. 

Currently, a software development environment that supports the 4GT paradigm

includes some or all of the following tools: nonprocedural languages for database

query, report generation, data manipulation, screen interaction and definition, code

generation; high-level graphics capability; spreadsheet capability, and automated

generation of HTML and similar languages used for Web-site creation using advanced

software tools. Initially, many of the tools noted previously were available only for

very specific application domains, but today 4GT environments have been extended

to address most software application categories.

Like other paradigms, 4GT begins with a requirements gathering step. Ideally, the

customer would describe requirements and these would be directly translated into

an operational prototype. But this is unworkable. The customer may be unsure of

what is required, may be ambiguous in specifying facts that are known, and may be

unable or unwilling to specify information in a manner that a 4GT tool can consume.
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For this reason, the customer/developer dialog described for other process models

remains an essential part of the 4GT approach.

For small applications, it may be possible to move directly from the requirements

gathering step to implementation using a nonprocedural fourth generation language

(4GL) or a model composed of a network of graphical icons. However, for larger

efforts, it is necessary to develop a design strategy for the system, even if a 4GL is to

be used. The use of 4GT without design (for large projects) will cause the same diffi-

culties (poor quality, poor maintainability, poor customer acceptance) that have been

encountered when developing software using conventional approaches.

Implementation using a 4GL enables the software developer to represent desired

results in a manner that leads to automatic generation of code to create those results.

Obviously, a data structure with relevant information must exist and be readily acces-

sible by the 4GL. 

To transform a 4GT implementation into a product, the developer must conduct

thorough testing, develop meaningful documentation, and perform all other solution

integration activities that are required in other software engineering paradigms. In

addition, the 4GT developed software must be built in a manner that enables main-

tenance to be performed expeditiously.

Like all software engineering paradigms, the 4GT model has advantages and dis-

advantages.  Proponents claim dramatic reduction in software development time and

greatly improved productivity for people who build software. Opponents claim that

current 4GT tools are not all that much easier to use than programming languages,

that the resultant source code produced by such tools is "inefficient," and that the

maintainability of large software systems developed using 4GT is open to question.

There is some merit in the claims of both sides and it is possible to summarize the

current state of 4GT approaches:

1. The use of 4GT is a viable approach for many different application areas.

Coupled with computer-aided software engineering tools and code genera-

tors, 4GT offers a credible solution to many software problems.

2. Data collected from companies that use 4GT indicate that the time required

to produce software is greatly reduced for small and intermediate applica-

tions and that the amount of design and analysis for small applications is

also reduced. 

3. However, the use of 4GT for large software development efforts demands 

as much or more analysis, design, and testing (software engineering activi-

ties) to achieve substantial time savings that result from the elimination of

coding. 

To summarize, fourth generation techniques have already become an important

part of software engineering. When coupled with component-based development

approaches (Section 2.8), the 4GT paradigm may become the dominant approach to

software development.
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software engineering
by doing analysis,
design, and testing.
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2.11 PROCESS TECHNOLOGY

The process models discussed in the preceding sections must be adapted for use by

a software project team. To accomplish this, process technology tools have been

developed to help software organizations analyze their current process, organize

work tasks, control and monitor progress, and manage technical quality [BAN95].

Process technology tools allow a software organization to build an automated

model of the common process framework, task sets, and umbrella activities discussed

in Section 2.3. The model, normally represented as a network, can then be analyzed

to determine typical work flow and examine alternative process structures that might

lead to reduced development time or cost.

Once an acceptable process has been created, other process technology tools can

be used to allocate, monitor, and even control all software engineering tasks defined

as part of the process model. Each member of a software project team can use such

tools to develop a checklist of work tasks to be performed, work products to be pro-

duced, and quality assurance activities to be conducted. The process technology tool

can also be used to coordinate the use of other computer-aided software engineer-

ing tools (Chapter 31) that are appropriate for a particular work task.

2.12 PRODUCT AND PROCESS

If the process is weak, the end product will undoubtedly suffer, but an obsessive over-

reliance on process is also dangerous. In a brief essay, Margaret Davis [DAV95] com-

ments on the duality of product and process:

About every ten years, give or take five, the software community redefines "the problem"
by shifting its focus from product issues to process issues. Thus, we have embraced struc-
tured programming languages (product) followed by structured analysis methods (process)
followed by data encapsulation (product) followed by the current emphasis on the Soft-
ware Engineering Institute's Software Development Capability Maturity Model (process).

While the natural tendency of a pendulum is to come to rest at a point midway between
two extremes, the software community's focus constantly shifts because new force is
applied when the last swing fails. These swings are harmful in and of themselves because
they confuse the average software practitioner by radically changing what it means to per-
form the job let alone perform it well. The swings also do not solve "the problem" for they
are doomed to fail as long as product and process are treated as forming a dichotomy
instead of a duality.

There is precedence in the scientific community to advance notions of duality when
contradictions in observations cannot be fully explained by one competing theory or
another. The dual nature of light, which seems to be simultaneously particle and wave,
has been accepted since the 1920's when Louis de Broglie proposed it. I believe that the
observations we can make on the artifacts of software and its development demonstrate
a fundamental duality between product and process. You can never derive or understand
the full artifact, its context, use, meaning, and worth if you view it as only a process or
only a product . . .

“[If it is developed
thoughtlessly and
applied mindlessly,
process can
become] the death
of common sense.”
Philip K. Howard
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All of human activity may be a process, but each of us derives a sense of self worth from
those activities that result in a representation or instance that can be used or appreciated
either by more than one person, used over and over, or used in some other context not
considered. That is, we derive feelings of satisfaction from reuse of our products by our-
selves or others.

Thus, while the rapid assimilation of reuse goals into software development potentially
increases the satisfaction software practitioners derive from their work, it also increases
the urgency for acceptance of the duality of product and process. Thinking of a reusable
artifact as only product or only process either obscures the context and ways to use it or
obscures the fact that each use results in product that will, in turn, be used as input to some
other software development activity. Taking one view over the other dramatically reduces
the opportunities for reuse and, hence, loses the opportunity for increasing job satisfaction.

People derive as much (or more) satisfaction from the creative process as they do

from the end product. An artist enjoys the brush strokes as much the framed result.

A writer enjoys the search for the proper metaphor as much as the finished book.  A

creative software professional should also derive as much satisfaction from the process

as the end-product.

The work of software people will change in the years ahead. The duality of prod-

uct and process is one important element in keeping creative people engaged as the

transition from programming to software engineering is finalized.  

2.13 SUMMARY

Software engineering is a discipline that integrates process, methods, and tools for

the development of computer software. A number of different process models for

software engineering have been proposed, each exhibiting strengths and weaknesses,

but all having a series of generic phases in common. The principles, concepts, and

methods that enable us to perform the process that we call software engineering are

considered throughout the remainder of this book.
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PROBLEMS AND POINTS TO PONDER

2.1. Figure 2.1 places the three software engineering layers on top of a layer enti-

tled a quality focus. This implies an organization quality program such as Total Qual-

ity Management. Do a bit of research and develop an outline of the key tenets of a

Total Quality Management program.

2.2. Is there ever a case when the generic phases of the software engineering process

don't apply? If so, describe it.

2.3. The SEI’s capability maturity model is an evolving document. Do some research

and determine if any new KPAs have been added since the publication of this book.

2.4. The Chaos model suggests that a problem solving loop can be applied at any

degree of resolution. Discuss the way in which you would apply the loop to (1) under-

stand requirements for a word-processing product; (2) develop an advanced spelling/

grammar checking component for the word processor; (3) generate code for a pro-

gram module that determines the subject, predicate, and object in an English lan-

guage sentence.

2.5. Which of the software engineering paradigms presented in this chapter do you

think would be most effective? Why?

2.6. Provide five examples of software development projects that would be amenable

to prototyping. Name two or three applications that would be more difficult to 

prototype.

2.7. The RAD model is often tied to CASE tools. Research the literature and provide

a summary of a typical CASE tool that supports RAD.
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2.8. Propose a specific software project that would be amenable to the incremental

model. Present a scenario for applying the model to the software.

2.9. As you move outward along the process flow path of the spiral model, what can

you say about the software that is being developed or maintained?  

2.10. Many people believe that the only way in which order of magnitude improve-

ments in software quality and productivity will be achieved is through component-

based development. Find three or four recent papers on the subject and summarize

them for the class.

2.11. Describe the concurrent development model in your own words.

2.12. Provide three examples of fourth generation techniques.

2.13. Which is more important—the product or the process?

FURTHER READINGS AND INFORMATION SOURCES

The current state of the art in software engineering can best be determined from

monthly publications such as IEEE Software, Computer, and the IEEE Transactions on

Software Engineering. Industry periodicals such as Application Development Trends,

Cutter IT Journal and Software Development often contain articles on software engi-

neering topics. The discipline is ‘summarized’ every year in the Proceedings of the Inter-

national Conference on Software Engineering, sponsored by the IEEE and ACM and is

discussed in depth in journals such as ACM Transactions on Software Engineering and

Methodology, ACM Software Engineering Notes, and Annals of Software Engineering.

Many software engineering books have been published in recent years. Some pre-

sent an overview of the entire process while others delve into a few important top-

ics to the exclusion of others. Three anthologies that cover a wide range of software

engineering topics are

Keyes, J., (ed.), Software Engineering Productivity Handbook, McGraw-Hill, 1993.

McDermid, J., (ed.), Software Engineer’s Reference Book, CRC Press, 1993.

Marchiniak, J.J. (ed.), Encyclopedia of Software Engineering, Wiley, 1994.

Gautier (Distributed Engineering of Software, Prentice-Hall, 1996) provides suggestions

and guidelines for organizations that must develop software across geographically

dispersed locations. 

On the lighter side, a book by Robert Glass (Software Conflict, Yourdon Press, 1991)

presents amusing and controversial essays on software and the software engineer-

ing process. Pressman and Herron (Software Shock, Dorset House, 1991) consider

software and its impact on individuals, businesses, and government. 

The Software Engineering Institute (SEI is located at Carnegie-Mellon University)

has been chartered with the responsibility of sponsoring a software engineering mono-

graph series. Practitioners from industry, government, and academia are contribut-
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ing important new work. Additional software engineering research is conducted by

the Software Productivity Consortium.

A wide variety of software engineering standards and procedures have been pub-

lished over the past decade. The IEEE Software Engineering Standards contains stan-

dards that cover almost every important aspect of the technology. ISO 9000-3

guidelines provide guidance for software organizations that require registration to

the ISO 9001 quality standard. Other software engineering standards can be obtained

from the Department of Defense, the FAA, and other government and nonprofit 

agencies. Fairclough (Software Engineering Guides, Prentice-Hall, 1996) provides a

detailed reference to software engineering standards produced by the European Space

Agency (ESA).

A wide variety of information sources on software engineering and the software

process is available on the Internet. An up-to-date list of World Wide Web references

that are relevant to the software process can be found at the SEPA Web site:

http://www.mhhe.com/engcs/compsci/pressman/resources/process.mhtml
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P A R T

In this part of Software Engineering: A Practitioner’s Approach, we
consider the management techniques required to plan, organ-
ize, monitor, and control software projects. In the chapters that

follow, you’ll get answers to the following questions:

• How must the people, process, and problem be managed
during a software project?

• What are software metrics and how can they be used to
manage a software project and the software process?

• How does a software team generate reliable estimates of
effort, cost, and project duration?

• What techniques can be used to formally assess the risks
that can have an impact on project success?

• How does a software project manager select the set of
software engineering work tasks?

• How is a project schedule created?

• How is quality defined so that it can be controlled?

• What is software quality assurance?

• Why are formal technical reviews so important?

• How is change managed during the development of 
computer software and after delivery to the customer?

Once these questions are answered, you’ll be better prepared to
manage software projects in a way that will lead to timely delivery
of a high-quality product.

MANAGING
SOFTWARE PROJECTS

Two
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In the preface to his book on software project management, Meiler Page-

Jones [PAG85] makes a statement that can be echoed by many software

engineering consultants:

I've visited dozens of commercial shops, both good and bad, and I've observed scores

of data processing managers, again, both good and bad. Too often, I've watched in

horror as these managers futilely struggled through nightmarish projects, squirmed

under impossible deadlines, or delivered systems that outraged their users and went

on to devour huge chunks of maintenance time.

What Page-Jones describes are symptoms that result from an array of man-
agement and technical problems. However, if a post mortem were to be con-
ducted for every project, it is very likely that a consistent theme would be
encountered: project management was weak.

In this chapter and the six that follow, we consider the key concepts that 
lead to effective software project management. This chapter considers basic
software project management concepts and principles. Chapter 4 presents
process and project metrics, the basis for effective management decision mak-
ing. The techniques that are used to estimate cost and resource requirements
and establish an effective project plan are discussed in Chapter 5. The man-

3 PROJECT MANAGEMENT
CONCEPTS

What is it? Although many of us

(in our darker moments) take Dil-

bert’s view of “management,” it

remains a very necessary activity when computer-

based systems and products are built. Project

management involves the planning, monitoring,

and control of the people, process, and events that

occur as software evolves from a preliminary con-

cept to an operational implementation.

Who does it? Everyone “manages” to some extent,

but the scope of management activities varies

with the person doing it. A software engineer man-

ages her day-to-day activities, planning, moni-

toring, and controlling technical tasks. Project

managers plan, monitor, and control the work of

a team of software engineers. Senior managers

coordinate the interface between the business and

the software professionals.

Why is it important? Building computer software is

a complex undertaking, particularly if it involves

many people working over a relatively long time.

That’s why software projects need to be managed.

What are the steps? Understand the four P’s—peo-

ple, product, process, and project. People must be

organized to perform software work effectively.

Communication with the customer must occur so

that product scope and requirements are under-

stood. A process must be selected that is appro-

priate for the people and the product. The project

must be planned by estimating effort and calen-

dar time to accomplish work tasks: defining work

products, establishing quality checkpoints, and

Q U I C K
L O O K
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agement activities that lead to effective risk monitoring, mitigation, and management
are presented in Chapter 6. Chapter 7 discusses the activities that are required to
define project tasks and establish a workable project schedule. Finally, Chapters 8
and 9 consider techniques for ensuring quality as a project is conducted and con-
trolling changes throughout the life of an application.

3.1 THE MANAGEMENT SPECTRUM

Effective software project management focuses on the four P’s: people, product,
process, and project. The order is not arbitrary. The manager who forgets that soft-
ware engineering work is an intensely human endeavor will never have success in
project management. A manager who fails to encourage comprehensive customer
communication early in the evolution of a project risks building an elegant solution
for the wrong problem. The manager who pays little attention to the process runs the
risk of inserting competent technical methods and tools into a vacuum. The manager
who embarks without a solid project plan jeopardizes the success of the product.

3.1.1 The People
The cultivation of motivated, highly skilled software people has been discussed since
the 1960s (e.g., [COU80], [WIT94], [DEM98]). In fact, the “people factor” is so impor-
tant that the Software Engineering Institute has developed a people management capa-
bility maturity model (PM-CMM), “to enhance the readiness of software organizations
to undertake increasingly complex applications by helping to attract, grow, motivate,
deploy, and retain the talent needed to improve their software development capabil-
ity” [CUR94]. 

The people management maturity model defines the following key practice areas
for software people: recruiting, selection, performance management, training, com-
pensation, career development, organization and work design, and team/culture
development. Organizations that achieve high levels of maturity in the people man-
agement area have a higher likelihood of implementing effective software engineer-
ing practices.

The PM-CMM is a companion to the software capability maturity model (Chap-
ter 2) that guides organizations in the creation of a mature software process. Issues

“There exists
enormous variability
in the ability of
different people to
perform
programming
tasks.”
Bill Curtis 

establishing mechanisms to mon-

itor and control work defined by

the plan.

What is the work product? A project plan is pro-

duced as management activities commence. The

plan defines the process and tasks to be con-

ducted, the people who will do the work, and the

mechanisms for assessing risks, controlling

change, and evaluating quality.

How do I ensure that I’ve done it right? You’re

never completely sure that the project plan is right

until you’ve delivered a high-quality product on

time and within budget. However, a project man-

ager does it right when he encourages software

people to work together as an effective team,

focusing their attention on customer needs and

product quality. 

Q U I C K
L O O K
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associated with people management and structure for software projects are consid-
ered later in this chapter.

3.1.2 The Product
Before a project can be planned, product1 objectives and scope should be established,
alternative solutions should be considered, and technical and management con-
straints should be identified. Without this information, it is impossible to define rea-
sonable (and accurate) estimates of the cost, an effective assessment of risk, a realistic
breakdown of project tasks, or a manageable project schedule that provides a mean-
ingful indication of progress.

The software developer and customer must meet to define product objectives and
scope. In many cases, this activity begins as part of the system engineering or busi-
ness process engineering (Chapter 10) and continues as the first step in software
requirements analysis (Chapter 11). Objectives identify the overall goals for the prod-
uct (from the customer’s point of view) without considering how these goals will be
achieved. Scope identifies the primary data, functions and behaviors that character-
ize the product, and more important, attempts to bound these characteristics in a
quantitative manner.

Once the product objectives and scope are understood, alternative solutions are
considered. Although very little detail is discussed, the alternatives enable managers
and practitioners to select a "best" approach, given the constraints imposed by deliv-
ery deadlines, budgetary restrictions, personnel availability, technical interfaces, and
myriad other factors.

3.1.3 The Process
A software process (Chapter 2) provides the framework from which a comprehen-
sive plan for software development can be established. A small number of frame-
work activities are applicable to all software projects, regardless of their size or
complexity. A number of different task sets—tasks, milestones, work products, and
quality assurance points—enable the framework activities to be adapted to the char-
acteristics of the software project and the requirements of the project team. Finally,
umbrella activities—such as software quality assurance, software configuration man-
agement, and measurement—overlay the process model. Umbrella activities are inde-
pendent of any one framework activity and occur throughout the process.

3.1.4 The Project
We conduct planned and controlled software projects for one primary reason—it is
the only known way to manage complexity. And yet, we still struggle. In 1998, indus-
try data indicated that 26 percent of software projects failed outright and 46 percent
experienced cost and schedule overruns [REE99]. Although the success rate for 
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1 In this context, the term product is used to encompass any software that is to be built at the
request of others. It includes not only software products but also computer-based systems,
embedded software, and problem-solving software (e.g., programs for engineering/scientific prob-
lem solving).

XRef
A taxonomy of
application areas that
spawn software
“products” is discussed
in Chapter 1.

Framework activities
are populated with
tasks, milestones,
work products, and
quality assurance
points.
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software projects has improved somewhat, our project failure rate remains higher
than it should be.2

In order to avoid project failure, a software project manager and the software engi-
neers who build the product must avoid a set of common warning signs, understand
the critical success factors that lead to good project management, and develop a com-
monsense approach for planning, monitoring and controlling the project. Each of
these issues is discussed in Section 3.5 and in the chapters that follow.

3.2 PEOPLE

In a study published by the IEEE [CUR88], the engineering vice presidents of three

major technology companies were asked the most important contributor to a suc-

cessful software project. They answered in the following way:

VP 1: I guess if you had to pick one thing out that is most important in our environment,

I'd say it's not the tools that we use, it's the people.

VP 2: The most important ingredient that was successful on this project was having

smart people . . . very little else matters in my opinion. . . . The most important

thing you do for a project is selecting the staff . . . The success of the software

development organization is very, very much associated with the ability to recruit

good people.

VP 3: The only rule I have in management is to ensure I have good people—real good

people—and that I grow good people—and that I provide an environment in

which good people can produce.

Indeed, this is a compelling testimonial on the importance of people in the software

engineering process. And yet, all of us, from senior engineering vice presidents to

the lowliest practitioner, often take people for granted. Managers argue (as the pre-

ceding group had) that people are primary, but their actions sometimes belie their

words. In this section we examine the players who participate in the software process

and the manner in which they are organized to perform effective software engi-

neering. 

3.2.1 The Players

The software process (and every software project) is populated by players who can

be categorized into one of five constituencies:

1. Senior managers who define the business issues that often have significant

influence on the project.

“Companies that
sensibly manage
their investment in
people will prosper
in the long run.”
Tom DeMarco &
Tim Lister

2 Given these statistics, it’s reasonable to ask how the impact of computers continues to grow
exponentially and the software industry continues to post double digit sales growth. Part of the
answer, I think, is that a substantial number of these “failed” projects are ill-conceived in the first
place. Customers lose interest quickly (because what they requested wasn’t really as important as
they first thought), and the projects are cancelled.
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2. Project (technical) managers who must plan, motivate, organize, and

control the practitioners who do software work.

3. Practitioners who deliver the technical skills that are necessary to engineer

a product or application.

4. Customers who specify the requirements for the software to be engineered

and other stakeholders who have a peripheral interest in the outcome.

5. End-users who interact with the software once it is released for production

use.

Every software project is populated by people who fall within this taxonomy. To be

effective, the project team must be organized in a way that maximizes each person’s

skills and abilities. And that’s the job of the team leader.

3.2.2 Team Leaders

Project management is a people-intensive activity, and for this reason, competent

practitioners often make poor team leaders. They simply don’t have the right mix of

people skills. And yet, as Edgemon states: “Unfortunately and all too frequently it

seems, individuals just fall into a project manager role and become accidental proj-

ect managers.” [EDG95]

In an excellent book of technical leadership, Jerry Weinberg [WEI86] suggests a

MOI model of leadership:

Motivation. The ability to encourage (by “push or pull”) technical people to

produce to their best ability.

Organization. The ability to mold existing processes (or invent new ones) that

will enable the initial concept to be translated into a final product.

Ideas or innovation. The ability to encourage people to create and feel cre-

ative even when they must work within bounds established for a particular soft-

ware product or application.

Weinberg suggests that successful project leaders apply a problem solving manage-

ment style. That is, a software project manager should concentrate on understand-

ing the problem to be solved, managing the flow of ideas, and at the same time, letting

everyone on the team know (by words and, far more important, by actions) that qual-

ity counts and that it will not be compromised.

Another view [EDG95] of the characteristics that define an effective project man-

ager emphasizes four key traits: 

Problem solving. An effective software project manager can diagnose the

technical and organizational issues that are most relevant, systematically struc-

ture a solution or properly motivate other practitioners to develop the solu-

tion, apply lessons learned from past projects to new situations, and remain
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“In simplest terms, 
a leader is one who
knows where he
wants to go, and
gets up, and goes.”
John Erskine

What do we
look for

when we select
someone to lead a
software project?

?
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flexible enough to change direction if initial attempts at problem solution are

fruitless.

Managerial identity. A good project manager must take charge of the proj-

ect. She must have the confidence to assume control when necessary and the

assurance to allow good technical people to follow their instincts.

Achievement. To optimize the productivity of a project team, a manager must

reward initiative and accomplishment and demonstrate through his own actions

that controlled risk taking will not be punished.

Influence and team building. An effective project manager must be able to

“read” people; she must be able to understand verbal and nonverbal signals

and react to the needs of the people sending these signals. The manager must

remain under control in high-stress situations.   

3.2.3 The Software Team 

There are almost as many human organizational structures for software develop-

ment as there are organizations that develop software.  For better or worse, organi-

zational structure cannot be easily modified.  Concern with the practical and political

consequences of organizational change are not within the software project man-

ager's scope of responsibility.  However, the organization of the people directly involved

in a new software project is within the project manager's purview.

The following options are available for applying human resources to a project that

will require n people working for k years:

1. n individuals are assigned to m different functional tasks, relatively little

combined work occurs;  coordination is the responsibility of a software man-

ager who may have six other projects to be concerned with.

2. n individuals are assigned to m different functional  tasks ( m < n ) so that

informal "teams" are established; an ad hoc team leader may be appointed;

coordination among teams is the responsibility of a software manager.

3. n individuals are organized into t teams; each team is assigned one or more

functional tasks; each team has a specific structure that is defined for all

teams working on a project; coordination is controlled by both the team and

a software project manager. 

Although it is possible to voice arguments for and against each of these approaches,

a growing body of evidence indicates that a formal team organization (option 3) is

most productive.

The “best” team structure depends on the management style of your organi-

zation, the number of people who will populate the team and their skill levels, 

and the overall problem difficulty. Mantei [MAN81] suggests three generic team

organizations:

How should a
software

team be organized?
?

A software wizard may
not have the
temperament or desire
to be a team leader.
Don’t force the wizard
to become one.

“Not every group is a
team, and not every
team is effective.”
Glenn Parker
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Democratic decentralized (DD). This software engineering team has no per-

manent leader. Rather, "task coordinators are appointed for short durations and

then replaced by others who may coordinate different tasks." Decisions on prob-

lems and approach are made by group consensus. Communication among team

members is horizontal.

Controlled decentralized (CD). This software engineering team has a defined

leader who coordinates specific tasks and secondary leaders that have respon-

sibility for subtasks. Problem solving remains a group activity, but implemen-

tation of solutions is partitioned among subgroups by the team leader.

Communication among subgroups and individuals is horizontal. Vertical com-

munication along the control hierarchy also occurs.

Controlled Centralized (CC). Top-level problem solving and internal team

coordination are managed by a team leader. Communication between the leader

and team members is vertical.

Mantei [MAN81] describes seven project factors that should be considered when plan-

ning the structure of software engineering teams:

• The difficulty of the problem to be solved.

• The size of the resultant program(s) in lines of code or function points 

(Chapter 4).

• The time that the team will stay together (team lifetime).

• The degree to which the problem can be modularized.

• The required quality and reliability of the system to be built.

• The rigidity of the delivery date.

• The degree of sociability (communication) required for the project.

Because a centralized structure completes tasks faster, it is the most adept at han-

dling simple problems. Decentralized teams generate more and better solutions than

individuals. Therefore such teams have a greater probability of success when work-

ing on difficult problems. Since the CD team is centralized for problem solving, either

a CD or CC team structure can be successfully applied to simple problems. A DD struc-

ture is best for difficult problems. 

Because the performance of a team is inversely proportional to the amount of com-

munication that must be conducted, very large projects are best addressed by teams

with a CC or CD structures when subgrouping can be easily accommodated.

The length of time that the team will "live together" affects team morale. It has

been found that DD team structures result in high morale and job satisfaction and

are therefore good for teams that will be together for a long time. 

The DD team structure is best applied to problems with relatively low modularity,

because of the higher volume of communication needed. When high modularity is

possible (and people can do their own thing), the CC or CD structure will work well.
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CC and CD teams have been found to produce fewer defects than DD teams, but

these data have much to do with the specific quality assurance activities that are

applied by the team. Decentralized teams generally require more time to complete a

project than a centralized structure and at the same time are best when high socia-

bility is required.

Constantine [CON93] suggests four “organizational paradigms” for software engi-

neering teams:

1. A closed paradigm structures a team along  a traditional hierarchy of author-

ity (similar to a CC team). Such teams can work well when producing soft-

ware that is quite similar to past efforts, but they will be less likely to be

innovative when working within the closed paradigm.

2. The random paradigm structures a team loosely and depends on individual

initiative of the team members. When innovation or technological break-

through is required, teams following the random paradigm will excel. But

such teams may struggle when “orderly performance” is required.

3. The open paradigm attempts to structure a team in a manner that achieves

some of the controls associated with the closed paradigm but also much of

the innovation that occurs when using the random paradigm. Work is per-

formed collaboratively, with heavy communication and consensus-based

decision making the trademarks of open paradigm teams. Open paradigm

team structures are well suited to the solution of complex problems but may

not perform as efficiently as other teams.

4. The synchronous paradigm relies on the natural compartmentalization of a

problem and organizes team members to work on pieces of the problem with

little active communication among themselves.

As an historical footnote, the earliest software team organization was  a controlled

centralized (CD) structure originally called the chief programmer team. This structure

was first proposed by Harlan Mills and described by Baker [BAK72]. The nucleus of

the team was composed of a senior engineer (the chief programmer), who plans, coor-

dinates and reviews all technical activities of the team; technical staff (normally two

to five people), who conduct analysis and development activities; and a backup engi-

neer, who supports the senior engineer in his or her activities and can replace the

senior engineer with minimum loss in project continuity.

The chief programmer may be served by one or more specialists (e.g., telecom-

munications expert, database designer), support staff (e.g., technical writers, clerical

personnel), and a software librarian. The librarian serves many teams and performs

the following functions: maintains and controls all elements of the software config-

uration (i.e., documentation, source listings, data, storage media); helps collect and

format software productivity data; catalogs and indexes reusable software compo-

XRef
The role of the librarian
exists regardless of
team structure. See
Chapter 9 for details.

“Working with people
is difficult, but not
impossible.”
Peter Drucker 
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nents; and assists the teams in research, evaluation, and document preparation. The

importance of a librarian cannot be overemphasized. The librarian acts as a con-

troller, coordinator, and potentially, an evaluator of the software configuration.

A variation on the democratic decentralized team has been proposed by Con-

stantine [CON93], who advocates teams with creative independence whose approach

to work might best be termed  innovative anarchy. Although the free-spirited approach

to software work has appeal, channeling creative energy into a high-performance

team must be a central goal of a software engineering organization. To achieve a

high-performance team:

• Team members must have trust in one another. 

• The distribution of skills must be appropriate to the problem. 

• Mavericks may have to be excluded from the team, if team cohesiveness is to

be maintained.

Regardless of team organization, the objective for every project manager is to help

create a team that exhibits cohesiveness. In their book, Peopleware, DeMarco and

Lister [DEM98] discuss this issue:

We tend to use the word team fairly loosely in the business world, calling any group of peo-

ple assigned to work together a "team." But many of these groups just don't seem like teams.

They don't have a common definition of success or any identifiable team spirit. What is

missing is a phenomenon that we call jell.

A jelled team is a group of people so strongly knit that the whole is greater than the sum

of the parts . . .

Once a team begins to jell, the probability of success goes way up. The team can become

unstoppable, a juggernaut for success . . . They don't need to be managed in the traditional

way, and they certainly don't need to be motivated. They've got momentum. 

DeMarco and Lister contend that members of jelled teams are significantly more pro-

ductive and more motivated than average. They share a common goal, a common

culture, and in many cases, a "sense of eliteness" that makes them unique. 

But not all teams jell. In fact, many teams suffer from what Jackman calls “team

toxicity” [JAC98].  She defines five factors that “foster a potentially toxic team envi-

ronment”:

1. A frenzied work atmosphere in which team members waste energy and lose

focus on the objectives of the work to be performed.

2. High frustration caused by personal, business, or technological factors that

causes friction among team members.

3. “Fragmented or poorly coordinated procedures” or a poorly defined or

improperly chosen process model that becomes a roadblock to accomplish-

ment.
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4. Unclear definition of roles resulting in a lack of accountability and resultant

finger-pointing.

5. “Continuous and repeated exposure to failure” that leads to a loss of confi-

dence and a lowering of morale.

Jackman suggests a number of antitoxins that address these all-too-common 

problems.

To avoid a frenzied work environment, the project manager should be certain that

the team has access to all information required to do the job and that major goals

and objectives, once defined, should not be modified unless absolutely necessary.  In

addition, bad news should not be kept secret but rather, delivered to the team as early

as possible (while there is still time to react in a rational and controlled manner).

Although frustration has many causes, software people often feel it when they lack

the authority to control their situation. A software team can avoid frustration if it is

given as much responsibility for decision making as possible. The more control over

process and technical decisions given to the team, the less frustration the team mem-

bers will feel.

An inappropriately chosen software process (e.g., unnecessary or burdensome

work tasks or poorly chosen work products) can be avoided in two ways: (1) being

certain that the characteristics of the software to be built conform to the rigor of the

process that is chosen and (2) allowing the team to select the process (with full recog-

nition that, once chosen, the team has the responsibility to deliver a high-quality

product).

The software project manager, working together with the team, should clearly

refine roles and responsibilities before the project begins. The team itself should estab-

lish its own mechanisms for accountability (formal technical reviews3 are an excel-

lent way to accomplish this)  and define a series of corrective approaches when a

member of the team fails to perform.

Every software team experiences small failures. The key to avoiding an atmo-

sphere of failure is to establish team-based techniques for feedback and problem

solving. In addition, failure by any member of the team must be viewed as a failure

by the team itself. This leads to a team-oriented approach to corrective action, rather

than the finger-pointing and mistrust that grows rapidly on toxic teams.

In addition to the five toxins described by Jackman, a software team often strug-

gles with the differing human traits of its members. Some team members are extro-

verts, others are introverted. Some people gather information intuitively, distilling

broad concepts from disparate facts. Others process information linearly, collecting

and organizing minute details from the data provided. Some team members are com-

fortable making decisions only when a logical, orderly argument is presented. Oth-

ers are intuitive, willing to make a decision based on “feel.” Some practitioners want

3 Formal technical reviews are discussed in detail in Chapter 8.

How do we
avoid
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?
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is no try.”
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a detailed schedule populated by organized tasks that enable them to achieve clo-

sure for some element of a project. Others prefer a more spontaneous environment

in which open issues are okay. Some work hard to get things done long before a mile-

stone date, thereby avoiding stress as the date approaches, while others are ener-

gized by the rush to make a last minute deadline. A detailed discussion of the

psychology of these traits and the ways in which a skilled team leader can help peo-

ple with opposing traits to work together is beyond the scope of this book.4 However,

it is important to note that recognition of human differences is the first step toward

creating teams that jell. 

3.2.4 Coordination and Communication Issues

There are many reasons that software projects get into trouble. The scale of many

development efforts is large, leading to complexity, confusion, and significant diffi-

culties in coordinating team members. Uncertainty is common, resulting in a contin-

uing stream of changes that ratchets the project team. Interoperability has become a

key characteristic of many systems. New software must communicate with existing

software and conform to predefined constraints imposed by the system or product.

These characteristics of modern software—scale, uncertainty, and interoperabil-

ity—are facts of life. To deal with them effectively, a software engineering team must

establish effective methods for coordinating the people who do the work. To accom-

plish this, mechanisms for formal and informal communication among team mem-

bers and between multiple teams must be established. Formal communication 

is accomplished through “writing, structured meetings, and other relatively non-

interactive and impersonal communication channels” [KRA95].  Informal communi-

cation is more personal. Members of a software team share ideas on an ad hoc basis,

ask for help as problems arise, and interact with one another on a daily basis.

Kraul and Streeter [KRA95] examine a collection of project coordination techniques

that are categorized in the following manner:

Formal, impersonal approaches include software engineering documents

and deliverables (including source code), technical memos, project milestones,

schedules, and project control tools (Chapter 7), change requests and related

documentation (Chapter 9), error tracking reports, and repository data (see

Chapter 31). 

Formal, interpersonal procedures focus on quality assurance activities

(Chapter 8) applied to software engineering work products. These include sta-

tus review meetings and design and code inspections.

Informal, interpersonal procedures include group meetings for informa-

tion dissemination and problem solving and “collocation of requirements and

development staff.” 
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Electronic communication encompasses electronic mail, electronic bulletin

boards, and by extension, video-based conferencing systems.

Interpersonal networking includes informal discussions with team members

and those outside the project who may have experience or insight that can assist

team members.

To assess the efficacy of these techniques for project coordination, Kraul and Streeter

studied 65 software projects involving hundreds of technical staff. Figure 3.1 (adapted

from [KRA95]) expresses the value and use of the coordination techniques just noted.

Referring to figure, the perceived value (rated on a seven point scale) of various coor-

dination and communication techniques is plotted against their frequency of use on

a project.  Techniques that fall above the regression line were “judged to be relatively

valuable, given the amount that they were used” [KRA95].   Techniques that fell below

the line were perceived to have less value. It is interesting to note that interpersonal

networking was rated the technique with highest coordination and communication

value.  It is also important to note that early software quality assurance mechanisms

(requirements and design reviews) were perceived to have more value than later

evaluations of source code (code inspections). 
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3.3 THE PRODUCT

A software project manager is confronted with a dilemma at the very beginning of a

software engineering project.  Quantitative estimates and an organized plan are

required, but solid information is unavailable.  A detailed analysis of software require-

ments would provide necessary information for estimates, but analysis often takes

weeks or months to complete. Worse, requirements may be fluid, changing regularly

as the project proceeds. Yet, a plan is needed "now!"

Therefore, we must examine the product and the problem it is intended to solve

at the very beginning of the project. At a minimum, the scope of the product must be

established and bounded.

3.3.1  Software Scope

The first software project management activity is the determination of software scope.

Scope is defined by answering the following questions:

Context. How does the software to be built fit into a larger system, product, or

business context and what constraints are imposed as a result of the context?

Information objectives. What customer-visible data objects (Chapter 11) are

produced as output from the software? What data objects are required for input?

Function and performance. What function does the software perform to

transform input data into output? Are any special performance characteristics

to be addressed?

Software project scope must be unambiguous and understandable at the manage-

ment and technical levels.  A statement of software scope must be bounded.  That

is, quantitative data (e.g., number of simultaneous users, size of mailing list, maxi-

mum allowable response time) are stated explicitly; constraints and/or limitations

(e.g., product cost restricts memory size) are noted, and mitigating factors (e.g., desired

algorithms are well understood and available in C++) are described.

3.3.2 Problem Decomposition

Problem decomposition, sometimes called partitioning or problem elaboration, is an

activity that sits at the core of software requirements analysis (Chapter 11). During

the scoping activity no attempt is made to fully decompose the problem. Rather,

decomposition is applied in two major areas: (1) the functionality that must be deliv-

ered and (2) the process that will be used to deliver it. 

Human beings tend to apply a divide and conquer strategy when they are con-

fronted with a complex problems. Stated simply, a complex problem is partitioned

into smaller problems that are more manageable. This is the strategy that applies as

project planning begins. Software functions, described in the statement of scope, are

evaluated and refined to provide more detail prior to the beginning of estimation
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(Chapter 5). Because both cost and schedule estimates are functionally oriented, some

degree of decomposition is often useful.

As an example, consider a project that will build a new word-processing  product.

Among the unique features of the product are continuous voice as well as keyboard

input, extremely sophisticated “automatic copy edit” features, page layout capability,

automatic indexing and table of contents, and others. The project manager must first

establish a statement of scope that bounds these features (as well as other more mun-

dane functions such as editing, file management, document production, and the like).

For example, will continuous voice input require that the product be “trained” by the

user? Specifically, what capabilities will the copy edit feature provide? Just how sophis-

ticated will the page layout capability be?

As the statement of scope evolves, a first level of partitioning naturally occurs. The

project team learns that the marketing department has talked with potential cus-

tomers and found that the following functions should be part of automatic copy edit-

ing: (1) spell checking, (2) sentence grammar checking, (3) reference checking for

large documents (e.g., Is a reference to a bibliography entry found in the list of entries

in the bibliography?), and (4) section and chapter reference validation for large doc-

uments. Each of these features represents a subfunction to be implemented in soft-

ware. Each can be further refined if the decomposition will make planning easier.

3.4 THE PROCESS

The generic phases that characterize the software process—definition, development,

and support—are applicable to all software. The problem is to select the process

model that is appropriate for the software to be engineered by a project team. In Chap-

ter 2, a wide array of software engineering paradigms were discussed:

• the linear sequential model

• the prototyping model

• the RAD model

• the incremental model

• the spiral model

• the WINWIN spiral model

• the component-based development model

• the concurrent development model

• the formal methods model

• the fourth generation techniques model

The project manager must decide which process model is most appropriate for (1)

the customers who have requested the product and the people who will do the work,

Once the process
model is chosen,
populate it with the
minimum set of work
tasks and work
products that will result
in a high-quality
product—avoid
process overkill!

XRef
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parse, is presented in
Chapter 12.
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(2) the characteristics of the product itself, and (3) the project environment in which

the software team works. When a process model has been selected, the team then

defines a preliminary project plan based on the set of common process framework

activities. Once the preliminary plan is established, process decomposition begins.

That is, a complete plan, reflecting the work tasks required to populate the frame-

work activities must be created. We explore these activities briefly in the sections that

follow and present a more detailed view in Chapter 7. 

3.4.1 Melding the Product and the Process

Project planning begins with the melding of the product and the process. Each func-

tion to be engineered by the software team must pass through the set of framework

activities that have been defined for a software organization. Assume that the organ-

ization has adopted the following set of framework activities (Chapter 2):

• Customer communication—tasks required to establish effective requirements

elicitation between developer and customer.

• Planning—tasks required to define resources, timelines, and other project-

related information.

• Risk analysis—tasks required to assess both technical and management risks.

• Engineering—tasks required to build one or more representations of the

application.

• Construction and release—tasks required to construct, test, install, and pro-

vide user support (e.g., documentation and training).

• Customer evaluation—tasks required to obtain customer feedback based on

evaluation of the software representations created during the engineering

activity and implemented during the construction activity.

The team members who work on a product function will apply each of the frame-

work activities to it. In essence, a matrix similar to the one shown in Figure 3.2 is

created. Each major product function (the figure notes functions for the word-pro-

cessing software discussed earlier) is listed in the left-hand column. Framework

activities are listed in the top row. Software engineering work tasks (for each frame-

work activity) would be entered in the following row.5 The job of the project man-

ager (and other team members) is to estimate resource requirements for each matrix

cell, start and end dates for the tasks associated with each cell, and work products

to be produced as a consequence of each task. These activities are considered in

Chapters 5 and 7.
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activities always remain the same, but work tasks will be selected based on a number of adapta-
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3.4.2 Process Decomposition

A software team should have a significant degree of flexibility in choosing the soft-

ware engineering paradigm that is best for the project and the software engineering

tasks that populate the process model once it is chosen. A relatively small project

that is similar to past efforts might be best accomplished using the linear sequential

approach. If very tight time constraints are imposed and the problem can be heavily

compartmentalized, the RAD model is probably the right option. If the deadline is so

tight that full functionality cannot reasonably be delivered, an incremental strategy

might be best. Similarly, projects with other characteristics (e.g., uncertain require-

ments, breakthrough technology, difficult customers, significant reuse potential) will

lead to the selection of other process models.6

Once the process model has been chosen, the common process framework (CPF)

is adapted to it. In every case, the CPF discussed earlier in this chapter—customer

communication, planning, risk analysis, engineering, construction and release, cus-

tomer evaluation—can be fitted to the paradigm. It will work for linear models, for

iterative and incremental models, for evolutionary models, and even for concurrent

or component assembly models. The CPF is invariant and serves as the basis for all

software work performed by a software organization.

But actual work tasks do vary. Process decomposition commences when the proj-

ect manager asks, “How do we accomplish this CPF activity?” For example, a small,

6 Recall that project characteristics also have a strong bearing on the structure of the team that is
to do the work. See Section 3.2.3.
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relatively simple project might require the following work tasks for the customer com-

munication activity:

1. Develop list of clarification issues.

2. Meet with customer to address clarification issues.

3. Jointly develop a statement of scope.

4. Review the statement of scope with all concerned.

5. Modify the statement of scope as required.

These events might occur over a period of less than 48 hours. They represent a process

decomposition that is appropriate for the small, relatively simple project.

Now, we consider a more complex project, which has a broader scope and more

significant business impact. Such a project might require the following work tasks for

the customer communication activity: 

1. Review the customer request.

2. Plan and schedule a formal, facilitated meeting with the customer.

3. Conduct research to specify the proposed solution and existing approaches.

4. Prepare a “working document” and an agenda for the formal meeting.

5. Conduct the meeting.

6. Jointly develop mini-specs that reflect data, function, and behavioral features

of the software.

7. Review each mini-spec for correctness, consistency, and lack of ambiguity.

8. Assemble the mini-specs into a scoping document.

9. Review the scoping document with all concerned.

10. Modify the scoping document as required.

Both projects perform the framework activity that we call “customer communica-

tion,” but the first project team performed half as many software engineering work

tasks as the second.

3.5 THE PROJECT

In order to manage a successful software project, we must understand what can go

wrong (so that problems can be avoided) and how to do it right. In an excellent paper

on software projects, John Reel [REE99] defines ten signs that indicate that an infor-

mation systems project is in jeopardy:

1. Software people don’t understand their customer’s needs.

2. The product scope is poorly defined.

3. Changes are managed poorly.
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4. The chosen technology changes.

5. Business needs change [or are ill-defined].

6. Deadlines are unrealistic.

7. Users are resistant.

8. Sponsorship is lost [or was never properly obtained].

9. The project team lacks people with appropriate skills.

10. Managers [and practitioners] avoid best practices and lessons learned.

Jaded industry professionals often refer to the 90–90 rule when discussing partic-

ularly difficult software projects: The first 90 percent of a system absorbs 90 percent

of the allotted effort and time. The last 10 percent takes the other 90 percent of the

allotted effort and time [ZAH94].  The seeds that lead to the 90–90 rule are contained

in the signs noted in the preceeding list.

But enough negativity! How does a manager act to avoid the problems just noted?

Reel [REE99] suggests a five-part commonsense approach to software projects:

1. Start on the right foot. This is accomplished by working hard (very hard)

to understand the problem that is to be solved and then setting realistic

objects and expectations for everyone who will be involved in the project. It

is reinforced by building the right team (Section 3.2.3) and giving the team

the autonomy, authority, and technology needed to do the job.   

2. Maintain momentum. Many projects get off to a good start and then

slowly disintegrate. To maintain momentum, the project manager must pro-

vide incentives to keep turnover of personnel to an absolute minimum, the

team should emphasize quality in every task it performs, and senior manage-

ment should do everything possible to stay out of the team’s way.7

3. Track progress. For a software project, progress is tracked as work prod-

ucts  (e.g., specifications, source code, sets of test cases) are produced and

approved (using formal technical reviews) as part of a quality assurance

activity. In addition, software process and project measures (Chapter 4) can

be collected and used to assess progress against averages developed for the

software development organization.

4. Make smart decisions. In essence, the decisions of the project manager

and the software team should be to “keep it simple.” Whenever possible,

decide to use commercial off-the-shelf software or existing software compo-

nents, decide to avoid custom interfaces when standard approaches are

7 The implication of this statement is that bureacracy is reduced to a minimum, extraneous meet-
ings are eliminated, and dogmatic adherence to process and project rules is eliminated. The team
should be allowed to do its thing.
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available, decide to identify and then avoid obvious risks, and decide to allo-

cate more time than you think is needed to complex or risky tasks (you’ll

need every minute).

5. Conduct a postmortem analysis. Establish a consistent mechanism for

extracting lessons learned for each project. Evaluate the planned and actual

schedules, collect and analyze software project metrics, get feedback from

team members and customers, and record findings in written form. 

3.6 THE W5HH PRINCIPLE 

In an excellent paper on software process and projects, Barry Boehm [BOE96] states:

“you need an organizing principle that scales down to provide simple [project] plans for

simple projects.” Boehm suggests an approach that addresses project objectives, mile-

stones and schedules, responsibilities, management and technical approaches, and

required resources. He calls it the WWWWWHH principle, after a series of questions that

lead to a definition of key project characteristics and the resultant project plan:

Why is the system being developed? The answer to this question enables

all parties to assess the validity of business reasons for the software work. Stated

in another way, does the business purpose justify the expenditure of people, time,

and money?

What will be done, by when? The answers to these questions help the team

to establish a project schedule by identifying key project tasks and the milestones

that are required by the customer.

Who is responsible for a function? Earlier in this chapter, we noted that the

role and responsibility of each member of the software team must be defined.

The answer to this question helps accomplish this.

Where are they organizationally located? Not all roles and responsibilities

reside within the software team itself. The customer, users, and other stake-

holders also have responsibilities.

How will the job be done technically and managerially? Once product

scope is established, a management and technical strategy for the project must

be defined.

How much of each resource is needed? The answer to this question is derived

by developing estimates (Chapter 5) based on answers to earlier questions.

Boehm’s W5HH principle is applicable regardless of the size or complexity of a soft-

ware project. The questions noted provide an excellent planning outline for the proj-

ect manager and the software team.
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3.7 CRITICAL PRACTICES

The Airlie Council8 has developed a list of “critical software practices for perform-

ance-based management.” These practices are “consistently used by, and considered

critical by, highly successful software projects and organizations whose ‘bottom line’

performance is consistently much better than industry averages” [AIR99]. In an effort

to enable a software organization to determine whether a specific project has imple-

mented critical practices, the Airlie Council has developed a set of “QuickLook” ques-

tions [AIR99] for a project:9

Formal risk management. What are the top ten risks for this project? For

each of the risks, what is the chance that the risk will become a problem and

what is the impact if it does?

Empirical cost and schedule estimation. What is the current estimated size

of the application software (excluding system software) that will be delivered

into operation? How was it derived?

Metric-based project management. Do you have in place a metrics pro-

gram to give an early indication of evolving problems? If so, what is the cur-

rent requirements volatility?

Earned value tracking. Do you report monthly earned value metrics? If so,

are these metrics computed from an activity network of tasks for the entire

effort to the next delivery?

Defect tracking against quality targets. Do you track and periodically report

the number of defects found by each inspection (formal technical review) and

execution test from program inception and the number of defects currently

closed and open?

People-aware program management. What is the average staff turnover

for the past three months for each of the suppliers/developers involved in the

development of software for this system?

If a software project team cannot answer these questions or answers them inade-

quately, a thorough review of project practices is indicated. Each of the critical prac-

tices just noted is addressed in detail throughout Part Two of this book.

3.8 SUMMARY

Software project management is an umbrella activity within software engineering. It

begins before any technical activity is initiated and continues throughout the defini-

tion, development, and support of computer software.

Airlie Project Quicklook

8 The Airlie Council is a team of software engineering experts chartered by the U.S. Department of
Defense to help develop guidelines for best practices in software project management and soft-
ware engineering.

9 Only those critical practices associated with “project integrity” are noted here. Other best prac-
tices will be discussed in later chapters.
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Four P’s have a substantial influence on software project management—people,

product, process, and project. People must be organized into effective teams, moti-

vated to do high-quality software work, and coordinated to achieve effective com-

munication. The product requirements must be communicated from customer to

developer, partitioned (decomposed) into their constituent parts, and positioned for

work by the software team. The process must be adapted to the people and the prob-

lem. A common process framework is selected, an appropriate software engineer-

ing paradigm is applied, and a set of work tasks is chosen to get the job done. Finally,

the project must be organized in a manner that enables the software team to suc-

ceed.

The pivotal element in all software projects is people. Software engineers can be

organized in a number of different team structures that range from traditional con-

trol hierarchies to “open paradigm” teams. A variety of coordination and communi-

cation techniques can be applied to support the work of the team. In general, formal

reviews and informal person-to-person communication have the most value for prac-

titioners.

The project management activity encompasses measurement and metrics, esti-

mation, risk analysis, schedules, tracking, and control. Each of these topics is con-

sidered in the chapters that follow.
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PROBLEMS AND POINTS TO PONDER

3.1. Based on information contained in this chapter and your own experience, develop

“ten commandments” for empowering software engineers. That is, make a list of ten

guidelines that will lead to software people who work to their full potential.

3.2. The Software Engineering Institute’s people management capability maturity

model (PM-CMM) takes an organized look at “key practice areas” that cultivate good

software people.  Your instructor will assign you one KPA for analysis and summary.

3.3. Describe three real-life situations in which the customer and the end-user are

the same. Describe three situations in which they are different.

3.4. The decisions made by senior management can have a significant impact on

the effectiveness of a software engineering team. Provide five examples to illustrate

that this is true.

3.5. Review a copy of Weinberg’s book [WEI86] and write a two- or three-page sum-

mary of the issues that should be considered in applying the MOI model.

3.6. You have been appointed a project manager within an information systems

organization. Your job is to build an application that is quite similar to others your

team has built, although this one is larger and more complex. Requirements have

been thoroughly documented by the customer. What team structure would you choose

and why? What software process model(s) would you choose and why?

3.7. You have been appointed a project manager for a small software products com-

pany. Your job is to build a breakthrough product that combines virtual reality hard-

ware with state-of-the-art software. Because competition for the home entertainment

market is intense, there is significant pressure to get the job done. What team struc-
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ture would you choose and why? What software process model(s) would you choose

and why?

3.8. You have been appointed a project manager for a major software products com-

pany. Your job is to manage the development of the next generation version of its

widely used word-processing software.  Because competition is intense, tight dead-

lines have been established and announced. What team structure would you choose

and why? What software process model(s) would you choose and why?

3.9. You have been appointed a software project manager for a company that ser-

vices the genetic engineering world. Your job is to manage the development of a new

software product that will accelerate the pace of gene typing. The work is R&D ori-

ented, but the goal to to produce a product within the next year.  What team struc-

ture would you choose and why? What software process model(s) would you choose

and why?

3.10. Referring to Figure 3.1, based on the results of the referenced study, docu-

ments are perceived to have more use than value. Why do you think this occurred

and what can be done to move the documents data point above the regression line

in the graph? That is, what can be done to improve the perceived value of documents?

3.11. You have been asked to develop a small application that analyzes each course

offered by a university and reports the average grade obtained in the course (for a

given term). Write a statement of scope that bounds this problem.

3.12. Do a first level functional decomposition of the page layout function discussed

briefly in Section 3.3.2.

FURTHER READINGS AND INFORMATION SOURCES 

An excellent four volume series written by Weinberg (Quality Software Management,

Dorset House, 1992, 1993, 1994, 1996) introduces basic systems thinking and man-

agement concepts, explains how to use measurements effectively, and addresses

“congruent action,” the ability to establish “fit” between the manager’s needs, the

needs of technical staff, and the needs of the business. It will provide both new and

experienced managers with useful information.  Brooks (The Mythical Man-Month,

Anniversary Edition, Addison-Wesley, 1995) has updated his classic book to provide

new insight into software project and management issues.  Purba and Shah (How to

Manage a Successful Software Project, Wiley, 1995) present a number of case studies

that indicate why some projects succeed and others fail. Bennatan (Software Project

Management in a Client/Server Environment, Wiley, 1995) discusses special manage-

ment issues associated with the development of client/server systems. 

It can be argued that the most important aspect of software project management

is people management. The definitive book on this subject has been written by
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DeMarco and Lister [DEM98], but the following books on this subject have been pub-

lished in recent years and are worth examining:

Beaudouin-Lafon, M., Computer Supported Cooperative Work, Wiley-Liss, 1999. 

Carmel, E., Global Software Teams: Collaborating Across Borders and Time Zones, Prentice Hall,

1999. 

Humphrey, W.S., Managing Technical People: Innovation, Teamwork, and the Software Process,

Addison-Wesley, 1997.

Humphrey, W.S., Introduction to the Team Software Process, Addison-Wesley, 1999.

Jones, P.H., Handbook of Team Design: A Practitioner's Guide to Team Systems Development,

McGraw-Hill, 1997. 

Karolak, D.S., Global Software Development: Managing Virtual Teams and Environments, IEEE

Computer Society, 1998. 

Mayer, M., The Virtual Edge: Embracing Technology for Distributed Project Team Success,

Project Management Institute Publications, 1999. 

Another excellent book by Weinberg [WEI86] is must reading for every project

manager and every team leader. It will give you insight and guidance in ways to do

your job more effectively. House (The Human Side of Project Management, Addison-

Wesley, 1988) and Crosby (Running Things: The Art of Making Things Happen, McGraw-

Hill, 1989) provide practical advice for managers who must deal with human as well

as technical problems.  

Even though they do not relate specifically to the software world and sometimes

suffer from over-simplification and broad generalization, best-selling “management”

books by Drucker (Management Challenges for the 21st Century, Harper Business, 1999),

Buckingham and Coffman (First, Break All the Rules: What the World's Greatest Man-

agers Do Differently, Simon and Schuster, 1999) and Christensen (The Innovator's

Dilemma, Harvard Business School Press, 1997) emphasize “new rules” defined by a

rapidly changing economy, Older titles such as The One-Minute Manager and In Search

of Excellence continue to provide valuable insights that can help you to manage peo-

ple issues more effectively. 

A wide variety of information sources on software project issues are available on

the Internet. An up-to-date list of World Wide Web references that are relevant to the

software projects can be found at the SEPA Web site:

http://www.mhhe.com/engcs/compsci/pressman/resources/

project-mgmt.mhtml
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Measurement is fundamental to any engineering discipline, and soft-

ware engineering is no exception. Measurement enables us to gain

insight by providing a mechanism for objective evaluation. Lord

Kelvin once said: 

When you can measure what you are speaking about and express it in numbers, you

know something about it; but when you cannot measure, when you cannot express

it in numbers, your knowledge is of a meager and unsatisfactory kind: it may be the

beginning of knowledge, but you have scarcely, in your thoughts, advanced to the

stage of a science.

The software engineering community has finally begun to take Lord Kelvin's
words to heart. But not without frustration and more than a little controversy!

Software metrics refers to a broad range of measurements for computer soft-
ware. Measurement can be applied to the software process with the intent of
improving it on a continuous basis. Measurement can be used throughout a
software project to assist in estimation, quality control, productivity assess-
ment, and project control. Finally, measurement can be used by software engi-
neers to help assess the quality of technical work products and to assist in
tactical decision making as a project proceeds.

4 SOFTWARE PROCESS AND
PROJECT METRICS

What is it? Software process and

product metrics are quantitative

measures that enable software

people to gain insight into the efficacy of the soft-

ware process and the projects that are conducted

using the process as a framework. Basic quality

and productivity data are collected. These data

are then analyzed, compared against past aver-

ages, and assessed to determine whether quality

and productivity improvements have occurred.

Metrics are also used to pinpoint problem areas

so that remedies can be developed and the soft-

ware process can be improved.

Who does it? Software metrics are analyzed and

assessed by software managers. Measures are

often collected by software engineers.

Why is it important? If you don’t measure, judge-

ment can be based only on subjective evaluation.

With measurement, trends (either good or bad)

can be spotted, better estimates can be made,

and true improvement can be accomplished over

time.

What are the steps? Begin by defining a limited set

of process, project, and product measures that are

easy to collect. These measures are often nor-

malized using either size- or function-oriented met-

rics. The result is analyzed and compared to past

averages for similar projects performed within the

organization. Trends are assessed and conclusions

are generated.

Q U I C K
L O O K
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Within the context of software project management, we are concerned primarily

with productivity and quality metrics—measures of software development "output"

as a function of effort and time applied and measures of the "fitness for use" of the

work products that are produced. For planning and estimating purposes, our inter-

est is historical. What was software development productivity on past projects? What

was the quality of the software that was produced? How can past productivity and

quality data be extrapolated to the present? How can it help us plan and estimate

more accurately?
In their guidebook on software measurement, Park, Goethert, and Florac [PAR96]

discuss the reasons that we measure:

There are four reasons for measuring software processes, products, and resources: to char-

acterize, to evaluate, to predict, or to improve.

We characterize to gain understanding of processes, products, resources, and environ-

ments, and to establish baselines for comparisons with future assessments. 

We evaluate to determine status with respect to plans. Measures are the sensors that

let us know when our projects and processes are drifting off track, so that we can bring

them back under control. We also evaluate to assess achievement of quality goals and to

assess the impacts of technology and process improvements on products and processes. 

We predict so that we can plan. Measuring for prediction involves gaining understand-

ings of relationships among processes and products and building models of these rela-

tionships, so that the values we observe for some attributes can be used to predict others.

We do this because we want to establish achievable goals for cost, schedule, and quality—

so that appropriate resources can be applied. Predictive measures are also the basis for

extrapolating trends, so estimates for cost, time, and quality can be updated based on cur-

rent evidence. Projections and estimates based on historical data also help us analyze risks

and make design/cost trade-offs.

We measure to improve when we gather quantitative information to help us identify

roadblocks, root causes, inefficiencies, and other opportunities for improving product qual-

ity and process performance. 

4.1 MEASURES,  METRICS,  AND INDICATORS

Although the terms measure, measurement, and metrics are often used interchange-

ably, it is important to note the subtle differences between them. Because measure

What is the work product? A set

of software metrics that provide

insight into the process and

understanding of the project.

How do I ensure that I’ve done it right? By apply-

ing a consistent, yet simple measurement scheme

that is never to be used to assess, reward, or pun-

ish individual performance. 

Q U I C K
L O O K

XRef
Technical metrics for
software engineering
are presented in
Chapters 19 and 24.

“Software metrics let
you know when to
laugh and when to
cry.”
Tom Gilb 
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can be used either as a noun or a verb, definitions of the term can become confus-

ing. Within the software engineering context, a measure provides a quantitative indi-

cation of the extent, amount, dimension, capacity, or size of some attribute of a product

or process. Measurement is the act of determining a measure. The IEEE Standard

Glossary of Software Engineering Terms [IEE93] defines metric as “a quantitative mea-

sure of the degree to which a system, component, or process possesses a given

attribute.” 

When a single data point has been collected (e.g., the number of errors uncovered

in the review of a single module), a measure has been established. Measurement

occurs as the result of the collection of one or more data points (e.g., a number of

module reviews are investigated to collect measures of the number of errors for each).

A software metric relates the individual measures in some way (e.g., the average

number of errors found per review or the average number of errors found per per-

son-hour expended on reviews.1

A software engineer collects measures and develops metrics so that indicators

will be obtained. An indicator is a metric or combination of metrics that provide insight

into the software process, a software project, or the product itself [RAG95].  An indi-

cator provides insight that enables the project manager or software engineers to

adjust the process, the project, or the process to make things better. 

For example, four software teams are working on a large software project. Each

team must conduct design reviews but is allowed to select the type of review that it

will use. Upon examination of the metric, errors found per person-hour expended,

the project manager notices that the two teams using more formal review methods

exhibit an errors found per person-hour expended that is 40 percent higher than the

other teams. Assuming all other parameters equal, this provides the project manager

with an indicator that formal review methods may provide a higher return on time

investment than another, less formal review approach. She may decide to suggest

that all teams use the more formal approach. The metric provides the manager with

insight. And insight leads to informed decision making.

4.2  METRICS IN THE PROCESS AND PROJECT DOMAINS
Measurement is commonplace in the engineering world. We measure power con-

sumption, weight, physical dimensions, temperature, voltage, signal-to-noise ratio . . .

the list is almost endless. Unfortunately, measurement is far less common in the soft-

ware engineering world. We have trouble agreeing on what to measure and trouble

evaluating measures that are collected.
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“Not everything that
can be counted
counts, and not
everything that
counts can be
counted.”
Albert Einstein

1 This assumes that another measure, person-hours expended, is collected for each review.



PART TWO MANAGING SOFTWARE PROJECTS82

Metrics should be collected so that process and product indicators can be ascer-

tained. Process indicators enable a software engineering organization to gain insight

into the efficacy of an existing process (i.e., the paradigm, software engineering tasks,

work products, and milestones). They enable managers and practitioners to assess

what works and what doesn’t. Process metrics are collected across all projects and

over long periods of time. Their intent is to provide indicators that lead to long-term

software process improvement.

Project indicators enable a software project manager to (1) assess the status of an

ongoing project, (2) track potential risks, (3) uncover problem areas before they go

“critical,” (4) adjust work flow or tasks, and (5) evaluate the project team’s ability to

control quality of software work products.

In some cases, the same software metrics can be used to determine project and

then process indicators. In fact, measures that are collected by a project team and

converted into metrics for use during a project can also be transmitted to those with

responsibility for software process improvement. For this reason, many of the same

metrics are used in both the process and project domain.

4.2.1 Process Metrics and Software Process Improvement

The only rational way to improve any process is to measure specific attributes of the

process, develop a set of meaningful metrics based on these attributes, and then use

the metrics to provide indicators that will lead to a strategy for improvement. But

before we discuss software metrics and their impact on software process improve-

ment, it is important to note that process is only one of a number of “controllable fac-

tors in improving software quality and organizational performance [PAU94].” 

Referring to Figure 4.1, process sits at the center of a triangle connecting three

factors that have a profound influence on software quality and organizational per-

formance. The skill and motivation of people has been shown [BOE81] to be the sin-

gle most influential factor in quality and performance. The complexity of the product

can have a substantial impact on quality and team performance. The technology (i.e.,

the software engineering methods) that populate the process also has an impact. 

In addition, the process triangle exists within a circle of environmental conditions

that include the development environment (e.g., CASE tools), business condi-

tions (e.g., deadlines, business rules), and customer characteristics (e.g., ease of 

communication).

We measure the efficacy of a software process indirectly. That is, we derive a set

of metrics based on the outcomes that can be derived from the process. Outcomes

include measures of errors uncovered before release of the software, defects deliv-

ered to and reported by end-users, work products delivered (productivity), human

effort expended, calendar time expended, schedule conformance, and other mea-

sures.  We also derive process metrics by measuring the characteristics of specific

software engineering tasks. For example, we might measure the effort and time spent

The skill and
motivation of the
people doing the work
are the most important
factors that influence
software quality.

WebRef
A comprehensive software
metrics guidebook can be
downloaded from 
www.ivv.nasa.gov/
SWG/resources/
NASA-GB-001-
94.pdf

How do I
measure the

effectiveness of a
software process?

?
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performing the umbrella activities and the generic software engineering activities

described in Chapter 2.

Grady [GRA92] argues that there are “private and public” uses for different types

of process data. Because it is natural that individual software engineers might be sen-

sitive to the use of metrics collected on an individual basis, these data should be pri-

vate to the individual and serve as an indicator for the individual only. Examples of

private metrics include defect rates (by individual), defect rates (by module), and errors

found during development.

The “private process data” philosophy conforms well with the personal software

process approach proposed by Humphrey [HUM95]. Humphrey describes the approach

in the following manner:

The personal software process (PSP) is a structured set of process descriptions, measure-

ments, and methods that can help engineers to improve their personal performance.  It pro-

vides the forms, scripts, and standards that help them estimate and plan their work. It shows

them how to define processes and how to measure their quality and productivity. A funda-

mental PSP principle is that everyone is different and that a method that is effective for one

engineer may not be suitable for another. The PSP thus helps engineers to measure and

track their own work so they can find the methods that are best for them.

Humphrey recognizes that software process improvement can and should begin at

the individual level. Private process data can serve as an important driver as the indi-

vidual software engineer works to improve.

Some process metrics are private to the software project team but public to all

team members. Examples include defects reported for major software functions (that
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have been developed by a number of practitioners), errors found during formal tech-

nical reviews, and lines of code or function points per module and function.2 These

data are reviewed by the team to uncover indicators that can improve team perfor-

mance.

Public metrics generally assimilate information that originally was private to indi-

viduals and teams. Project level defect rates (absolutely not attributed to an individ-

ual), effort, calendar times, and related data are collected and evaluated in an attempt

to uncover indicators that can improve organizational process performance. 

Software process metrics can provide significant benefit as an organization works

to improve its overall level of process maturity. However, like all metrics, these can

be misused, creating more problems than they solve. Grady [GRA92] suggests a “soft-

ware metrics etiquette” that is appropriate for both managers and practitioners as

they institute a process metrics program:

• Use common sense and organizational sensitivity when interpreting metrics

data.

• Provide regular feedback to the individuals and teams who collect measures

and metrics.

• Don’t use metrics to appraise individuals.

• Work with practitioners and teams to set clear goals and metrics that will be

used to achieve them.

• Never use metrics to threaten individuals or teams.

• Metrics data that indicate a problem area should not be considered “nega-

tive.” These data are merely an indicator for process improvement.

• Don’t obsess on a single metric to the exclusion of other important metrics.

As an organization becomes more comfortable with the collection and use of

process metrics, the derivation of simple indicators gives way to a more rigorous

approach called statistical software process improvement (SSPI). In essence, SSPI uses

software failure analysis to collect information about all errors and defects3 encoun-

tered as an application, system, or product is developed and used. Failure analysis

works in the following manner:

1. All errors and defects are categorized by origin (e.g., flaw in specification,

flaw in logic, nonconformance to standards).

2. The cost to correct each error and defect is recorded.

2 See Sections 4.3.1 and 4.3.2 for detailed discussions of LOC and function point metrics.
3 As we discuss in Chapter 8, an error is some flaw in a software engineering work product or deliv-

erable that is uncovered by software engineers before the software is delivered to the end-user. A
defect is a flaw that is uncovered after delivery to the end-user.

Public metrics enable
an organization to
make strategic
changes that improve
the software process
and tactical changes
during a software
project.

WebRef
SSPI and other quality
related information is
available through the
American Society for
Quality at
www.asq.org

What
guidelines

should be applied
when we collect
software metrics?

?
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3. The number of errors and defects in each category is counted and ranked in

descending order.

4. The overall cost of errors and defects in each category is computed.

5. Resultant data are analyzed to uncover the categories that result in highest

cost to the organization.

6. Plans are developed to modify the process with the intent of eliminating (or

reducing the frequency of) the class of errors and defects that is most costly.

Following steps 1 and 2, a simple defect distribution can be developed (Figure 4.2)

[GRA94]. For the pie-chart noted in the figure, eight causes of defects and their ori-

gin (indicated by shading) are shown. Grady suggests the development of a fishbone

diagram [GRA92] to help in diagnosing the data represented in the frequency dia-

gram. Referring to Figure 4.3, the spine of the diagram (the central line) represents

the quality factor under consideration (in this case specification defects that account

for 25 percent of the total). Each of the ribs (diagonal lines) connecting to the spine

indicate potential causes for the quality problem (e.g., missing requirements, ambigu-

ous specification, incorrect requirements, changed requirements). The spine and ribs

notation is then added to each of the major ribs of the diagram to expand upon the

cause noted. Expansion is shown only for the incorrect cause in Figure 4.3. 
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The collection of process metrics is the driver for the creation of the fishbone dia-

gram. A completed fishbone diagram can be analyzed to derive indicators that will

enable a software organization to modify its process to reduce the frequency of errors

and defects. 

4.2.2 Project Metrics

Software process metrics are used for strategic purposes. Software project measures

are tactical. That is, project metrics and the indicators derived from them are used

by a project manager and a software team to adapt project work flow and technical

activities. 

The first application of project metrics on most software projects occurs during

estimation. Metrics collected from past projects are used as a basis from which effort

and time estimates are made for current software work. As a project proceeds, mea-

sures of effort and calendar time expended are compared to original estimates (and

the project schedule). The project manager uses these data to monitor and control

progress.

As technical work commences, other project metrics begin to have significance.

Production rates represented in terms of pages of documentation, review hours, func-

tion points, and delivered source lines are measured. In addition, errors uncovered

during each software engineering task are tracked. As the software evolves from

specification into design, technical metrics (Chapters 19 and 24) are collected to assess

Specification
defects

ChangesIncorrect

Inadequate inquiries

Customer gave
wrong info

Wrong customer queried

Used outdated
info

AmbiguousMissingFIGURE 4.3
A fishbone 
diagram
(adapted from
[GRA92])

XRef
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design quality and to provide indicators that will influence the approach taken to code

generation and testing. 

The intent of project metrics is twofold. First, these metrics are used to minimize

the development schedule by making the adjustments necessary to avoid delays and

mitigate potential problems and risks. Second, project metrics are used to assess

product quality on an ongoing basis and, when necessary, modify the technical

approach to improve quality.

As quality improves, defects are minimized, and as the defect count goes down,

the amount of rework required during the project is also reduced. This leads to a

reduction in overall project cost.

Another model of software project metrics [HET93] suggests that every project

should measure:

• Inputs—measures of the resources (e.g., people, environment) required to do

the work.

• Outputs—measures of the deliverables or work products created during the

software engineering process.

• Results—measures that indicate the effectiveness of the deliverables.

In actuality, this model can be applied to both process and project.  In the project con-

text, the model can be applied recursively as each framework activity occurs. There-

fore the output from one activity becomes input to the next. Results metrics can be

used to provide an indication of the usefulness of work products as they flow from

one framework activity (or task) to the next.

4.3 SOFTWARE MEASUREMENT
Measurements in the physical world can be categorized in two ways: direct measures

(e.g., the length of a bolt) and indirect measures (e.g., the "quality" of bolts produced,

measured by counting rejects). Software metrics can be categorized similarly. 

Direct measures of the software engineering process include cost and effort applied.

Direct measures of the product include lines of code (LOC) produced, execution speed,

memory size, and defects reported over some set period of time. Indirect measures of

the product include functionality, quality, complexity, efficiency, reliability, maintain-

ability, and many other "–abilities" that are discussed in Chapter 19.

The cost and effort required to build software, the number of lines of code pro-

duced, and other direct measures are relatively easy to collect, as long as specific

conventions for measurement are established in advance. However, the quality and

functionality of software or its efficiency or maintainability are more difficult to assess

and can be measured only indirectly.  

We have already partitioned the software metrics domain into process, project,

and product metrics. We have also noted that product metrics that are private to an
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individual are often combined to develop project metrics that are public to a software

team. Project metrics are then consolidated to create process metrics that are public

to the software organization as a whole. But how does an organization combine met-

rics that come from different individuals or projects? 

To illustrate, we consider a simple example. Individuals on two different project

teams record and categorize all errors that they find during the software process. Indi-

vidual measures are then combined to develop team measures. Team A found 342

errors during the software process prior to release. Team B found 184 errors. All other

things being equal, which team is more effective in uncovering errors throughout the

process? Because we do not know the size or complexity of the projects, we cannot

answer this question. However, if the measures are normalized, it is possible to cre-

ate software metrics that enable comparison to broader organizational averages. 

4.3.1  Size-Oriented Metrics

Size-oriented software metrics are derived by normalizing quality and/or productiv-

ity measures by considering the size of the software that has been produced.  If a soft-

ware organization maintains simple records, a table of size-oriented measures, such

as the one shown in Figure 4.4, can be created. The table lists each software devel-

opment project that has been completed over the past few years and corresponding

measures for that project. Referring to the table entry (Figure 4.4) for project alpha:

12,100 lines of code were developed with 24 person-months of effort at a cost of

$168,000. It should be noted that the effort and cost recorded in the table represent

all software engineering activities (analysis, design, code, and test), not just coding.

Further information for project alpha indicates that 365 pages of documentation were

developed, 134 errors were recorded before the software was released, and 29 defects

Because many factors
influence software
work, don’t use
metrics to compare
individuals or teams.

Project LOC Effort $(000) Pp. doc. Errors Defects People

alpha
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•
•
•
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•
•
•
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•
•
•
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•
•
•
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•
•

  •
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•
•

  •
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86
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3
5
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were encountered after release to the customer within the first year of operation.

Three people worked on the development of software for project alpha.

In order to develop metrics that can be assimilated with similar metrics from other

projects, we choose lines of code as our normalization value. From the rudimentary

data contained in the table, a set of simple size-oriented metrics can be developed

for each project:

• Errors per KLOC (thousand lines of code).

• Defects4 per KLOC.

• $ per LOC.

• Page of documentation per KLOC.

In addition, other interesting metrics can be computed:

• Errors per person-month.

• LOC per person-month.

• $ per page of documentation.

Size-oriented metrics are not universally accepted as the best way to measure the

process of software development [JON86]. Most of the controversy swirls around the

use of lines of code as a key measure. Proponents of the LOC measure claim that LOC

is an "artifact" of all software development projects that can be easily counted, that

many existing software estimation models use LOC or KLOC as a key input, and that

a large body of literature and data predicated on LOC already exists. On the other

hand, opponents argue that LOC measures are programming language dependent,

that they penalize well-designed but shorter programs, that they cannot easily accom-

modate nonprocedural languages, and that their use in estimation requires a level of

detail that may be difficult to achieve (i.e., the planner must estimate the LOC to be

produced long before analysis and design have been completed).

4.3.2  Function-Oriented Metrics

Function-oriented software metrics use a measure of the functionality delivered by

the application as a normalization value. Since ‘functionality’ cannot be measured

directly, it must be derived indirectly using other direct measures. Function-oriented

metrics were first proposed by Albrecht [ALB79], who suggested a measure called the

function point. Function points are derived using an empirical relationship based on

countable (direct) measures of software's information domain and assessments of

software complexity. 

Function points are computed [IFP94] by completing the table shown in Figure 4.5.

Five information domain characteristics are determined and counts are provided in
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the appropriate table location. Information domain values are defined in the follow-

ing manner:5

Number of user inputs. Each user input that provides distinct application-

oriented data to the software is counted. Inputs should be distinguished from

inquiries, which are counted separately.

Number of user outputs. Each user output that provides application-

oriented information to the user is counted. In this context output refers to

reports, screens, error messages, etc. Individual data items within a report

are not counted separately. 

Number of user inquiries. An inquiry is defined as an on-line input that

results in the generation of some immediate software response in the form of

an on-line output. Each distinct inquiry is counted. 

Number of files. Each logical master file (i.e., a logical grouping of data that

may be one part of a large database or a separate file) is counted. 

Number of external interfaces. All machine readable interfaces (e.g., data

files on storage media) that are used to transmit information to another sys-

tem are counted.

Once these data have been collected, a complexity value is associated with each

count. Organizations that use function point methods develop criteria for determin-

ing whether a particular entry is simple, average, or complex. Nonetheless, the deter-

mination of complexity is somewhat subjective.

To compute function points (FP), the following relationship is used:

FP = count total � [0.65 + 0.01 � ∑(Fi)] (4-1)

where count total is the sum of all FP entries obtained from Figure 4.5.  

Measurement parameter
Number of user inputs

Simple
3

Count
×

Average
4

Complex
6 =

Weighting factor

Number of user outputs 4× 5 7 =

Number of user inquiries 3× 4 6 =

Number of files 7× 10 15 =

Number of external interfaces 5× 7 10 =

Count total

FIGURE 4.5
Computing
function points

5 In actuality, the definition of information domain values and the manner in which they are
counted are a bit more complex. The interested reader should see [IFP94] for details.

Function points are
derived from direct
measures of the
information domain.
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The Fi (i = 1 to 14) are "complexity adjustment values" based on responses to the

following questions [ART85]: 

1. Does the system require reliable backup and recovery?

2. Are data communications required?

3. Are there distributed processing functions?

4. Is performance critical?

5. Will the system run in an existing, heavily utilized operational environment?

6. Does the system require on-line data entry?

7. Does the on-line data entry require the input transaction to be built over multiple
screens or operations?

8. Are the master files updated on-line?

9. Are the inputs, outputs, files, or inquiries complex?

10. Is the internal processing complex?

11. Is the code designed to be reusable?

12. Are conversion and installation included in the design?

13. Is the system designed for multiple installations in different organizations?

14. Is the application designed to facilitate change and ease of use by the user?

Each of these questions is answered using a scale that ranges from 0 (not important

or applicable) to 5 (absolutely essential). The constant values in Equation (4-1) and

the weighting factors that are applied to information domain counts are determined

empirically.

Once function points have been calculated, they are used in a manner analogous

to LOC as a way to normalize measures for software productivity, quality, and other

attributes:

• Errors per FP.

• Defects per FP.

• $ per FP.

• Pages of documentation per FP.

• FP per person-month.

4.3.3 Extended Function Point Metrics

The function point measure was originally designed to be applied to business infor-

mation systems applications. To accommodate these applications, the data dimen-

sion (the information domain values discussed previously) was emphasized to the

exclusion of the functional and behavioral (control) dimensions. For this reason, the

function point measure was inadequate for many engineering and embedded sys-

tems (which emphasize function and control). A number of extensions to the basic

function point measure have been proposed to remedy this situation.

A function point extension called feature points [JON91], is a superset of the function

point measure that can be applied to systems and engineering software applications.
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The feature point measure accommodates applications in which algorithmic complex-

ity is high. Real-time, process control and embedded software applications tend to have

high algorithmic complexity and are therefore amenable to the feature point. 

To compute the feature point, information domain values are again counted and

weighted as described in Section 4.3.2. In addition, the feature point metric counts a

new software characteristic—algorithms. An algorithm is defined as "a bounded com-

putational problem that is included within a specific computer program” [JON91]. Invert-

ing a matrix, decoding a bit string, or handling an interrupt are all examples of algorithms.

Another function point extension for real-time systems and engineered products

has been developed by Boeing. The Boeing approach integrates the data dimension

of software with the functional and control dimensions to provide a function-oriented

measure amenable to applications that emphasize function and control capabilities.

Called the 3D function point [WHI95], characteristics of all three software dimensions

are “counted, quantified, and transformed” into a measure that provides an indica-

tion of the functionality delivered by the software.6

The data dimension is evaluated in much the same way as described in Section

4.3.2. Counts of retained data (the internal program data structure; e.g., files) and

external data (inputs, outputs, inquiries, and external references) are used along with

measures of complexity to derive a data dimension count. The functional dimension

is measured by considering “the number of internal operations required to transform

input to output data” [WHI95]. For the purposes of 3D function point computation, a

“transformation” is viewed as a series of processing steps that are constrained by a

set of semantic statements. The control dimension is measured by counting the num-

ber of transitions between states.7

A state represents some externally observable mode of behavior, and a transition

occurs as a result of some event that causes the software or system to change its

mode of behavior (i.e., to change state). For example, a wireless phone contains soft-

ware that supports auto dial functions. To enter the auto-dial state from a resting state,

the user presses an Auto key on the keypad. This event causes an LCD display to

prompt for a code that will indicate the party to be called. Upon entry of the code and

hitting the Dial key (another event), the wireless phone software makes a transition

to the dialing state. When computing 3D function points, transitions are not assigned

a complexity value.

To compute 3D function points, the following relationship is used:

index = I + O + Q + F + E + T + R (4-2)

6 It should be noted that other extensions to function points for application in real-time software
work (e.g., [ALA97]) have also been proposed. However, none of these appears to be widely used
in the industry.

7 A detailed discussion of the behavioral dimension, including states and state transitions,  is pre-
sented in Chapter 12.
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where I, O, Q, F, E, T, and R represent complexity weighted values for the elements

discussed already: inputs, outputs, inquiries, internal data structures, external files,

transformation, and transitions, respectively. Each complexity weighted value is com-

puted using the following relationship:

complexity weighted value  =  NilWil + NiaWia + NihWih (4-3)

where Nil, Nia, and Nih represent the number of occurrences of element i (e.g., out-

puts) for each level of complexity (low, medium, high); and Wil, Wia, and Wih are the

corresponding weights. The overall complexity of a transformation for 3D function

points is shown in Figure 4.6.

It should be noted that function points, feature points, and 3D function points rep-

resent the same thing—"functionality" or "utility" delivered by software. In fact, each

of these measures results in the same value if only the data dimension of an appli-

cation is considered. For more complex real-time systems, the feature point count is

often between 20 and 35 percent higher than the count determined using function

points alone.

The function point (and its extensions), like the LOC measure, is controversial.

Proponents claim that FP is programming language independent, making it ideal for

applications using conventional and nonprocedural languages; that it is based on

data that are more likely to be known early in the evolution of a project, making FP

more attractive as an estimation approach. Opponents claim that the method requires

some "sleight of hand" in that computation is based on subjective rather than objec-

tive data; that counts of the information domain (and other dimensions) can be dif-

ficult to collect after the fact; and that FP has no direct physical meaning—it's just a

number.
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4.4  RECONCILING DIFFERENT METRICS APPROACHES

The relationship between lines of code and function points depends upon the pro-

gramming language that is used to implement the software and the quality of the

design. A number of studies have attempted to relate FP and LOC measures. To quote

Albrecht and Gaffney [ALB83]:

The thesis of this work is that the amount of function to be provided by the application (pro-
gram) can be estimated from the itemization of the major components8 of data to be used
or provided by it. Furthermore, this estimate of function should be correlated to both the
amount of LOC to be developed and the development effort needed.

The following table [JON98] provides rough estimates of the average number of lines

of code required to build one function point in various programming languages:

Programming Language LOC/FP (average)
Assembly language 320
C 128
COBOL 106
FORTRAN 106
Pascal 90
C++ 64
Ada95 53
Visual Basic 32
Smalltalk 22
Powerbuilder (code generator) 16
SQL 12

A review of these data indicates that one LOC of C++ provides approximately 1.6 times

the "functionality" (on average) as one LOC of FORTRAN. Furthermore, one LOC of a

Visual Basic provides more than three times the functionality of a LOC for a conven-

tional programming language. More detailed data on the relationship between FP

and LOC are presented in [JON98] and can be used to "backfire" (i.e., to compute the

number of function points when the number of delivered LOC are known) existing

programs to determine the FP measure for each.

LOC and FP measures are often used to derive productivity metrics. This invari-

ably leads to a debate about the use of such data. Should the LOC/person-month (or

FP/person-month) of one group be compared to similar data from another? Should

managers appraise the performance of individuals by using these metrics? The answers

8 It is important to note that “the itemization of major components” can be interpreted in a variety
of ways.  Some software engineers who work in an object-oriented development environment
(Part Four) use the number of classes or objects as the dominant size metric. A maintenance
organization might view project size in terms of the number of engineering change orders (Chap-
ter 9). An information systems organization might view the number of business processes
affected by an application.

Use backfiring data
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using the methods
discussed earlier.
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to these questions is an emphatic “No!” The reason for this response is that many

factors influence productivity, making for "apples and oranges" comparisons that can

be easily misinterpreted.

Function points and LOC based metrics have been found to be relatively accu-

rate predictors of software development effort and cost. However, in order to use

LOC and FP for estimation (Chapter 5), a historical baseline of information must be

established. 

4.5   METRICS FOR SOFTWARE QUALITY

The overriding goal of software engineering is to produce a high-quality system, appli-

cation, or product. To achieve this goal, software engineers must apply effective meth-

ods coupled with modern tools within the context of a mature software process. In

addition, a good software engineer (and good software engineering managers) must

measure if high quality is to be realized.

The quality of a system, application, or product is only as good as the requirements

that describe the problem, the design that models the solution, the code that leads

to an executable program, and the tests that exercise the software to uncover errors.

A good software engineer uses measurement to assess the quality of the analysis and

design models, the source code, and the test cases that have been created as the soft-

ware is engineered. To accomplish this real-time quality assessment, the engineer

must use technical measures (Chapters 19 and 24) to evaluate quality in objective,

rather than subjective ways.

The project manager must also evaluate quality as the project progresses. Private

metrics collected by individual software engineers are assimilated to provide project-

level results. Although many quality measures can be collected, the primary thrust at

the project level is to measure errors and defects. Metrics derived from these mea-

sures provide an indication of the effectiveness of individual and group software qual-

ity assurance and control activities.

Metrics such as work product (e.g., requirements or design) errors per function

point, errors uncovered per review hour, and errors uncovered per testing hour pro-

vide insight into the efficacy of each of the activities implied by the metric. Error data

can also be used to compute the defect removal efficiency (DRE) for each process frame-

work activity. DRE is discussed in Section 4.5.3.

4.5.1 An Overview of Factors That Affect Quality

Over 25 years ago, McCall and Cavano [MCC78] defined a set of quality factors that

were a first step toward the development of metrics for software quality. These fac-

tors assess software from three distinct points of view: (1) product operation (using

it), (2) product revision (changing it), and (3) product transition (modifying it to work

in a different environment; i.e.,  "porting" it).  In their work, the authors describe the
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relationship between these quality factors (what they call a framework) and other

aspects of the software engineering process:

First, the framework provides a mechanism for the project manager to identify what

qualities are important. These qualities are attributes of the software in addition to its func-

tional correctness and performance which have life cycle implications. Such factors as main-

tainability and portability have been shown in recent years to have significant life cycle cost

impact . . .

Secondly, the framework provides a means for quantitatively assessing how well the

development is progressing relative to the quality goals established . . .

Thirdly, the framework provides for more interaction of QA personnel throughout the

development effort . . .

Lastly, . . . quality assurance personal can use indications of poor quality to help iden-

tify [better] standards to be enforced in the future.

A detailed discussion of McCall and Cavano's framework, as well as other quality fac-

tors, is presented in Chapter 19. It is interesting to note that nearly every aspect of

computing has undergone radical change as the years have passed since McCall and

Cavano did their seminal work in 1978. But the attributes that provide an indication

of software quality remain the same.

What does this mean? If a software organization adopts a set of quality factors as

a “checklist” for assessing software quality, it is likely that software built today will

still exhibit quality well into the first few decades of this century. Even as computing

architectures undergo radical change (as they surely will), software that exhibits high

quality in operation, transition, and revision will continue to serve its users well.

4.5.2   Measuring Quality

Although there are many measures of software quality, correctness, maintainability,

integrity, and usability provide useful indicators for the project team. Gilb [GIL88] sug-

gests definitions and measures for each.

Correctness. A program must operate correctly or it provides little value to

its users. Correctness is the degree to which the software performs its

required function. The most common measure for correctness is defects per

KLOC, where a defect is defined as a verified lack of conformance to require-

ments. When considering the overall quality of a software product, defects

are those problems reported by a user of the program after the program has

been released for general use. For quality assessment purposes, defects are

counted over a standard period of time, typically one year.

Maintainability. Software maintenance accounts for more effort than any

other software engineering activity. Maintainability is the ease with which a

program can be corrected if an error is encountered, adapted if its environ-

ment changes, or enhanced if the customer desires a change in require-

Surprisingly, the factors
that defined software
quality in the 1970s
are the same factors
that continue to define
software quality in the
first decade of this
century.
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ments.  There is no way to measure maintainability directly; therefore, we

must use indirect measures. A simple time-oriented metric is mean-time-to-

change (MTTC), the time it takes to analyze the change request, design an

appropriate modification, implement the change, test it, and distribute the

change to all users. On average, programs that are maintainable will have a

lower MTTC (for equivalent types of changes) than programs that are not

maintainable. 

Hitachi [TAJ81] has used a cost-oriented metric for maintainability called

spoilage—the cost to correct defects encountered after the software has been

released to its end-users. When the ratio of spoilage to overall project cost

(for many projects) is plotted as a function of time, a manager can determine

whether the overall maintainability of software produced by a software

development organization is improving. Actions can then be taken in

response to the insight gained from this information.

Integrity. Software integrity has become increasingly important in the age

of hackers and firewalls. This attribute measures a system's ability to with-

stand attacks (both accidental and intentional) to its security. Attacks can be

made on all three components of software: programs, data, and documents.

To measure integrity, two additional attributes must be defined: threat and

security. Threat is the probability (which can be estimated or derived from

empirical evidence) that an attack of a specific type will occur within a given

time. Security is the probability (which can be estimated or derived from

empirical evidence) that the attack of a specific type will be repelled. The

integrity of a system can then be defined as

integrity = summation [(1 – threat) � (1 – security)]

where threat and security are summed over each type of attack. 

Usability. The catch phrase "user-friendliness" has become ubiquitous in

discussions of software products. If a program is not user-friendly, it is often

doomed to failure, even if the functions that it performs are valuable. Usabil-

ity is an attempt to quantify user-friendliness and can be measured in terms

of four characteristics: (1) the physical and or intellectual skill required to

learn the system, (2) the time required to become moderately efficient in the

use of the system, (3) the net increase in productivity (over the approach that

the system replaces) measured when the system is used by someone who is

moderately efficient, and (4) a subjective assessment (sometimes obtained

through a questionnaire) of users attitudes toward the system. Detailed dis-

cussion of this topic is contained in Chapter 15.

The four factors just described are only a sampling of those that have been proposed

as measures for software quality. Chapter 19 considers this topic in additional detail.
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4.5.3 Defect Removal Efficiency

A quality metric that provides benefit at both the project and process level is defect

removal efficiency (DRE). In essence, DRE is a measure of the filtering ability of qual-

ity assurance and control activities as they are applied throughout all process frame-

work activities.

When considered for a project as a whole, DRE is defined in the following 

manner:

DRE = E/(E + D) (4-4)

where E is the number of errors found before delivery of the software to the end-user

and D is the number of defects found after delivery.

The ideal value for DRE is 1. That is, no defects are found in the software. Realis-

tically, D will be greater than 0, but the value of DRE can still approach 1. As E increases

(for a given value of D), the overall value of DRE begins to approach 1. In fact, as E

increases, it is likely that the final value of D will decrease (errors are filtered out before

they become defects). If used as a metric that provides an indicator of the filtering abil-

ity of quality control and assurance activities, DRE encourages a software project team

to institute techniques for finding as many errors as possible before delivery.

DRE can also be used within the project to assess a team’s ability to find errors

before they are passed to the next framework activity or software engineering task.

For example, the requirements analysis task produces an analysis model that can be

reviewed to find and correct errors. Those errors that are not found during the review

of the analysis model are passed on to the design task (where they may or may not

be found). When used in this context, we redefine DRE as

DREi = Ei/(Ei + Ei+1) (4-5)

where Ei is the  number of errors found during software engineering activity i and

Ei+1 is the  number of errors found during software engineering activity i+1 that are

traceable to errors that were not discovered in software engineering activity i.

A quality objective for a software team (or an individual software engineer) is to

achieve DREi that approaches 1. That is, errors should be filtered out before they are

passed on to the next activity.

4.6  INTEGRATING METRICS WITHIN THE SOFTWARE PROCESS

The majority of software developers still do not measure, and sadly, most have little

desire to begin. As we noted earlier in this chapter, the problem is cultural. Attempt-

ing to collect measures where none had been collected in the past often precipitates

resistance. "Why do we need to do this?" asks a harried project manager. "I don't see

the point," complains an overworked practitioner.

In this section, we consider some arguments for software metrics and present an

approach for instituting a metrics collection program within a software engineering

Use DRE as a measure
of the efficacy of your
early SQA activities. If
DRE is low during
analysis and design,
spend some time
improving the way you
conduct formal
technical reviews.

What is
defect

removal efficiency?
?
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organization. But before we begin, some words of wisdom are suggested by Grady

and Caswell [GRA87]:

Some of the things we describe here will sound quite easy. Realistically, though, establish-
ing a successful company-wide software metrics program is hard work. When we say that
you must wait at least three years before broad organizational trends are available, you get
some idea of the scope of such an effort.

The caveat suggested by the authors is well worth heeding, but the benefits of mea-

surement are so compelling that the hard work is worth it.

4.6.1 Arguments for Software Metrics

Why is it so important to measure the process of software engineering and the prod-

uct (software) that it produces? The answer is relatively obvious. If we do not mea-

sure, there no real way of determining whether we are improving. And if we are not

improving, we are lost. 

By requesting and evaluating  productivity and quality measures, senior manage-

ment can establish meaningful goals for improvement of the software engineering

process. In Chapter 1 we noted that software is a strategic business issue for many

companies. If the process through which it is developed can be improved, a direct

impact on the bottom line can result. But to establish goals for improvement, the cur-

rent status of software development must be understood. Hence, measurement is

used to establish a process baseline from which improvements can be assessed.

The day-to-day rigors of software project work leave little time for strategic think-

ing. Software project managers are concerned with more mundane (but equally impor-

tant) issues: developing meaningful project estimates, producing higher-quality

systems, getting product out the door on time. By using measurement to establish a

project baseline, each of these issues becomes more manageable. We have already

noted that the baseline serves as a basis for estimation. Additionally, the collection

of quality metrics enables an organization to "tune" its software process to remove

the "vital few" causes of defects that have the greatest impact on software develop-

ment.9

At the project and technical levels (in the trenches), software metrics provide imme-

diate benefit. As the software design is completed, most developers would be anx-

ious to obtain answers to the questions such as

• Which user requirements are most likely to change?

• Which components in this system are most error prone?

• How much testing should be planned for each component?

• How many errors (of specific types) can I expect when testing commences?
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“We manage things
‘by the numbers’ in
many aspects of our
lives. . . . These
numbers give us
insight and help
steer our actions.”
Michael Mah
Larry Putnam

9 These ideas have been formalized into an approach called statistical software quality assurance
and are discussed in detail in Chapter 8.
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Answers to these questions can be determined if metrics have been collected and

used as a technical guide. In later chapters, we examine how this is done.

4.6.2  Establishing a Baseline

By establishing a metrics baseline, benefits can be obtained at the process, project,

and product (technical) levels. Yet the information that is collected need not be fun-

damentally different. The same metrics can serve many masters. The metrics base-

line consists of data collected from past software development projects and can be

as simple as the table presented in Figure 4.4 or as complex as a comprehensive data-

base containing dozens of project measures and the metrics derived from them. 

To be an effective aid in process improvement and/or cost and effort estimation,

baseline data must have the following attributes: (1) data must be reasonably accu-

rate—"guestimates" about past projects are to be avoided; (2) data should be col-

lected for as many projects as possible; (3) measures must be consistent, for example,

a line of code must be interpreted consistently across all projects for which data are

collected; (4) applications should be similar to work that is to be estimated—it makes

little sense to use a baseline for batch information systems work to estimate a real-

time, embedded application.

4.6.3 Metrics Collection, Computation, and Evaluation

The process for establishing a baseline is illustrated in Figure 4.7. Ideally, data needed

to establish a baseline has been collected in an ongoing manner. Sadly, this is rarely

the case. Therefore, data collection requires a historical investigation of past projects

to reconstruct required data. Once measures have been collected (unquestionably

the most difficult step), metrics computation is possible. Depending on the breadth

of measures collected, metrics can span a broad range of LOC or FP metrics as well

as other quality- and project-oriented metrics. Finally, metrics must be evaluated and

applied during estimation, technical work, project control, and process improvement.

Metrics evaluation focuses on the underlying reasons for the results obtained and

produces a set of indicators that guide the project or process.

4.7 MANAGING VARIATION: STATISTICAL PROCESS
CONTROL

Because the software process and the product it produces both are influenced by

many parameters (e.g., the skill level of practitioners, the structure of the software

team, the knowledge of the customer, the technology that is to be implemented, the

tools to be used in the development activity), metrics collected for one project or

product will not be the same as similar metrics collected for another project. In fact,

there is often significant variability in the metrics we collect as part of the software

process.

Baseline metrics data
should be collected
from a large,
representative
sampling of past
software projects.

What critical
information

can metrics
provide for a
developer?
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Since the same process metrics will vary from project to project, how can we tell if

improved (or degraded) metrics values that occur as consequence of improvement activ-

ities are having a quantitative impact? How do we know whether we’re looking at a sta-

tistically valid trend or whether the “trend” is simply a result of statistical noise? When

are changes (either positive or negative) to a particular software metric meaningful?

A graphical technique is available for determining whether changes and varia-

tion in metrics data are meaningful. Called the control chart and developed by Wal-

ter Shewart in the 1920s,10 this technique enables individuals interested in software

process improvement to determine whether the dispersion (variability) and “location”

(moving average) of process metrics are stable (i.e., the process exhibits only natural

or controlled changes) or unstable (i.e., the process exhibits out-of-control changes

and metrics cannot be used to predict performance). Two different types of control

charts are used in the assessment of metrics data [ZUL99]: (1) the moving range con-

trol chart and (2) the individual control chart. 

To illustrate the control chart approach, consider a software organization that col-

lects the process metric, errors uncovered per review hour, Er. Over the past 15 months,

the organization has collected Er for 20 small projects in the same general software

development domain. The resultant values for Er are represented in Figure 4.8. In the

figure, Er varies from a low of 1.2 for project 3 to a high of 5.9 for project 17. In an

effort to improve the effectiveness of reviews, the software organization provided

training and mentoring to all project team members beginning with project 11.
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“If I had to reduce
my message for
management to just
a few words, I’d say
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reducing variation.”
W. Edwards
Deming

10 It should be noted that, although the control chart was originally developed for manufacturing

processes, it is equally applicable for software processes.
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Richard Zultner provides an overview of the procedure required to develop a mov-

ing range (mR) control chart for determining the stability of the process [ZUL99]:

1. Calculate the moving ranges: the absolute value of the successive differences between

each pair of data points . . . Plot these moving ranges on your chart.

2. Calculate the mean of the moving ranges . . . plot this (“mR  bar”) as the center line on

your chart.

3. Multiply the mean by 3.268. Plot this line as the upper control limit [UCL]. This line is

three standard deviations above the mean.

Using the data represented in Figure 4.8 and the steps suggested by Zultner, we

develop an mR control chart shown in Figure 4.9. The mR bar (mean) value for the

moving range data is 1.71. The upper control limit is 5.58.

To determine whether the process metrics dispersion is stable, a simple question

is asked: Are all the moving range values inside the UCL? For the example noted, the

answer is “yes.” Hence, the metrics dispersion is stable.

The individual control chart is developed in the following manner:11

1. Plot individual metrics values as shown in Figure 4.8.

2. Compute the average value, Am, for the metrics values.

3. Multiply the mean of the mR values (the mR bar) by 2.660 and add Am com-

puted in step 2. This results in the upper natural process limit (UNPL). Plot the

UNPL.

4. Multiply the mean of the mR values (the mR bar) by 2.660 and subtract this

amount from Am computed in step 2. This results in the lower natural process

limit (LNPL). Plot the LNPL. If the LNPL is less than 0.0, it need not be plotted

unless the metric being evaluated takes on values that are less than 0.0.

5. Compute a standard deviation as (UNPL � Am)/3. Plot lines one and two

standard deviations above and below Am. If any of the standard deviation

FIGURE 4.8
Metrics data
for errors
uncovered per
review hour

11 The discussion that follows is a summary of steps suggested by Zultner [ZUL99].
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lines is less than 0.0, it need not be plotted unless the metric being evaluated

takes on values that are less than 0.0.

Applying these steps to the data represented in Figure 4.8, we derive an individual

control chart as shown in Figure 4.10.

Zultner [ZUL99] reviews four criteria, called zone rules, that may be used to eval-

uate whether the changes represented by the metrics indicate a process that is in

control or out of control. If any of the following conditions is true, the metrics data

indicate a process that is out of control:

1. A single metrics value lies outside the UNPL.

2. Two out of three successive metrics values lie more than two standard devia-

tions away from Am. 

3. Four out of five successive metrics values lie more than one standard devia-

tion away from Am.

4. Eight consecutive metrics values lie on one side of Am. 
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Since all of these conditions fail for the values shown in Figure 4.10, the metrics data

are derived from a stable process and trend information can be legitimately inferred

from the metrics collected. Referring to Figure 4.10, it can be seen that the variabil-

ity of Er decreases after project 10 (i.e., after an effort to improve the effectiveness of

reviews). By computing the mean value for the first 10 and last 10 projects, it can be

shown that the mean value of Er for projects 11–20 shows a 29 percent improvement

over Er for projects 1–10. Since the control chart indicates that the process is stable,

it appears that efforts to improve review effectiveness are working.

4.8   METRICS FOR SMALL ORGANIZATIONS

The vast majority of software development organizations have fewer than 20 soft-

ware people. It is unreasonable, and in most cases unrealistic, to expect that such

organizations will develop comprehensive software metrics programs. However, it

is reasonable to suggest that software organizations of all sizes measure and then

use the resultant metrics to help improve their local software process and the qual-

ity and timeliness of the products they produce. Kautz [KAU99] describes a typical

scenario that occurs when metrics programs are suggested for small software orga-

nizations: 

Originally, the software developers greeted our activities with a great deal of skepticism,

but they eventually accepted them because we kept our measurements simple, tailored

them to each organization, and ensured that they produced valuable information. In the

end, the programs provided a foundation for taking care of customers and for planning and

carrying out future work.

What Kautz suggests is a commonsense approach to the implementation of any soft-

ware process related activity: keep it simple, customize to meet local needs, and be

sure it adds value. In the paragraphs that follow, we examine how these guidelines

relate to metrics for small shops.

“Keep it simple” is a guideline that works reasonably well in many activities. But

how do we derive a “simple” set of software metrics that still provides value, and how

can we be sure that these simple metrics will meet the needs of a particular software

organization? We begin by focusing not on measurement but rather on results. The

software group is polled to define a single objective that requires improvement. For

example, “reduce the time to evaluate and implement change requests.” A small orga-

nization might select the following set of easily collected measures:

• Time (hours or days) elapsed from the time a request is made until evalua-

tion is complete, tqueue.

• Effort (person-hours) to perform the evaluation, Weval.

• Time (hours or days) elapsed from completion of evaluation to assignment of

change order to personnel, teval.

If you’re just starting
to collect software
metrics, remember to
keep it simple. If you
bury yourself with
data, your metrics
effort will fail.

How do I
derive a set

of “simple”
software metrics?

?
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• Effort (person-hours) required to make the change, Wchange.

• Time required (hours or days) to make the change, tchange.

• Errors uncovered during work to make change, Echange.

• Defects uncovered after change is released to the customer base, Dchange.

Once these measures have been collected for a number of change requests, it is pos-

sible to compute the total elapsed time from change request to implementation of

the change and the percentage of elapsed time absorbed by initial queuing, evalua-

tion and change assignment, and change implementation. Similarly, the percentage

of effort required for evaluation and implementation can be determined. These met-

rics can be assessed in the context of quality data, Echange and Dchange. The percent-

ages provide insight into where the change request process slows down and may

lead to process improvement steps to reduce tqueue, Weval, teval, Wchange, and/or

Echange. In addition, the defect removal efficiency can be computed as

DRE = Echange / (Echange + Dchange)

DRE can be compared to elapsed time and total effort to determine the impact of

quality assurance activities on the time and effort required to make a change.

For small groups, the cost of collecting measures and computing metrics ranges

from 3 to 8 percent of project budget during the learning phase and then drops to less

than 1 percent of project budget after software engineers and project managers have

become familiar with the metrics program [GRA99]. These costs can show a sub-

stantial return on investment if the insights derived from metrics data lead to mean-

ingful process improvement for the software organization.

4.9   ESTABLISHING A SOFTWARE METRICS PROGRAM

The Software Engineering Institute has developed a comprehensive guidebook [PAR96]

for establishing a “goal-driven” software metrics program. The guidebook suggests

the following steps:

1. Identify your business goals.

2. Identify what you want to know or learn.

3. Identify your subgoals.

4. Identify the entities and attributes related to your subgoals.

5. Formalize your measurement goals.

6. Identify quantifiable questions and the related indicators that you will use to

help you achieve your measurement goals.

7. Identify the data elements that you will collect to construct the indicators that

help answer your questions.

8. Define the measures to be used, and make these definitions operational.
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9. Identify the actions that you will take to implement the measures.

10. Prepare a plan for implementing the measures.

A detailed discussion of these steps is best left to the SEI’s guidebook. However, a

brief overview of key points is worthwhile.

Because software supports business functions, differentiates computer-based sys-

tems or products, or acts as a product in itself, goals defined for the business can

almost always be traced downward to specific goals at the software engineering level.

For example, consider a company that makes advanced home security systems which

have substantial software content. Working as a team, software engineering and busi-

ness managers can develop a list of prioritized business goals:

1. Improve our customers’ satisfaction with our products.

2. Make our products easier to use.

3. Reduce the time it takes us to get a new product to market.

4. Make support for our products easier.

5. Improve our overall profitability.

The software organization examines each business goal and asks: “What activi-

ties do we manage or execute and what do we want to improve within these activi-

ties?” To answer these questions the SEI recommends the creation of an

“entity-question list” in which all things (entities) within the software process that are

managed or influenced by the software organization are noted. Examples of entities

include development resources, work products, source code, test cases, change

requests, software engineering tasks, and schedules. For each entity listed, software

people develop a set of questions that assess quantitative characteristics of the entity

(e.g., size, cost, time to develop). The questions derived as a consequence of the cre-

ation of an entity-question list lead to the derivation of a set of subgoals that relate

directly to the entities created and the activities performed as part of the software

process.

Consider the fourth goal: “Make support for our products easier.” The following

list of questions might be derived for this goal [PAR96]:

• Do customer change requests contain the information we require to adequately

evaluate the change and then implement it in a timely manner?

• How large is the change request backlog?

• Is our response time for fixing bugs acceptable based on customer need?

• Is our change control process (Chapter 9) followed?

• Are high-priority changes implemented in a timely manner?

Based on these questions, the software organization can derive the following sub-

goal: Improve the performance of the change management process. The software

The software metrics
you choose are driven
by the business or
technical goals you
wish to accomplish.
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process entities and attributes that are relevant to the subgoal are identified and mea-

surement goals associated with them are delineated. 

The SEI [PAR96] provides detailed guidance for steps 6 through 10 of its goal-

driven measurement approach. In essence, a process of stepwise refinement is applied

in which goals are refined into questions that are further refined into entities and

attributes that are then refined into metrics.  

4.10   SUMMARY

Measurement enables managers and practitioners to improve the software process;

assist in the planning, tracking, and control of a software project; and assess the qual-

ity of the product (software) that is produced. Measures of specific attributes of the

process, project, and product are used to compute software metrics. These metrics

can be analyzed to provide indicators that guide management and technical actions.

Process metrics enable an organization to take a strategic view by providing insight

into the effectiveness of a software process. Project metrics are tactical. They enable

a project manager to adapt project work flow and technical approach in a real-time

manner.

Both size- and function-oriented metrics are used throughout the industry. Size-

oriented metrics use the line of code as a normalizing factor for other measures such

as person-months or defects. The function point is derived from measures of the infor-

mation domain and a subjective assessment of problem complexity. 

Software quality metrics, like productivity metrics, focus on the process, the proj-

ect, and the product. By developing and analyzing a metrics baseline for quality, an

organization can correct those areas of the software process that are the cause of

software defects. 

Metrics are meaningful only if they have been examined for statistical validity. The

control chart is a simple method for accomplishing this and at the same time exam-

ining the variation and location of metrics results.

Measurement results in cultural change. Data collection, metrics computation,

and metrics analysis are the three steps that must be implemented to begin a met-

rics program. In general, a goal-driven approach helps an organization focus on the

right metrics for its business. By creating a metrics baseline—a database containing

process and product measurements—software engineers and their managers can

gain better insight into the work that they do and the product that they produce.
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PROBLEMS AND POINTS TO PONDER

4.1. Suggest three measures, three metrics, and corresponding indicators that might

be used to assess an automobile.

4.2. Suggest three measures, three metrics, and corresponding indicators that might

be used to assess the service department of an automobile dealership.

4.3. Describe the difference between process and project metrics in your own words.

4.4. Why should some software metrics be kept “private”? Provide examples of three

metrics that should be private. Provide examples of three metrics that should be public.

4.5. Obtain a copy of Humphrey (Introduction to the Personal Software Process, Addison-

Wesley, 1997) and write a one- or two-page summary that outlines the PSP approach.

4.6. Grady suggests an etiquette for software metrics. Can you add three more rules

to those noted in Section 4.2.1?

4.7. Attempt to complete the fishbone diagram shown in Figure 4.3. That is, fol-

lowing the approach used for “incorrect” specifications, provide analogous informa-

tion for “missing, ambiguous, and changed” specifications.

4.8. What is an indirect measure and why are such measures common in software

metrics work?

4.9. Team A found 342 errors during the software engineering process prior to release.

Team B found 184 errors. What additional measures would have to be made for proj-

ects A and B to determine which of the teams eliminated errors more efficiently? What

metrics would you propose to help in making the determination? What historical data

might be useful?

4.10. Present an argument against lines of code as a measure for software produc-

tivity. Will your case hold up when dozens or hundreds of projects are considered?

4.11. Compute the function point value for a project with the following information

domain characteristics:

Number of user inputs:  32 

Number of user outputs:  60  

Number of user inquiries:  24  

Number of files:  8 

Number of external interfaces:  2

Assume that all complexity adjustment values are average. 

4.12. Compute the 3D function point value for an embedded system with the fol-

lowing characteristics:

Internal data structures:  6 

External data structure:  3
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Number of user inputs:  12 

Number of user outputs:  60  

Number of user inquiries:  9  

Number of external interfaces:  3

Transformations:  36

Transitions:  24

Assume that the complexity of these counts is evenly divided between low, average,

and high.

4.13. The software used to control a photocopier requires 32,000 of C and 4,200

lines of Smalltalk. Estimate the number of function points for the software inside the 

photocopier.

4.14. McCall and Cavano (Section 4.5.1) define a "framework" for software quality.

Using information contained in this and other books, expand each of the three major

"points of view" into a set of quality factors and metrics.

4.15. Develop your own metrics (do not use those presented in this chapter) for cor-

rectness, maintainability, integrity, and usability. Be sure that they can be translated

into quantitative values.

4.16. Is it possible for spoilage to increase while at the same time defects/KLOC

decrease? Explain.

4.17. Does the LOC measure make any sense when fourth generation techniques

are used? Explain.

4.18. A software organization has DRE data for 15 projects over the past two years.

The values collected are 0.81, 0.71, 0.87, 0.54, 0.63, 0.71, 0.90, 0.82, 0.61, 0.84, 0.73,

0.88, 0.74, 0.86, 0.83. Create mR and individual control charts to determine whether

these data can be used to assess trends. 

FURTHER READINGS AND INFORMATION SOURCES

Software process improvement (SPI) has received a significant amount of attention

over the past decade. Since measurement and software metrics are key to success-

fully improving the software process, many books on SPI also discuss metrics. Worth-

while additions to the literature include:

Burr, A. and M. Owen, Statistical Methods for Software Quality, International Thomson Pub-

lishing, 1996. 

El Emam, K. and N. Madhavji (eds.), Elements of Software Process Assessment and Improve-

ment, IEEE Computer Society, 1999.

Florac, W.A. and A.D. Carleton, Measuring the Software Process: Statistical Process Control for

Software Process Improvement, Addison-Wesley, 1999. 
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Garmus, D. and D. Herron, Measuring the Software Process: A Practical Guide to Functional Mea-

surements, Prentice-Hall, 1996.

Humphrey, W., Introduction to the Team Software Process, Addison-Wesley Longman, 2000.

Kan, S.H., Metrics and Models in Software Quality Engineering, Addison-Wesley, 1995.

Humphrey [HUM95], Yeh (Software Process Control, McGraw-Hill, 1993), Hetzel [HET93],

and Grady [GRA92] discuss how software metrics can be used to provide the indica-

tors necessary to improve the software process. Putnam and Myers (Executive Brief-

ing: Controlling Software Development, IEEE Computer Society, 1996) and Pulford and

his colleagues (A Quantitative Approach to Software Management, Addison-Wesley,

1996) discuss process metrics and their use from a management point of view.

Weinberg (Quality Software Management, Volume 2: First Order Measurement, Dorset

House, 1993) presents a useful model for observing software projects, ascertaining

the meaning of the observation, and determining its significance for tactical and strate-

gic decisions. Garmus and Herron (Measuring the Software Process, Prentice-Hall,

1996) discuss process metrics with an emphasis on function point analysis. The Soft-

ware Productivity Consortium (The Software Measurement Guidebook, Thomson Com-

puter Press, 1995) provides useful suggestions for instituting an effective metrics

approach. Oman and Pfleeger (Applying Software Metrics, IEEE Computer Society Press,

1997) have edited an excellent anthology of important papers on software metrics.

Park, et al. [PAR96] have developed a detailed guidebook that provides step-by-step

suggestions for instituting a software metrics program for software process improve-

ment.

The newsletter IT Metrics (edited by Howard Rubin and published by Cutter Infor-

mation Services) presents useful commentary on the state of software metrics in the

industry. The magazines Cutter IT Journal and Software Development have regular arti-

cles and entire features dedicated to software metrics.  

A wide variety of information sources on software process and project metrics are

available on the Internet. An up-to-date list of World Wide Web references that are

relevant to the software process and project metrics can be found at the SEPA Web

site:  

http://www.mhhe.com/engcs/compsci/pressman/resources/

process-metrics.mhtml
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Software project management begins with a set of activities that are col-
lectively called project planning. Before the project can begin, the man-
ager and the software team must estimate the work to be done, the

resources that will be required, and the time that will elapse from start to fin-
ish. Whenever estimates are made, we look into the future and accept some
degree of uncertainty as a matter of course. To quote Frederick Brooks [BRO75]:

. . . our techniques of estimating are poorly developed. More seriously, they reflect

an unvoiced assumption that is quite untrue, i.e., that all will go well. . . . because

we are uncertain of our estimates,  software managers often lack the courteous stub-

bornness to make people wait for a good product. 

Although estimating is as much art as it is science, this important activity need
not be conducted in a haphazard manner. Useful techniques for time and effort
estimation do exist. Process and project metrics can provide historical per-
spective and powerful input for the generation of quantitative estimates. Past
experience (of all people involved) can aid immeasurably as estimates are devel-
oped and reviewed. Because estimation lays a foundation for all other project
planning activities and project planning provides the road map for successful
software engineering, we would be ill-advised to embark without it.

5 SOFTWARE PROJECT
PLANNING

What is it? Software project plan-

ning actually encompasses all of

the activities we discuss in Chap-

ters 5 through 9. However, in the context of this

chapter, planning involves estimation—your

attempt to determine how much money, how

much effort, how many resources, and how much

time it will take to build a specific software-based

system or product.

Who does it? Software managers—using information

solicited from customers and software engineers

and software metrics data collected from past 

projects.

Why is it important? Would you build a house with-

out knowing how much you were about to spend?

Of course not, and since most computer-based sys-

tems and products cost considerably more to build

than a large house, it would seem reasonable to

develop an estimate before you  start creating the

software.

What are the steps? Estimation begins with a descrip-

tion of the scope of the product. Until the scope is

“bounded” it’s not possible to develop a mean-

ingful estimate. The problem is then decomposed

into a set of smaller problems and each of these

is estimated using historical data and experience

as guides. It is advisable to generate your esti-

mates using at least two different methods (as a

cross check). Problem complexity and risk are con-

sidered before a final estimate is made.

What is the work product? A simple table delineat-

ing the tasks to be performed, the functions to be

Q U I C K
L O O K
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5.1  OBSERVATIONS ON ESTIMATING

A leading executive was once asked what single characteristic was most important

when selecting a project manager.  His response:  "a person with the ability to know

what will go wrong before it actually does . . ." We might add: "and the courage to

estimate when the future is cloudy."

Estimation of resources, cost, and schedule for a software engineering effort

requires experience, access to good historical information, and the courage to com-

mit to quantitative predictions when qualitative information is all that exists.  Esti-

mation carries inherent risk1 and this risk leads to uncertainty.

Project complexity has a strong effect on the uncertainty inherent in planning. Com-

plexity, however, is a relative measure that is affected by familiarity with past effort.

The first-time developer of a sophisticated e-commerce application might consider 

it to be exceedingly complex. However, a software team developing its tenth 

e-commerce Web site would consider such work run of the mill. A number of quan-

titative software complexity measures have been proposed [ZUS97]. Such measures

are applied at the design or code level and are therefore difficult to use during soft-

ware planning (before a design and code exist). However, other, more subjective

assessments of complexity (e.g., the function point complexity adjustment factors

described in Chapter 4) can be established early in the planning process.

Project size is another important factor that can affect the accuracy and efficacy of

estimates. As size increases, the interdependency among various elements of the

software grows rapidly.2 Problem decomposition, an important approach to esti-

mating, becomes more difficult because decomposed elements may still be formida-

ble.  To paraphrase Murphy's law: "What can go wrong will go wrong”—and if there

are more things that can fail, more things will fail.

The degree of structural uncertainty also has an effect on estimation risk. In this

context, structure refers to the degree to which requirements have been solidified,

the ease with which functions can be compartmentalized, and the hierarchical nature

of the information that must be processed.

implemented, and the cost, effort,

and time involved for each is

generated. A list of required pro-

ject resources is also produced.

How do I ensure that I’ve done it right? That’s hard,

because you won’t really know until the project has

been completed. However, if you have experience

and follow a systematic approach, generate esti-

mates using solid historical data, create estimation

data points using at least two different methods,

and factor in complexity and risk, you can feel con-

fident that you’ve given it your best shot.

Q U I C K
L O O K

1 Systematic techniques for risk analysis are presented in Chapter 6.
2 Size often increases due to the “scope creep” that occurs when the customer changes require-

ments. Increases in project size can have a geometric impact on project cost and schedule (M.
Mah, personal communication). 

“Good estimating
approaches and solid
historical data offer
the best hope that
reality will win over
impossible
demands.” 
Capers Jones

Project complexity,
project size, and the
degree of structural
uncertainty all affect
the reliability of
estimates.
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The availability of historical information has a strong influence on estimation risk.

By looking back, we can emulate things that worked and improve areas where prob-

lems arose. When comprehensive software metrics (Chapter 4) are available for past

projects, estimates can be made with greater assurance, schedules can be established

to avoid past difficulties, and overall risk is reduced. 

Risk is measured by the degree of uncertainty in the quantitative estimates estab-

lished for resources, cost, and schedule.  If project scope is poorly understood or proj-

ect requirements are subject to change, uncertainty and risk become dangerously

high.  The software planner should demand completeness of function, performance,

and interface definitions (contained in a System Specification).  The planner, and more

important, the customer should recognize that variability in software requirements

means instability in cost and schedule.

However, a project manager should not become obsessive about estimation. Mod-

ern software engineering approaches (e.g., evolutionary process models) take an iter-

ative view of development. In such approaches, it is possible3 to revisit the estimate

(as more information is known) and revise it when the customer makes changes to

requirements.

5.2  PROJECT PLANNING OBJECTIVES

The objective of software project planning is to provide a framework that enables the

manager to make reasonable estimates of resources, cost, and schedule.  These esti-

mates are made within a limited time frame at the beginning of a software project

and should be updated regularly as the project progresses. In addition, estimates

should attempt to define best case and worst case scenarios so that project outcomes

can be bounded.

The planning objective is achieved through a process of information discovery that

leads to reasonable estimates.  In the following sections, each of the activities asso-

ciated with software project planning is discussed.

5.3  SOFTWARE SCOPE

The first activity in software project planning is the determination of software scope.

Function and performance allocated to software during system engineering (Chap-

ter 10) should be assessed to establish a project scope that is unambiguous and under-

standable at the management and technical levels.  A statement of software scope

must be bounded.

Software scope describes the data and control to be processed, function, perfor-

mance, constraints, interfaces, and reliability. Functions described in the statement
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“It is the mark of an
instructed mind to
rest satisfied with the
degree of precision
which the nature of a
subject admits, and
not to seek exactness
when only an
approximation of the
truth is possible.” 
Aristotle

3 This is not meant to imply that it is always politically acceptable to modify initial estimates. A
mature software organization and its managers recognize that change is not free. And yet, many
customers demand (incorrectly) that an estimate once made must be maintained regardless of
changing circumstances.

The more you know,
the better you
estimate. Therefore,
update your estimates
as the project
progresses.
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of scope are evaluated and in some cases refined to provide more detail prior to the

beginning of estimation. Because both cost and schedule estimates are functionally

oriented, some degree of decomposition is often useful. Performance considerations

encompass processing and response time requirements. Constraints identify limits

placed on the software by external hardware, available memory, or other existing

systems.

5.3.1 Obtaining Information Necessary for Scope

Things are always somewhat hazy at the beginning of a software project. A need has

been defined and basic goals and objectives have been enunciated, but the information

necessary to define scope (a prerequisite for estimation) has not yet been delineated. 

The most commonly used technique to bridge the communication gap between

the customer and developer and to get the communication process started is to

conduct a preliminary meeting or interview. The first meeting between the soft-

ware engineer (the analyst) and the customer can be likened to the awkwardness

of a first date between two adolescents. Neither person knows what to say or ask;

both are worried that what they do say will be misinterpreted; both are thinking

about where it might lead (both likely have radically different expectations here);

both want to get the thing over with; but at the same time, both want it to be a

success.

Yet, communication must be initiated. Gause and Weinberg [GAU89] suggest that

the analyst start by asking context-free questions; that is, a set of questions that will

lead to a basic understanding of the problem, the people who want a solution, the

nature of the solution desired, and the effectiveness of the first encounter itself. 

The first set of context-free questions focuses on the customer, the overall goals

and benefits. For example, the analyst might ask:

• Who is behind the request for this work?

• Who will use the solution?

• What will be the economic benefit of a successful solution?

• Is there another source for the solution?

The next set of questions enables the analyst to gain a better understanding of the

problem and the customer to voice any perceptions about a solution:

• How would you (the customer) characterize "good" output that would be

generated by a successful solution?

• What problem(s) will this solution address?

• Can you show me (or describe) the environment in which the solution will be

used?

• Will any special performance issues or constraints affect the way the solution

is approached?

How should
we initiate

communication
between the
developer and the
customer?

?
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The final set of questions focuses on the effectiveness of the meeting. Gause and

Weinberg call these "meta-questions" and propose the following (abbreviated) list:

• Are you the right person to answer these questions? Are answers "official"?

• Are my questions relevant to the problem that you have?

• Am I asking too many questions?

• Can anyone else provide additional information?

• Should I be asking you anything else?

These questions (and others) will help to "break the ice" and initiate the communi-

cation that is essential to establish the scope of the project. But a question and answer

meeting format is not an approach that has been overwhelmingly successful. In fact,

the Q&A session should be used for the first encounter only and then be replaced

by a meeting format that combines elements of problem solving, negotiation, and

specification. 

Customers and software engineers often have an unconscious "us and them" mind-

set. Rather than working as a team to identify and refine requirements, each con-

stituency defines its own "territory" and communicates through a series of memos,

formal position papers, documents, and question and answer sessions. History has

shown that this approach works poorly. Misunderstandings abound, important infor-

mation is omitted, and a successful working relationship is never established.

With these problems in mind, a number of independent investigators have devel-

oped a team-oriented approach to requirements gathering that can be applied to

help establish the scope of a project. Called facilitated application specification tech-

niques (FAST), this approach encourages the creation of a joint team of customers

and developers who work together to identify the problem, propose elements 

of the solution, negotiate different approaches, and specify a preliminary set of

requirements.

5.3.2 Feasibility

Once scope has been identified (with the concurrence of the customer), it is reason-

able to ask: “Can we build software to meet this scope? Is the project feasible?” All

too often, software engineers rush past these questions (or are pushed past them by

impatient managers or customers), only to become mired in a project that is doomed

from the onset. Putnam and Myers [PUT97a] address this issue when they write:

. . . not everything imaginable is feasible, not even in software, evanescent as it may appear

to outsiders. On the contrary, software feasibility has four solid dimensions: Technology—

Is a project technically feasible? Is it within the state of the art? Can defects be reduced to

a level matching the application’s needs? Finance—Is it financially feasible? Can develop-

ment be completed at a cost the software organization, its client, or the market can afford?

Time—Will the project’s time-to-market beat the competition? Resources—Does the orga-

nization have the resources needed to succeed?
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XRef
Requirements
elicitation techniques
are discussed in
Chapter 11.

"It's 106 miles to
Chicago, we got a
full tank of gas, half
a pack of cigarettes,
it's dark and we're
wearing sunglasses.
Hit it."
The Blues Brothers
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For some projects in established areas the answers are easy. You have done projects

like this one before. After a few hours or sometimes a few weeks of investigation, you are

sure you can do it again. 

Projects on the margins of your experience are not so easy. A team may have to spend

several months discovering what the central, difficult-to-implement requirements of a new

application actually are. Do some of these requirements pose risks that would make the

project infeasible? Can these risks be overcome? The feasibility team ought to carry initial

architecture and design of the high-risk requirements to the point at which it can answer

these questions. In some cases, when the team gets negative answers, a reduction in require-

ments may be negotiated. 

Meantime, the cartoon people [senior managers] are drumming their fingers nervously

on their large desks. Often, they wave their fat cigars in a lordly manner and yell impatiently

through the smoke screen, “Enough. Do it!”

Many of the projects that appear in the newspapers a few years later as whopping fail-

ures got started this way.

Putnam and Myers correctly suggest that scoping is not enough. Once scope is under-

stood, the software team and others must work to determine if it can be done within

the dimensions just noted. This is a crucial, although often overlooked, part of the

estimation process. 

5.3.3 A Scoping Example  

Communication with the customer leads to a definition of the data and control that

are processed, the functions that must be implemented, the performance and con-

straints that bound the system, and related information. As an example, consider

software for a conveyor line sorting system (CLSS). The statement of scope for CLSS

follows: 

The conveyor line sorting system (CLSS) sorts boxes moving along a conveyor line. Each

box is identified by a bar code that contains a part number and is sorted into one of six bins

at the end of the line. The boxes pass by a sorting station that contains a bar code reader

and a PC. The sorting station PC is connected to a shunting mechanism that sorts the boxes

into the bins.  Boxes pass in random order and are evenly spaced. The line is moving at five

feet per minute. CLSS is depicted schematically in Figure 5.1. 

CLSS software receives input information from a bar code reader at time intervals that

conform to the conveyor line speed. Bar code data will be decoded into box identification

format. The software will do a look-up in a part number database containing a maximum

of 1000 entries to determine proper bin location for the box currently at the reader (sorting

station). The proper bin location is passed to a sorting shunt that will position boxes in the

appropriate bin. A record of the bin destination for each box will be maintained for later

recovery and reporting.  CLSS software will also receive input from a pulse tachometer that

will be used to synchronize the control signal to the shunting mechanism. Based on the

number of pulses generated between the sorting station and the shunt, the software will

produce a control signal to the shunt to properly position the box. 

Technical feasibility is
important, but
business need is even
more important. It
does no good to build
a high tech system or
product that no one
really wants.



CHAPTER 5 SOFTWARE PROJECT PLANNING

The project planner examines the statement of scope and extracts all important soft-

ware functions. This process, called decomposition, was discussed in Chapter 3 and

results in the following functions:4

• Read bar code input.

• Read pulse tachometer.

• Decode part code data.

• Do database look-up.

• Determine bin location.

• Produce control signal for shunt.

• Maintain record of box destinations.

In this case, performance is dictated by conveyor line speed. Processing for each

box must be completed before the next box arrives at the bar code reader. The CLSS

software is constrained by the hardware it must access (the bar code reader, the shunt,

the PC), the available memory, and the overall conveyor line configuration (evenly

spaced boxes).

Function, performance, and constraints must be evaluated together. The same func-

tion can precipitate an order of magnitude difference in development effort when con-

sidered in the context of different performance bounds. The effort and cost required
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ID no. ID no. ID no. ID no.

Shunt
Sorting
station

1
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4

5

6
Control

connection

Bar code

Conveyor line
motion

FIGURE 5.1
A conveyor
line sorting 
system

4 In reality, the functional decomposition is performed during system engineering (Chapter 10). The
planner uses information derived from the System Specification to define software functions.

Adjust estimates to
reflect difficult
performance
requirements and
design constraints,
even if scope is
otherwise simple.
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to develop CLSS software would be dramatically different if function remains the same

(i.e., put boxes into bins) but performance varies. For instance, if the conveyor line

average speed increases by a factor of 10 (performance) and boxes are no long spaced

evenly (a constraint), software would become considerably more complex—thereby

requiring more effort. Function, performance, and constraints are intimately connected.

Software interacts with other elements of a computer-based system. The planner

considers the nature and complexity of each interface to determine any effect on

development resources, cost, and schedule. The concept of an interface is interpreted

to include (1) the hardware (e.g., processor, peripherals) that executes the software

and devices (e.g., machines, displays) indirectly controlled by the software, (2) soft-

ware that already exists (e.g., database access routines, reusable software compo-

nents, operating system) and must be linked to the new software, (3) people that

make use of the software via keyboard or other I/O devices, and (4) procedures that

precede or succeed the software as a sequential series of operations. In each case,

the information transfer across the interface must be clearly understood.

The least precise aspect of software scope is a discussion of reliability. Software

reliability measures do exist (see Chapter 8) but they are rarely used at this stage of

a project. Classic hardware reliability characteristics like mean-time-between-failures

(MTBF) can be difficult to translate to the software domain. However, the general

nature of the software may dictate special considerations to ensure "reliability." For

example, software for an air traffic control system or the space shuttle (both human-

rated systems) must not fail or human life may be lost. An inventory control system

or word-processor software should not fail, but the impact of failure is considerably

less dramatic. Although it may not be possible to quantify software reliability as pre-

cisely as we would like in the statement of scope, we can use the nature of the proj-

ect to aid in formulating estimates of effort and cost to assure reliability.

If a System Specification (see Chapter 10) has been properly developed, nearly all

information required for a description of software scope is available and documented

before software project planning begins.  In cases where a specification has not been

developed, the planner must take on the role of system analyst to determine attrib-

utes and bounds that will influence estimation tasks.

5.4  RESOURCES

The second software planning task is estimation of the resources required to accom-

plish the software development effort. Figure 5.2 illustrates development resources

as a pyramid. The development environment—hardware and software tools—sits at

the foundation of the resources pyramid and provides the infrastructure to support

the development effort. At a higher level, we encounter reusable software compo-

nents—software building blocks that can dramatically reduce development costs and

accelerate delivery. At the top of the pyramid is the primary resource—people. Each

resource is specified with four characteristics: description of the resource, a state-

A consideration of
software scope must
include an evaluation
of all external
interfaces.

What is the
primary

source of
information for
determining
scope?

?
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ment of availability, time when the resource will be required; duration of time that

resource will be applied. The last two characteristics can be viewed as a time win-

dow. Availability of the resource for a specified window must be established at the

earliest practical time.

5.4.1 Human Resources

The planner begins by evaluating scope and selecting the skills required to complete

development. Both organizational position (e.g., manager, senior software engineer)

and specialty (e.g., telecommunications, database, client/server) are specified. For

relatively small projects (one person-year or less), a single individual may perform

all software engineering tasks, consulting with specialists as required.  

The number of people required for a software project can be determined only after

an estimate of development effort (e.g., person-months) is made. Techniques for esti-

mating effort are discussed later in this chapter.

5.4.2 Reusable Software Resources

Component-based software engineering (CBSE)5 emphasizes reusability—that is, the

creation and reuse of software building blocks [HOO91]. Such building blocks, often

called components, must be cataloged for easy reference, standardized for easy appli-

cation, and validated for easy integration.

Bennatan [BEN92] suggests four software resource categories that should be con-

sidered as planning proceeds:

Off-the-shelf components. Existing software that can be acquired from a

third party or that has been developed internally for a past project. COTS

(commercial off-the-shelf) components are purchased from a third party, are

ready for use on the current project, and have been fully validated.

Full-experience components. Existing specifications, designs, code, or

test data developed for past projects that are similar to the software to be

121

Hardware/software tools

Reusable software
components

People

FIGURE 5.2
Project
resources

5 Component-based software engineering is considered in detail in Chapter 27. 

XRef
The roles software
people play and the
team organizations
that they populate are
discussed in Chapter 3.

To be reused
effectively, software
components must be
cataloged,
standardized, and
validated.
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built for the current project. Members of the current software team have had

full experience in the application area represented by these components.

Therefore, modifications required for full-experience components will be rel-

atively low-risk.

Partial-experience components. Existing specifications, designs, code, or

test data developed for past projects that are related to the software to be

built for the current project but will require substantial modification. Mem-

bers of the current software team have only limited experience in the appli-

cation area represented by these components. Therefore, modifications

required for partial-experience components have a fair degree of risk.

New components. Software components that must be built by the soft-

ware team specifically for the needs of the current project.

The following guidelines should be considered by the software planner when

reusable components are specified as a resource:

1. If off-the-shelf components meet project requirements, acquire them. The

cost for acquisition and integration of off-the-shelf components will almost

always be less than the cost to develop equivalent software.6 In addition, risk

is relatively low.

2. If full-experience components are available, the risks associated with modifi-

cation and integration are generally acceptable. The project plan should

reflect the use of these components.

3. If partial-experience components are available, their use for the current proj-

ect must be analyzed. If extensive modification is required before the compo-

nents can be properly integrated with other elements of the software,

proceed carefully—risk is high. The cost to modify partial-experience compo-

nents can sometimes be greater than the cost to develop new components. 

Ironically, reusable software components are often neglected during planning, only

to become a paramount concern during the development phase of the software

process. It is better to specify software resource requirements early. In this way tech-

nical evaluation of the alternatives can be conducted and timely acquisition can occur.

5.4.3  Environmental Resources

The environment that supports the software project, often called the software engi-

neering environment (SEE),  incorporates hardware and software. Hardware provides

a platform that supports the tools (software) required to produce the work products

that are an outcome of good software engineering practice.7 Because most software

6 When existing software components are used during a project, the overall cost reduction can be
dramatic. In fact, industry data indicate that cost, time to market, and the number of defects
delivered to the field all are reduced.

7 Other hardware—the target environment—is the computer on which the software will execute
when it has been released to the end-user.

What issues
should we

consider when we
plan to reuse
existing software
components?

?



CHAPTER 5 SOFTWARE PROJECT PLANNING

organizations have multiple constituencies that require access to the SEE, a project

planner must prescribe the time window required for hardware and software and

verify that these resources will be available.  

When a computer-based system (incorporating specialized hardware and software)

is to be engineered, the software team may require access to hardware elements being

developed by other engineering teams. For example, software for a numerical con-

trol (NC) used on a class of machine tools may require a specific machine tool (e.g.,

an NC lathe) as part of the validation test step; a software project for advanced page-

layout may need a digital-typesetting system at some point during development. Each

hardware element must be specified by the software project planner.

5.5  SOFTWARE PROJECT ESTIMATION

In the early days of computing, software costs constituted a small percentage of the

overall computer-based system cost.  An order of magnitude error in estimates of

software cost had relatively little impact. Today, software is the most expensive ele-

ment of virtually all computer-based systems.  For complex, custom systems, a large

cost estimation error can make the difference between profit and loss.  Cost overrun

can be disastrous for the developer.

Software cost and effort estimation will never be an exact science.  Too many vari-

ables—human, technical, environmental, political—can affect the ultimate cost of

software and effort applied to develop it.  However, software project estimation can

be transformed from a black art to a series of systematic steps that provide estimates

with acceptable risk.

To achieve reliable cost and effort estimates, a number of options arise: 

1. Delay estimation until late in the project (obviously, we can achieve

100% accurate estimates after the project is complete!).

2. Base estimates on similar projects that have already been completed.

3. Use relatively simple decomposition techniques to generate project cost and

effort estimates.

4. Use one or more empirical models for software cost and effort estimation. 

Unfortunately, the first option, however attractive, is not practical. Cost estimates

must be provided "up front." However, we should recognize that the longer we wait,

the more we know, and the more we know, the less likely we are to make serious

errors in our estimates.

The second option can work reasonably well, if the current project is quite simi-

lar to past efforts and other project influences (e.g., the customer, business condi-

tions, the SEE, deadlines) are equivalent. Unfortunately, past experience has not

always been a good indicator of future results.

The remaining options are viable approaches to software project estimation. Ide-

ally, the techniques noted for each option should be applied in tandem; each used as
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outsourcing and
increased
competition, the
ability to estimate
more accurately . . .
has emerged as a
critical survival factor
for many IT groups.”
Rob Thomsett
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a cross-check for the other. Decomposition techniques take a "divide and conquer"

approach to software project estimation. By decomposing a project into major func-

tions and related software engineering activities, cost and effort estimation can be

performed in a stepwise fashion. Empirical estimation models can be used to com-

plement decomposition techniques and offer a potentially valuable estimation

approach in their own right. A model is based on experience (historical data) and

takes the form

d = f (vi)

where d is one of a number of estimated values (e.g., effort, cost, project duration)

and vi are selected independent parameters (e.g., estimated LOC or FP). 

Automated estimation tools implement one or more decomposition techniques or

empirical models. When combined with a graphical user interface, automated tools

provide an attractive option for estimating. In such systems, the characteristics of the

development organization (e.g., experience, environment) and the software to be

developed are described. Cost and effort estimates are derived from these data.

Each of the viable software cost estimation options is only as good as the histor-

ical data used to seed the estimate. If no historical data exist, costing rests on a very

shaky foundation.  In Chapter 4, we examined the characteristics of some of the soft-

ware metrics that provide the basis for historical estimation data.

5.6  DECOMPOSITION TECHNIQUES

Software project estimation is a form of problem solving, and in most cases, the

problem to be solved (i.e., developing a cost and effort estimate for a software proj-

ect) is too complex to be considered in one piece. For this reason, we decompose

the problem, recharacterizing it as a set of smaller (and hopefully, more manage-

able) problems.

In Chapter 3, the decomposition approach was discussed from two different points

of view: decomposition of the problem and decomposition of the process. Estima-

tion uses one or both forms of partitioning. But before an estimate can be made, the

project planner must understand the scope of the software to be built and generate

an estimate of its “size.”

5.6.1 Software Sizing

The accuracy of a software project estimate is predicated on a number of things: (1)

the degree to which the planner has properly estimated the size of the product to be

built; (2) the ability to translate the size estimate into human effort, calendar time,

and dollars (a function of the availability of reliable software metrics from past proj-

ects); (3) the degree to which the project plan reflects the abilities of the software

team; and (4) the stability of product requirements and the environment that sup-

ports the software engineering effort.

Estimation tools

The “size” of software
to be built can be
estimated using a
direct measure, LOC,
or an indirect measure,
FP.
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In this section, we consider the software sizing problem. Because a project esti-

mate is only as good as the estimate of the size of the work to be accomplished, siz-

ing represents the project planner’s first major challenge. In the context of project

planning, size refers to a quantifiable outcome of the software project. If a direct

approach is taken, size can be measured in LOC. If an indirect approach is chosen,

size is represented as FP.

Putnam and Myers [PUT92] suggest four different approaches to the sizing problem:

“Fuzzy logic” sizing. This approach uses the approximate reasoning tech-

niques that are the cornerstone of fuzzy logic. To apply this approach, the

planner must identify the type of application, establish its magnitude on a

qualitative scale, and then refine the magnitude within the original range.

Although personal experience can be used, the planner should also have

access to a historical database of projects8 so that estimates can be com-

pared to actual experience.

Function point sizing. The planner develops estimates of the information

domain characteristics discussed in Chapter 4. 

Standard component sizing. Software is composed of a number of differ-

ent “standard components” that are generic to a particular application area.

For example, the standard components for an information system are subsys-

tems, modules, screens, reports, interactive programs, batch programs, files,

LOC, and object-level instructions. The project planner estimates the number

of occurrences of each standard component and then uses historical project

data to determine the delivered size per standard component. To illustrate,

consider an information systems application. The planner estimates that 18

reports will be generated. Historical data indicates that 967 lines of COBOL

[PUT92] are required per report. This enables the planner to estimate that

17,000 LOC will be required for the reports component. Similar estimates and

computation are made for other standard components, and a combined size

value (adjusted statistically) results.

Change sizing. This approach is used when a project encompasses the use

of existing software that must be modified in some way as part of a project.

The planner estimates the number and type (e.g., reuse, adding code, chang-

ing code, deleting code) of modifications that must be accomplished. Using

an “effort ratio” [PUT92] for each type of change, the size of the change may

be estimated.

Putnam and Myers suggest that the results of each of these sizing approaches be

combined statistically to create a three-point or expected value estimate. This is accom-

plished by developing optimistic (low), most likely, and pessimistic (high) values for

size and combining them using Equations (5-1) described in the next section. 
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8 See Section 5.9 for a discussion of estimating tools that make use of a historical database and the
other sizing techniques discussed in this section..

How do we
size the

software that
we’re planning to
build?

?
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5.6.2 Problem-Based Estimation

In Chapter 4, lines of code and function points were described as measures from

which productivity metrics can be computed. LOC and FP data are used in two

ways during software project estimation: (1) as an estimation variable to "size"

each element of the software and (2) as baseline metrics collected from past proj-

ects and used in conjunction with estimation variables to develop cost and effort

projections.

LOC and FP estimation are distinct estimation techniques. Yet both have a num-

ber of characteristics in common. The project planner begins with a bounded state-

ment of software scope and from this statement attempts to decompose software

into problem functions that can each be estimated individually. LOC or FP (the esti-

mation variable) is then estimated for each function. Alternatively, the planner may

choose another component for sizing such as classes or objects, changes, or busi-

ness processes affected. 

Baseline productivity metrics (e.g., LOC/pm or FP/pm9) are then applied to the

appropriate estimation variable, and cost or effort for the function is derived. Func-

tion estimates are combined to produce an overall estimate for the entire project.

It is important to note, however, that there is often substantial scatter in produc-

tivity metrics for an organization, making the use of a single baseline productivity

metric suspect. In general, LOC/pm or FP/pm averages should be computed by proj-

ect domain. That is, projects should be grouped by team size, application area, com-

plexity, and other relevant parameters. Local domain averages should then be

computed. When a new project is estimated, it should first be allocated to a domain,

and then the appropriate domain average for productivity should be used in gener-

ating the estimate. 

The LOC and FP estimation techniques differ in the level of detail required for

decomposition and the target of the partitioning. When LOC is used as the estima-

tion variable, decomposition10 is absolutely essential and is often taken to consider-

able levels of detail. The following decomposition approach has been adapted from

Phillips  [PHI98]:11

define product scope;
identify functions by decomposing scope;
do while functions remain

select a functionj
assign all functions to subfunctions list;

9 The acronym pm stands for person-month.
10 In general, problem functions are decomposed. However, a list of standard components (Section

5.6.1) may be used instead.
11 The informal process design language noted here is intended to illustrate the general approach

for sizing. It does not consider every logical contingency.

When collecting
productivity metrics for
projects, be sure to
establish a taxonomy
of project types. This
will enable you to
compute domain-
specific averages,
making estimation
more accurate.

For LOC estimates,
decomposition focuses
on software functions.

What do
LOC- and

FP-oriented
estimation have
in common?

?
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do while subfunctions remain
select subfunctionk
if subfunctionk resembles subfunctiond described in a historical data base
then note historical cost, effort, size (LOC or FP) data for subfunctiond;

adjust historical cost, effort, size data based on any differences;
use adjusted cost, effort, size data to derive partial estimate, Ep;
project estimate = sum of {Ep};

else if cost, effort, size (LOC or FP) for subfunctionk can be estimated
then derive partial estimate, Ep;
project estimate = sum of {Ep};
else subdivide subfunctionk into smaller subfunctions;
add these to subfunctions list;
endif

endif
enddo

enddo

This decomposition approach assumes that all functions can be decomposed

into subfunctions that will resemble entries in a historical data base. If this is

not the case, then another sizing approach must be applied. The greater the

degree of partitioning, the more likely reasonably accurate estimates of LOC can

be developed.

For FP estimates, decomposition works differently. Rather than focusing on

function, each of the information domain characteristics—inputs, outputs, data

files, inquiries, and external interfaces—as well as the 14 complexity adjustment

values discussed in Chapter 4 are estimated. The resultant estimates can then be

used to derive a FP value that can be tied to past data and used to generate an

estimate. 

Regardless of the estimation variable that is used, the project planner begins by

estimating a range of values for each function or information domain value. Using

historical data or (when all else fails) intuition, the planner estimates an optimistic,

most likely, and pessimistic size value for each function or count for each informa-

tion domain value. An implicit indication of the degree of uncertainty is provided

when a range of values is specified. 

A three-point or expected value can then be computed. The expected value for the

estimation variable (size), S, can be computed as a weighted average of the optimistic

(sopt), most likely (sm), and pessimistic (spess) estimates. For example,  

S = (sopt + 4sm + spess)/6 (5-1)

gives heaviest credence to the “most likely” estimate and follows a beta probability

distribution.  We assume that there is a very small probability the actual size result

will fall outside the optimistic or pessimistic values.
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For FP estimates,
decomposition focuses
on information domain
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How do I
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Once the expected value for the estimation variable has been determined, histor-

ical LOC or FP productivity data are applied. Are the estimates correct? The only rea-

sonable answer to this question is: "We can't be sure." Any estimation technique, no

matter how sophisticated, must be cross-checked with another approach. Even then,

common sense and experience must prevail.

5.6.3  An Example of LOC-Based Estimation

As an example of LOC and FP problem-based estimation techniques, let us consider

a software package to be developed for a computer-aided design application for

mechanical components. A review of the System Specification indicates that the soft-

ware is to execute on an engineering workstation and must interface with various

computer graphics peripherals including a mouse, digitizer, high resolution color dis-

play and laser printer.

Using the System Specification as a guide, a preliminary statement of software scope

can be developed:

The CAD software will accept two- and three-dimensional geometric data from an 

engineer. The engineer will interact and control the CAD system through a user interface

that will exhibit characteristics of good human/machine interface design. All geometric

data and other supporting information will be maintained in a CAD database. Design analy-

sis modules will be developed to produce the required output, which will be displayed on

a variety of graphics devices. The software will be designed to control and interact with

peripheral devices that include a mouse, digitizer, laser printer, and plotter.

This statement of scope is preliminary—it is not bounded. Every sentence would have

to be expanded to provide concrete detail and quantitative bounding. For example,

before estimation can begin the planner must determine what "characteristics of good

human/machine interface design" means or what the size and sophistication of the

"CAD database" are to be. 

For our purposes, we assume that further refinement has occurred and that the

following major software functions are identified:

• User interface and control facilities (UICF)

• Two-dimensional geometric analysis (2DGA)

• Three-dimensional geometric analysis (3DGA) 

• Database management (DBM)  

• Computer graphics display facilities (CGDF) 

• Peripheral control function (PCF) 

• Design analysis modules (DAM)

Following the decomposition technique for LOC, an estimation table, shown in Fig-

ure 5.3, is developed.  A range of LOC estimates is developed for each function. For

example, the range of LOC estimates for the 3D geometric analysis function is opti-

mistic—4600 LOC, most likely—6900 LOC, and pessimistic—8600 LOC.

Many modern
applications reside on
a network or are part
of a client/server
architecture. Therefore,
be sure that your
estimates include the
effort required for the
development of
“infrastructure”
software.
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Applying  Equation (5-1), the expected value for the 3D geometric analysis function is 6800

LOC. Other estimates are derived in a similar fashion. By summing vertically in the esti-

mated LOC column, an estimate of 33,200  lines of code is established for the CAD system.

A review of historical data indicates that the organizational average productivity

for systems of this type is 620 LOC/pm. Based on a burdened labor rate of $8000 per

month, the cost per line of code is approximately $13. Based on the LOC estimate

and the historical productivity data, the total estimated project cost is $431,000 and

the estimated effort is 54 person-months.12

5.6.4 An Example of FP-Based Estimation

Decomposition for FP-based estimation focuses on information domain values rather

than software functions. Referring to the function point calculation table presented in

Figure 5.4, the project planner estimates inputs, outputs, inquiries, files, and external

interfaces for the CAD software. For the purposes of this estimate, the complexity weight-

ing factor is assumed to be average. Figure 5.4 presents the results of this estimate.
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Function

User interface and control facilities (UICF)
Two-dimensional geometric analysis (2DGA)
Three-dimensional geometric analysis (3DGA)
Database management (DBM)
Computer graphics display facilities (CGDF)
Peripheral control function (PCF)
Design analysis modules (DAM)

Estimated lines of code

Estimated LOC

2,300
5,300
6,800
3,350
4,950
2,100
8,400

33,200

FIGURE 5.3
Estimation
table for the
LOC method

12 Estimates are rounded-off to the nearest $1,000 and person-month. Arithmetic precision to the

nearest dollar or tenth of a month is unrealistic.

Information domain value

Number of inputs

Number of outputs

Number of inquiries

Number of files

Number of external interfaces

Count total

FP 
count

97

78

88

42

15

320

Opt.

20

12

16

4

2

Likely

24

15

22

4

2

Pess.

30

22

28

5

3

Est.
count

24

16

22

4

2

Weight

4

5

5

10

7

FIGURE 5.4
Estimating
information
domain 
values

Do not succumb to the
temptation to use this
result as your
estimate. You should
derive another
estimate using a
different method.

WebRef
Information on FP cost
estimating tools can be
obtained at 
www.spr.com
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Each of the complexity weighting factors is estimated and the complexity adjust-

ment factor is computed as described in Chapter 4:

Factor Value
Backup and recovery 4
Data communications 2
Distributed processing 0
Performance critical 4
Existing operating environment 3
On-line data entry 4
Input transaction over multiple screens 5
Master files updated on-line 3
Information domain values complex 5
Internal processing complex 5
Code designed for reuse 4
Conversion/installation in design 3
Multiple installations 5
Application designed for change 5
Complexity adjustment factor 1.17

Finally, the estimated number of FP is derived:

FPestimated = count-total x [0.65 + 0.01 x � (Fi)]

FPestimated = 375

The organizational average productivity for systems of this type is 6.5 FP/pm. Based

on a burdened labor rate of $8000 per month, the cost per FP is approximately $1230.

Based on the LOC estimate and the historical productivity data, the total estimated

project cost is $461,000 and the estimated effort is 58 person-months.

5.6.4 Process-Based Estimation

The most common technique for estimating a project is to base the estimate on the

process that will be used. That is, the process is decomposed into a relatively small

set of tasks and the effort required to accomplish each task is estimated. 

Like the problem-based techniques, process-based estimation begins with a delin-

eation of software functions obtained from the project scope. A series of software

process activities must be performed for each function. Functions and related soft-

ware process activities may be represented as part of a table similar to the one pre-

sented in Figure 3.2.

Once problem functions and process activities are melded, the planner estimates

the effort (e.g., person-months) that will be required to accomplish each software process

activity for each software function. These data constitute the central matrix of the table

in Figure 3.2. Average labor rates (i.e., cost/unit effort) are then applied to the effort

estimated for each process activity. It is very likely the labor rate will vary for each task.

Senior staff heavily involved in early activities are generally more expensive than junior

staff involved in later design tasks, code generation, and early testing.

XRef
A common process
framework (CPF) is
discussed in 
Chapter 2.
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Costs and effort for each function and software process activity are computed as

the last step. If process-based estimation is performed independently of LOC or FP

estimation, we now have two or three estimates for cost and effort that may be com-

pared and reconciled. If both sets of estimates show reasonable agreement, there is

good reason to believe that the estimates are reliable. If, on the other hand, the results

of these decomposition techniques show little agreement, further investigation and

analysis must be conducted. 

5.6.5 An Example of Process-Based Estimation

To illustrate the use of process-based estimation, we again consider the CAD soft-

ware introduced in Section 5.6.3.  The system configuration and all software func-

tions remain unchanged and are indicated by project scope.

Referring to the completed process-based table shown in Figure 5.5, estimates of

effort (in person-months) for each software engineering activity are provided for each

CAD software function (abbreviated for brevity). The engineering and construction

release activities are subdivided into the major software engineering tasks shown.

Gross estimates of effort are provided for customer communication, planning, and

risk analysis. These are noted in the total row at the bottom of the table. Horizontal

and vertical totals provide an indication of estimated effort required for analysis,

design, code, and test.  It should be noted that 53 percent of all effort is expended on

front-end engineering tasks (requirements analysis and design), indicating the rela-

tive importance of this work.

Based on an average burdened labor rate of $8,000 per month, the total estimated

project cost is $368,000 and the estimated effort is 46 person-months. If desired, labor

rates could be associated with each software process activity or software engineer-

ing task and computed separately.
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Activity

Task

Function

UICF
2DGA
3DGA

DBM
PCF

CGDF

DAM

Totals

% effort

CC Planning Risk
analysis Engineering Construction

release TotalsCE

Analysis Design Code Test

0.25 0.25 0.25 3.50 20.50 4.50 16.50 46.00

1% 1% 1% 8% 45% 10% 36%

CC = customer communication   CE = customer evaluation

0.50
0.75
0.50
0.50
0.50
0.25

2.50
4.00
4.00
3.00
3.00
2.00

0.40
0.60
1.00
1.00
0.75
0.50

5.00
2.00
3.00
1.50
1.50
1.50

8.40
7.35
8.50
6.00
5.75
4.25

0.50 2.00 0.50 2.00 5.00

n/a
n/a
n/a
n/a
n/a
n/a
n/a

FIGURE 5.5
Process-based
estimation
table

If time permits, use
greater granularity
when specifying tasks
in Figure 5.5, such as
breaking analysis into
its major tasks and
estimating each
separately.
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Total estimated effort for the CAD software range from a low of 46 person-months

(derived using a process-based estimation approach) to a high of 58 person-months

(derived using an FP estimation approach). The average estimate (using all three

approaches) is 53 person-months. The maximum variation from the average esti-

mate is approximately 13 percent. 

What happens when agreement between estimates is poor?  The answer to this

question requires a re-evaluation of information used to make the estimates. Widely

divergent estimates can often be traced to one of two causes:

1. The scope of the project is not adequately understood or has been misinter-

preted by the planner. 

2. Productivity data used for problem-based estimation techniques is inappro-

priate for the application, obsolete (in that it no longer accurately reflects the

software engineering organization), or has been misapplied. 

The planner must determine the cause of divergence and then reconcile the estimates. 

5.7  EMPIRICAL ESTIMATION MODELS

An estimation model for computer software uses empirically derived formulas to pre-

dict effort as a function of LOC or FP. Values for LOC or FP are estimated using the

approach described in Sections 5.6.2 and 5.6.3. But instead of using the tables described

in those sections, the resultant values for LOC or FP are plugged into the estimation

model. 

The empirical data that support most estimation models are derived from a lim-

ited sample of projects. For this reason, no estimation model is appropriate for all

classes of software and in all development environments. Therefore, the results

obtained from such models must be used judiciously.13

5.7.1 The Structure of Estimation Models

A typical estimation model is derived using regression analysis on data collected from

past software projects. The overall structure of such models takes the form [MAT94]

E = A + B x (ev)C (5-2)

where A, B, and C are empirically derived constants, E is effort in person-months, and

ev is the estimation variable (either LOC or FP). In addition to the relationship noted

in Equation (5-2), the majority of estimation models have some form of project adjust-

Do not expect that all
estimates will agree
within a percent or
two. If the estimates
are within a 20
percent band, they can
be reconciled into a
single value.

13 In general, an estimation model should be calibrated for local conditions. The model should be
run using the results of completed projects. Data predicted by the model should be compared to
actual results and the efficacy of the model (for local conditions) should be assessed. If agreement
is not good, model coefficients and exponents must be recomputed using local data.

An estimation model
reflects the population
of projects from which
it has been derived.
Therefore, the model is
domain sensitive.
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ment component that enables E to be adjusted by other project characteristics (e.g.,

problem complexity, staff experience, development environment). Among the many

LOC-oriented estimation models proposed in the literature are

E = 5.2 x (KLOC)0.91 Walston-Felix model

E = 5.5 + 0.73 x (KLOC)1.16 Bailey-Basili model

E = 3.2 x (KLOC)1.05 Boehm simple model

E = 5.288 x (KLOC)1.047 Doty model for KLOC > 9

FP-oriented models have also been proposed. These include

E = �13.39 + 0.0545 FP Albrecht and Gaffney model 

E = 60.62 x 7.728 x 10-8 FP3 Kemerer model

E = 585.7 + 15.12 FP Matson, Barnett, and Mellichamp model

A quick examination of these models indicates that each will yield a different result14

for the same values of LOC or FP. The implication is clear. Estimation models must

be calibrated for local needs!

5.7.2 The COCOMO Model

In his classic book on “software engineering economics,” Barry Boehm [BOE81] intro-

duced a hierarchy of software estimation models bearing the name COCOMO, for

COnstructive COst MOdel. The original COCOMO model became one of the most widely

used and discussed software cost estimation models in the industry. It has evolved

into a more comprehensive estimation model, called COCOMO II [BOE96, BOE00].

Like its predecessor, COCOMO II is actually a hierarchy of estimation models that

address the following areas:

Application composition model. Used during the early stages of software

engineering, when prototyping of user interfaces, consideration of software

and system interaction, assessment of performance, and evaluation of tech-

nology maturity are paramount.

Early design stage model. Used once requirements have been stabilized

and basic software architecture has been established.

Post-architecture-stage model. Used during the construction of the 

software.

Like all estimation models for software, the COCOMO II models require sizing infor-

mation. Three different sizing options are available as part of the model hierarchy:

object points, function points, and lines of source code.

The COCOMO II application composition model uses object points and is 

illustrated in the following paragraphs. It should be noted that other, more 
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None of these models
should be used without
careful calibration to
your environment.

14 Part of the reason is that these models are often derived from relatively small populations of proj-
ects in only a few application domains.

WebRef
Detailed information on
COCOMO II, including
downloadable software,
can be obtained at
sunset.usc.edu/
COCOMOII/
cocomo.html 
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PROD

Very
low
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4

Low

Low

7

Nominal

Nominal

13

High

High

25

Very
high

Very
high

50
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sophisticated estimation models (using FP and KLOC) are also available as part of

COCOMO II.

Like function points (Chapter 4), the object point is an indirect software measure

that is computed using counts of the number of (1) screens (at the user interface), (2)

reports, and (3) components likely to be required to build the application. Each object

instance (e.g., a screen or report) is classified into one of three complexity levels (i.e.,

simple, medium, or difficult) using criteria suggested by Boehm [BOE96]. In essence,

complexity is a function of the number and source of the client and server data tables

that are required to generate the screen or report and the number of views or sec-

tions presented as part of the screen or report.

Once complexity is determined, the number of screens, reports, and components

are weighted according to Table 5.1. The object point count is then determined by

multiplying the original number of object instances by the weighting factor in Table

5.1 and summing to obtain a total object point count. When component-based devel-

opment or general software reuse is to be applied, the percent of reuse (%reuse) is

estimated and the object point count is adjusted:

NOP = (object points) x [(100 � %reuse)/100]

where NOP is defined as new object points.

To derive an estimate of effort based on the computed NOP value, a “productivity

rate” must be derived. Table 5.2 presents the productivity rate

PROD = NOP/person-month

Object type

Screen

Report

3GL component

Complexity weight

Simple Medium Difficult

1 2 3

2 5 8

10

TABLE 5.1
Complexity
weighting for
object types
[BOE96]

TABLE 5.2
Productivity
rates for object
points [BOE96]

What is an
“object

point”?
?
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for different levels of developer experience and development environment maturity.

Once the productivity rate has been determined, an estimate of project effort can be

derived as

estimated effort = NOP/PROD

In more advanced COCOMO II models,15 a variety of scale factors, cost drivers,

and adjustment procedures are required. A complete discussion of these is beyond

the scope of this book. The interested reader should see [BOE00] or visit the COCOMO

II Web site.

5.7.3 The Software Equation

The software equation [PUT92] is a dynamic multivariable model that assumes a spe-

cific distribution of effort over the life of a software development project. The model

has been derived from productivity data collected for over 4000 contemporary soft-

ware projects. Based on these data, an estimation model of the form

E = [LOC � B0.333/P]3 � (1/t4) (5-3)

where E = effort in person-months or person-years

t = project duration in months or years

B = “special skills factor”16

P = “productivity parameter” that reflects:

• Overall process maturity and management practices

• The extent to which good software engineering practices are used

• The level of programming languages used

• The state of the software environment

• The skills and experience of the software team

• The complexity of the application

Typical values might be P = 2,000 for development of real-time embedded software;

P = 10,000 for telecommunication and systems software; P = 28,000 for business sys-

tems applications.17 The productivity parameter can be derived for local conditions

using historical data collected from past development efforts. 

It is important to note that the software equation has two independent parame-

ters: (1) an estimate of size (in LOC) and (2) an indication of project duration in cal-

endar months or years. 
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15 As noted earlier, these models use FP and KLOC counts for the size variable.
16 B increases slowly as “the need for integration, testing, quality assurance, documentation, and

management skills grow [PUT92].”  For small programs (KLOC = 5 to 15), B = 0.16. For programs
greater than 70 KLOC, B = 0.39.

17 It is important to note that the productivity parameter can be empirically derived from local proj-
ect data.

WebRef
Information on software
cost estimation tools that
have evolved from the
software equation can be
obtained at
www.qsm.com
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To simplify the estimation process and use a more common form for their esti-

mation model, Putnam and Myers [PUT92] suggest a set of equations derived from

the software equation. Minimum development time is defined as

tmin = 8.14 (LOC/P)0.43 in months for tmin > 6 months (5-4a)

E = 180 Bt3 in person-months for E ≥ 20 person-months (5-4b)

Note that t in Equation (5-4b) is represented in years.

Using Equations (5-4) with P = 12,000 (the recommended value for scientific soft-

ware) for the CAD software discussed earlier in this chapter,

tmin = 8.14 (33200/12000)0.43

tmin = 12.6  calendar months

E = 180 � 0.28 � (1.05)3

E = 58 person-months

The results of the software equation correspond favorably with the estimates devel-

oped in Section 5.6. Like the COCOMO model noted in the preceding section, the soft-

ware equation has evolved over the past decade. Further discussion of an extended

version of this estimation approach can be found in [PUT97b]. 

5.8 THE MAKE/BUY DECISION

In many software application areas, it is often more cost effective to acquire than

develop computer software. Software engineering managers are faced with a

make/buy decision that can be further complicated by a number of acquisition

options: (1) software may be purchased (or licensed) off-the-shelf, (2) “full-

experience” or “partial-experience” software components (see Section 5.4.2) may

be acquired and then modified and integrated to meet specific needs, or (3) soft-

ware may be custom built by an outside contractor to meet the purchaser's 

specifications. 

The steps involved in the acquisition of software are defined by the criticality of

the software to be purchased and the end cost. In some cases (e.g., low-cost PC soft-

ware), it is less expensive to purchase and experiment than to conduct a lengthy eval-

uation of potential software packages. For more expensive software products, the

following guidelines can be applied: 

1. Develop specifications for function and performance of the desired soft-

ware. Define measurable characteristics whenever possible.

2. Estimate the internal cost to develop and the delivery date. 

3a. Select three or four candidate applications that best meet your specifications. 

3b. Select reusable software components that will assist in constructing the

required application.

There are times when
off-the-shelf software
provides a “perfect”
solution except for a
few special features
that you can’t live
without. In many
cases, it’s worth living
without the special
features!
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4. Develop a comparison matrix that presents a head-to-head comparison of key

functions. Alternatively, conduct benchmark tests to compare candidate software. 

5. Evaluate each software package or component based on past product qual-

ity, vendor support, product direction, reputation, and the like.

6. Contact other users of the software and ask for opinions. 

In the final analysis, the make/buy decision is made based on the following condi-

tions: (1) Will the delivery date of the software product be sooner than that for inter-

nally developed software? (2) Will the cost of acquisition plus the cost of customization

be less than the cost of developing the software internally? (3) Will the cost of out-

side support (e.g., a maintenance contract) be less than the cost of internal support?

These conditions apply for each of the acquisition options.

5.8.1 Creating a Decision Tree 

The steps just described can be augmented using statistical techniques such as decision

tree analysis [BOE89]. For example, Figure 5.6 depicts a decision tree for a software-

based system, X. In this case, the software engineering organization can (1) build sys-

tem X from scratch, (2) reuse existing “partial-experience” components to construct the

system, (3) buy an available software product and modify it to meet local needs, or 

(4) contract the software development to an outside vendor.
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$380,000

$450,000

Simple (0.30)

$275,000

$310,000

$490,000

$210,000

$400,000

Minor changes
(0.70)

Major changes (0.30)

$350,000

$500,000

Without changes
(0.60)

With changes (0.40)

Complex (0.80)

Simple (0.20)
Major

changes
(0.60)

Minor changes
(0.40)

Difficult (0.70)
Build

Reuse

Buy

Contract

System X

FIGURE 5.6
A decision tree
to support the
make/buy
decision

Is there a
systematic

way to sort
through the
options associated
with the
make/buy
decision?

?
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If the system is to be built from scratch, there is a 70 percent probability that the

job will be difficult. Using the estimation techniques discussed earlier in this chapter,

the project planner projects that a difficult development effort will cost $450,000. A

"simple" development effort is estimated to cost $380,000. The expected value for

cost, computed along any branch of the decision tree, is

expected cost = � (path probability)i x (estimated path cost)i

where i is the decision tree path. For the build path,

expected costbuild = 0.30 ($380K) + 0.70 ($450K) = $429K

Following other paths of the decision tree, the projected costs for reuse, purchase

and contract, under a variety of circumstances, are also shown. The expected costs

for these paths are

expected costreuse =  0.40 ($275K) + 0.60 [0.20($310K) + 0.80($490K)] = $382K

expected costbuy =  0.70($210K) + 0.30($400K)] = $267K

expected costcontract =  0.60($350K) + 0.40($500K)] = $410K

Based on the probability and projected costs that have been noted in Figure 5.6, the

lowest expected cost is the "buy" option.

It is important to note, however, that many criteria—not just cost— must be con-

sidered during the decision-making process. Availability, experience of the devel-

oper/vendor/contractor, conformance to requirements, local "politics," and the

likelihood of change are but a few of the criteria that may affect the ultimate deci-

sion to build, reuse, buy, or contract.

5.8.2 Outsourcing

Sooner or later, every company that develops computer software asks a fundamen-

tal question: “Is there a way that we can get the software and systems we need at a

lower price?” The answer to this question is not a simple one, and the emotional dis-

cussions that occur in response to the question always lead to a single word: out-

sourcing.  

In concept, outsourcing is extremely simple. Software engineering activities are

contracted to a third party who does the work at lower cost and, hopefully, higher

quality. Software work conducted within a company is reduced to a contract man-

agement activity. 

The decision to outsource can be either strategic or tactical. At the strategic level,

business managers consider whether a significant portion of all software work can

be contracted to others. At the tactical level, a project manager determines whether

part or all of a project can be best accomplished by subcontracting the software work. 

Regardless of the breadth of focus, the outsourcing decision is often a financial

one. A detailed discussion of the financial analysis for outsourcing is beyond the 

“As a rule,
outsourcing requires
even more skillful
management than
in-house
development.”
Steve McConnell

WebRef
An excellent tutorial on
decision tree analysis can
be found at 
www.demon.co.uk/
mindtool/dectree.
html



CHAPTER 5 SOFTWARE PROJECT PLANNING

scope of this book and is best left to others (e.g., [MIN95]). However, a brief review

of the pros and cons of the decision is worthwhile.

On the positive side, cost savings can usually be achieved by reducing the num-

ber of software people and the facilities (e.g., computers, infrastructure) that support

them. On the negative side, a company loses some control over the software that it

needs. Since software is a technology that differentiates its systems, services, and

products, a company runs the risk of putting the fate of its competitiveness into the

hands of a third party.

The trend toward outsourcing will undoubtedly continue. The only way to blunt

the trend is to recognize that software work is extremely competitive at all levels.

The only way to survive is to become as competitive as the outsourcing vendors them-

selves.

5.9  AUTOMATED ESTIMATION TOOLS

The decomposition techniques and empirical estimation models described in the pre-

ceding sections are available as part of a wide variety of software tools. These auto-

mated estimation tools allow the planner to estimate cost and effort and to perform

"what-if" analyses for important project variables such as delivery date or staffing.

Although many automated estimation tools exist, all exhibit the same general char-

acteristics and all perform the following six generic functions [JON96]:

1. Sizing of project deliverables. The “size” of one or more software work

products is estimated. Work products include the external representation of

software (e.g., screen, reports), the software itself (e.g., KLOC), functionality

delivered (e.g., function points), descriptive information (e.g. documents).

2. Selecting project activities. The appropriate process framework (Chapter

2) is selected and the software engineering task set is specified. 

3. Predicting staffing levels. The number of people who will be available to

do the work is specified. Because the relationship between people available

and work (predicted effort) is highly nonlinear, this is an important input.

4. Predicting software effort. Estimation tools use one or more models (e.g.,

Section 5.7) that relate the size of the project deliverables to the effort

required to produce them.

5. Predicting software cost. Given the results of step 4, costs can be com-

puted by allocating labor rates to the project activities noted in step 2.

6. Predicting software schedules. When effort, staffing level, and project

activities are known, a draft schedule can be produced by allocating labor

across software engineering activities based on recommended models for

effort distribution (Chapter 7). 
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Estimation tools

WebRef
Useful information
(papers, pointers) on
outsourcing can be found
at 
www.outsourcing.
com
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When different estimation tools are applied to the same project data, a relatively

large variation in estimated results is encountered. More important, predicted values

sometimes are significantly different than actual values. This reinforces the notion

that the output of estimation tools should be used as one "data point" from which

estimates are derived—not as the only source for an estimate. 

5.10  SUMMARY

The software project planner must estimate three things before a project begins: how

long it will take, how much effort will be required, and how many people will be

involved. In addition, the planner must predict the resources (hardware and software)

that will be required and the risk involved.

The statement of scope helps the planner to develop estimates using one or more

techniques that fall into two broad categories: decomposition and empirical model-

ing. Decomposition techniques require a delineation of major software functions, fol-

lowed by estimates of either (1) the number of LOC, (2) selected values within the

information domain, (3) the number of person-months required to implement each

function, or (4) the number of person-months required for each software engineer-

ing activity. Empirical techniques use empirically derived expressions for effort and

time to predict these project quantities. Automated tools can be used to implement

a specific empirical model. 

Accurate project estimates generally use at least two of the three techniques just

noted. By comparing and reconciling estimates derived using different techniques,

the planner is more likely to derive an accurate estimate. Software project estima-

tion can never be an exact science, but a combination of good historical data and

systematic techniques can improve estimation accuracy.
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PROBLEMS AND POINTS TO PONDER

5.1. Assume that you are the project manager for a company that builds software

for consumer products. You have been contracted to build the software for a home

security system. Write a statement of scope that describes the software. Be sure your

statement of scope is bounded. If you’re unfamiliar with home security systems, do

a bit of research before you begin writing. Alternate: Replace the home security sys-

tem with another problem that is of interest to you. 

5.2. Software project complexity is discussed briefly in Section 5.1. Develop a list of

software characteristics (e.g., concurrent operation, graphical output) that affect the

complexity of a project. Prioritize the list. 

5.3. Performance is an important consideration during planning. Discuss how per-

formance can be interpreted differently depending upon the software application

area. 

5.4. Do a functional decomposition of the home security system software you

described in problem 5.1. Estimate the size of each function in LOC. Assuming that

your organization produces 450 LOC/pm with a burdened labor rate of $7000 per

person-month, estimate the effort and cost required to build the software using the

LOC-based estimation technique described in Section 5.6.3.

5.5. Using the 3D function point measure described in Chapter 4, compute the num-

ber of FP for the home security system software and derive effort and cost estimates

using the FP-based estimation technique described in Section 5.6.4.

5.6. Use the COCOMO II model to estimate the effort required to build software for

a simple ATM that produces 12 screens, 10 reports, and will require approximately
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80 software components. Assume average complexity and average developer/envi-

ronment maturity.  Use the application composition model with object points. 

5.7. Use the software equation to estimate the home security system software.

Assume that Equations (5-4) are applicable and that P = 8000.

5.8. Compare the effort estimates derived in problems 5.4, 5.5, and 5.7. Develop a

single estimate for the project using a three-point estimate. What is the standard devi-

ation and how does it affect your degree of certainty about the estimate? 

5.9. Using the results obtained in problem 5.8, determine whether it’s reasonable to

expect that the software can be built within the next six months and how many peo-

ple would have to be used to get the job done.

5.10. Develop a spreadsheet model that implements one or more of the estimation

techniques described in this chapter. Alternatively, acquire one or more on-line mod-

els for estimation from Web-based sources.

5.11. For a project team, develop a software tool that implements each of the esti-

mation techniques developed in this chapter. 

5.12. It seems odd that cost and schedule estimates are developed during software

project planning—before detailed software requirements analysis or design has been

conducted. Why do you think this is done? Are there circumstances when it should

not be done?

5.13. Recompute the expected values noted for the decision tree in Figure 5.6 

assuming that every branch has a 50–50 probability. Would this change your final

decision? 

FURTHER READINGS AND INFORMATION SOURCES

Most software project management books contain discussions of project estimation.

Jones (Estimating Software Costs, McGraw-Hill, 1998) has written the most compre-

hensive treatment of the subject published to date. His book contains models and

data that are applicable to software estimating in every application domain. Roet-

zheim and Beasley (Software Project Cost and Schedule Estimating: Best Practices, Pren-

tice-Hall, 1997) present many useful models and suggest step-by-step guidelines for

generating the best possible estimates.

Phillips [PHI98], Bennatan (On Time, Within Budget: Software Project Management

Practices and Techniques, Wiley, 1995), Whitten (Managing Software Development Proj-

ects: Formula for Success, Wiley, 1995), Wellman (Software Costing, Prentice-Hall, 1992),

and Londeix (Cost Estimation for Software Development, Addison-Wesley, 1987) con-

tain useful information on software project planning and estimation. 

Putnam and Myer’s detailed treatment of software cost estimating ([PUT92] and

[PUT97b]) and Boehm's books on software engineering economics ([BOE81] and
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COCOMO II [BOE00]) describe empirical estimation models. These books provide

detailed analysis of data derived from hundreds of software projects. An excellent

book by DeMarco (Controlling Software Projects, Yourdon Press, 1982) provides valu-

able insight into the management, measurement, and estimation of software proj-

ects. Sneed (Software Engineering Management, Wiley, 1989) and Macro (Software

Engineering: Concepts and Management, Prentice-Hall, 1990) consider software proj-

ect estimation in considerable detail.

Lines-of-code cost estimation is the most commonly used approach in the indus-

try. However, the impact of the object-oriented paradigm (see Part Four) may inval-

idate some estimation models. Lorenz and Kidd (Object-Oriented Software Metrics,

Prentice-Hall, 1994) and Cockburn (Surviving Object-Oriented Projects, Addison-

Wesley, 1998) consider estimation for object-oriented systems.

A wide variety of information sources on software planning and estimation is avail-

able on the Internet. An up-to-date list of World Wide Web references that are rele-

vant to software estimation can be found at the SEPA Web site: 

http://www.mhhe.com/engcs/compsci/pressman/resources/

project-plan.mhtml
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In his book on risk analysis and management, Robert Charette [CHA89] pre-
sents a conceptual definition of risk:

First, risk concerns future happenings. Today and yesterday are beyond active con-

cern, as we are already reaping what was previously sowed by our past actions. The

question is, can we, therefore, by changing our actions today, create an opportunity

for a different and hopefully better situation for ourselves tomorrow. This means,

second, that risk involves change, such as in changes of mind, opinion, actions, or

places . . . [Third,] risk involves choice, and the uncertainty that choice itself entails.

Thus paradoxically, risk, like death and taxes, is one of the few certainties of life. 

When risk is considered in the context of software engineering, Charette's three
conceptual underpinnings are always in evidence. The future is our concern—
what risks might cause the software project to go awry? Change is our con-
cern—how will changes in customer requirements, development technologies,
target computers, and all other entities connected to the project affect timeli-
ness and overall success? Last, we must grapple with choices—what methods
and tools should we use, how many people should be involved, how much
emphasis on quality is "enough"?

6 RISK ANALYSIS AND
MANAGEMENT

What is it? Risk analysis and

management are a series of steps

that help a software team to

understand and manage uncertainty. Many prob-

lems can plague a software project. A risk is a

potential problem—it might happen, it might not.

But, regardless of the outcome, it’s a really good

idea to identify it, assess its probability of occur-

rence, estimate its impact, and establish a con-

tingency plan should the problem actually occur. 

Who does it? Everyone involved in the software

process—managers, software engineers, and cus-

tomers—participate in risk analysis and man-

agement.

Why is it important? Think about the Boy Scout motto:

“Be prepared.” Software is a difficult undertaking.

Lots of things can go wrong, and frankly, many

often do. It’s for this reason that being prepared—

understanding the risks and taking proactive mea-

sures to avoid or manage them—is a key element

of good software project management.

What are the steps? Recognizing what can go

wrong is the first step, called “risk identification.”

Next, each risk is analyzed to determine the like-

lihood that it will occur and the damage that it

will do if it does occur. Once this information is

established, risks are ranked, by probability and

impact. Finally, a plan is developed to manage

those risks with high probability and high

impact.

What is the work product? A risk mitigation, moni-

toring, and management (RMMM) plan or 

Q U I C K
L O O K
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Peter Drucker [DRU75] once said, "While it is futile to try to eliminate risk, and
questionable to try to minimize it, it is essential that the risks taken be the right risks."
Before we can identify the "right risks" to be taken during a software project, it is
important to identify all risks that are obvious to both managers and practitioners.

6.1  REACTIVE VS.  PROACTIVE RISK STRATEGIES

Reactive risk strategies have been laughingly called the “Indiana Jones school of risk

management” [THO92]. In the movies that carried his name, Indiana Jones, when

faced with overwhelming difficulty, would invariably say, “Don’t worry, I’ll think of

something!” Never worrying about problems until they happened, Indy would react

in some heroic way. 

Sadly, the average software project manager is not Indiana Jones and the mem-

bers of the software project team are not his trusty sidekicks. Yet, the majority of

software teams rely solely on reactive risk strategies. At best, a reactive strategy

monitors the project for likely risks. Resources are set aside to deal with them,

should they become actual problems. More commonly, the software team does

nothing about risks until something goes wrong. Then, the team flies into action

in an attempt to correct the problem rapidly. This is often called a fire fighting mode.

When this fails, “crisis management” [CHA92] takes over and the project is in real

jeopardy. 

A considerably more intelligent strategy for risk management is to be proactive.

A proactive strategy begins long before technical work is initiated. Potential risks are

identified, their probability and impact are assessed, and they are ranked by impor-

tance. Then, the software team establishes a plan for managing risk. The primary

objective is to avoid risk, but because not all risks can be avoided, the team works

to develop a contingency plan that will enable it to respond in a controlled and effec-

tive manner. Throughout the remainder of this chapter, we discuss a proactive strat-

egy for risk management.

6.2 SOFTWARE RISKS

Although there has been considerable debate about the proper definition for software

risk, there is general agreement that risk always involves two characteristics [HIG95]:

a set of risk information sheets is

produced.

How do I ensure that I’ve done
it right? The risks that are analyzed and man-

aged should be derived from thorough study of

the people, the product, the process, and the proj-

ect. The RMMM should be revisited as the proj-

ect proceeds to ensure that risks are kept up to

date. Contingency plans for risk management

should be realistic.

Q U I C K
L O O K

“If you don't actively
attack the risks, they
will actively attack
you.”
Tom Gilb
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• Uncertainty—the risk may or may not happen; that is, there are no 100% prob-

able risks.1

• Loss—if the risk becomes a reality, unwanted consequences or losses will

occur.

When risks are analyzed, it is important to quantify the level of uncertainty and the

degree of loss associated with each risk. To accomplish this, different categories of

risks are considered.

Project risks threaten the project plan. That is, if project risks become real, it is

likely that project schedule will slip and that costs will increase. Project risks identify

potential budgetary, schedule, personnel (staffing and organization), resource, cus-

tomer, and requirements problems and their impact on a software project. In Chap-

ter 5, project complexity, size, and the degree of structural uncertainty were also

defined as project (and estimation) risk factors.  

Technical risks threaten the quality and timeliness of the software to be produced.

If a technical risk becomes a reality, implementation may become difficult or impos-

sible.  Technical risks identify potential design, implementation, interface, verifica-

tion, and maintenance problems. In addition, specification ambiguity, technical

uncertainty, technical obsolescence, and "leading-edge" technology are also risk fac-

tors. Technical risks occur because the problem is harder to solve than we thought

it would be. 

Business risks threaten the viability of the software to be built. Business risks often

jeopardize the project or the product. Candidates for the top five business risks are

(1) building a excellent product or system that no one really wants (market risk), (2)

building a product that no longer fits into the overall business strategy for the com-

pany (strategic risk), (3) building a product that the sales force doesn't understand

how to sell, (4) losing the support of senior management due to a change in focus or

a change in people (management risk), and (5) losing budgetary or personnel com-

mitment (budget risks). It is extremely important to note that simple categorization

won't always work. Some risks are simply unpredictable in advance.

Another general categorization of risks has been proposed by Charette [CHA89].

Known risks are those that can be uncovered after careful evaluation of the project

plan, the business and technical environment in which the project is being devel-

oped, and other reliable information sources (e.g., unrealistic delivery date, lack of

documented requirements or software scope, poor development environment). Pre-

dictable risks are extrapolated from past project experience (e.g., staff turnover, poor

communication with the customer, dilution of staff effort as ongoing maintenance

requests are serviced). Unpredictable risks are the joker in the deck. They can and do

occur, but they are extremely difficult to identify in advance.
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1 A risk that is 100 percent probable is a constraint on the software project.

“[Today,] no one has
the luxury of getting
to know a task so
well that it holds no
surprises, and
surprises mean
risk.”
Stephen Grey

What types
of risks are

we likely to
encounter as the
software is built?

?
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6.3 RISK IDENTIFICATION

Risk identification is a systematic attempt to specify threats to the project plan (esti-

mates, schedule, resource loading, etc.). By identifying known and predictable risks,

the project manager takes a first step toward avoiding them when possible and con-

trolling them when necessary. 

There are two distinct types of risks for each of the categories that have been pre-

sented in Section 6.2: generic risks and product-specific risks. Generic risks are a

potential threat to every software project. Product-specific risks can be identified only

by those with a clear understanding of the technology, the people, and the environ-

ment that is specific to the project at hand. To identify product-specific risks, the proj-

ect plan and the software statement of scope are examined and an answer to the

following question is developed: "What special characteristics of this product may

threaten our project plan?"

One method for identifying risks is to create a risk item checklist. The checklist can

be used for risk identification and focuses on some subset of known and predictable

risks in the following generic subcategories:

• Product size—risks associated with the overall size of the software to be built

or modified.

• Business impact—risks associated with constraints imposed by management

or the marketplace.

• Customer characteristics—risks associated with the sophistication of the cus-

tomer and the developer's ability to communicate with the customer in a

timely manner.

• Process definition—risks associated with the degree to which the software

process has been defined and is followed by the development organiza-

tion.

• Development environment—risks associated with the availability and quality

of the tools to be used to build the product.

• Technology to be built—risks associated with the complexity of the system to

be built and the "newness" of the technology that is packaged by the system.

• Staff size and experience—risks associated with the overall technical and 

project experience of the software engineers who will do the work.

The risk item checklist can be organized in different ways. Questions relevant to each

of the topics can be answered for each software project. The answers to these ques-

tions allow the planner to estimate the impact of risk. A different risk item checklist

format simply lists characteristics that are relevant to each generic subcategory. Finally,

a set of “risk components and drivers" [AFC88] are listed along with their probability

Although generic risks
are important to
consider, usually the
product-specific risks
cause the most
headaches. Be certain
to spend the time to
identify as many
product-specific risks as
possible.

Risk item checklist
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of occurrence. Drivers for performance, support, cost, and schedule are discussed in

answer to later questions.

A number of comprehensive checklists for software project risk have been pro-

posed in the literature (e.g., [SEI93], [KAR96]). These provide useful insight into generic

risks for software projects and should be used whenever risk analysis and manage-

ment is instituted. However, a relatively short list of questions [KEI98] can be used

to provide a preliminary indication of whether a project is “at risk.” 

6.3.1 Assessing Overall Project Risk

The following questions have derived from risk data obtained by surveying experi-

enced software project managers in different part of the world [KEI98]. The questions

are ordered by their relative importance to the success of a project. 

1. Have top software and customer managers formally committed to support

the project?

2. Are end-users enthusiastically committed to the project and the

system/product to be built?

3. Are requirements fully understood by the software engineering team and

their customers?

4. Have customers been involved fully in the definition of requirements?

5. Do end-users have realistic expectations?

6. Is project scope stable?

7. Does the software engineering team have the right mix of skills?

8. Are project requirements stable?

9. Does the project team have experience with the technology to be 

implemented?

10. Is the number of people on the project team adequate to do the job?

11. Do all customer/user constituencies agree on the importance of the project

and on the requirements for the system/product to be built?

If any one of these questions is answered negatively, mitigation, monitoring, and

management steps should be instituted without fail. The degree to which the proj-

ect is at risk is directly proportional to the number of negative responses to these

questions.

6.3.2 Risk Components and Drivers

The U.S. Air Force [AFC88] has written a pamphlet that contains excellent guidelines

for software risk identification and abatement. The Air Force approach requires that

the project manager identify the risk drivers that affect software risk components—
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“Risk management is
project management
for adults.”
Tim Lister

WebRef
Risk Radar is a risk
management database
that helps project
managers identify, rank,
and communicate project
risks. It can be found at
www.spmn.com/
rsktrkr.html

Is the
software

project we’re
working on at
serious risk?

?
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performance, cost, support, and schedule. In the context of this discussion, the risk

components are defined in the following manner:

• Performance risk—the degree of uncertainty that the product will meet its

requirements and be fit for its intended use.

• Cost risk—the degree of uncertainty that the project budget will be 

maintained.

• Support risk—the degree of uncertainty that the resultant software will be

easy to correct, adapt, and enhance.

• Schedule risk—the degree of uncertainty that the project schedule will be

maintained and that the product will be delivered on time.

The impact of each risk driver on the risk component is divided into one of four impact

categories—negligible, marginal, critical, or catastrophic. Referring to Figure 6.1 [BOE89],

Components

Category

Catastrophic

Critical

Marginal

Negligible

Performance Support Cost Schedule

Failure to meet the requirement
would result in mission failure

Significant
degradation to
nonachievement
of technical
performance

Nonresponsive or
unsupportable
software

Significant financial
shortages, budget
overrun likely

Unachievable 
IOC

Failure results in increased costs
and schedule delays with expected 
values in excess of $500K

1

2

Failure to meet the requirement would
degrade system performance to a point
where mission success is questionable

Some reduction
in technical 
performance

Minor delays in
software
modifications

Some shortage of
financial resources,
possible overruns

Possible 
slippage
in IOC

Failure results in operational delays 
and/or increased costs with expected 
value of $100K to $500K

1

2

Failure to meet the requirement would
result in degradation of secondary 
mission

Minimal to small
reduction in
technical
performance

Responsive 
software
support

Sufficient financial
resources

Realistic, 
achievable
schedule

Costs, impacts, and/or recoverable 
schedule slips with expected value 
of $1K to $100K

1

2

Failure to meet the requirement would
create inconvenience or nonoperational
impact

No reduction in
technical
performance

Easily supportable
software

Possible budget
underrun

Early 
achievable 
IOC

Error results in minor cost and/or 
schedule impact with expected value 
of less than $1K

1

2

Note: (1) The potential consequence of undetected software errors or faults.
(2) The potential consequence if the desired outcome is not achieved.

FIGURE 6.1 Impact assessment [BOE89]
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a characterization of the potential consequences of errors (rows labeled 1) or a failure

to achieve a desired outcome (rows labeled 2) are described. The impact category is

chosen based on the characterization that best fits the description in the table. 

6.4 RISK PROJECTION

Risk projection, also called risk estimation, attempts to rate each risk in two ways—the

likelihood or probability that the risk is real and the consequences of the problems asso-

ciated with the risk, should it occur. The project planner, along with other managers

and technical staff, performs four risk projection activities: (1) establish a scale that

reflects the perceived likelihood of a risk, (2) delineate the consequences of the risk, (3)

estimate the impact of the risk on the project and the product, and (4) note the overall

accuracy of the risk projection so that there will be no misunderstandings.

6.4.1  Developing a Risk Table

A risk table provides a project manager with a simple technique for risk projection.2

A sample risk table is illustrated in Figure 6.2.
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Risks

Size estimate may be significantly low
Larger number of users than planned
Less reuse than planned
End-users resist system
Delivery deadline will be tightened
Funding will be lost
Customer will change requirements
Technology will not meet expectations
Lack of training on tools
Staff inexperienced
Staff turnover will be high

PS
PS
PS
BU
BU
CU
PS
TE
DE
ST
ST

60%
30%
70%
40%
50%
40%
80%
30%
80%
30%
60%

2
3
2
3
2
1
2
1
3
2
2

Probability

Impact values:
1—catastrophic
2—critical
3—marginal
4—negligible

Impact RMMMCategory

•
•
•

FIGURE 6.2 Sample risk table prior to sorting

2 The risk table should be implemented as a spreadsheet model. This enables easy manipulation
and sorting of the entries.
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A project team begins by listing all risks (no matter how remote) in the first col-

umn of the table. This can be accomplished with the help of the risk item check-

lists referenced in Section 6.3. Each risk is categorized in the second column (e.g.,

PS implies a project size risk, BU implies a business risk). The probability of occur-

rence of each risk is entered in the next column of the table. The probability value

for each risk can be estimated by team members individually. Individual team mem-

bers are polled in round-robin fashion until their assessment of risk probability

begins to converge.

Next, the impact of each risk is assessed. Each risk component is assessed using

the characterization presented in Figure 6.1, and an impact category is determined.

The categories for each of the four risk components—performance, support, cost, and

schedule—are averaged3 to determine an overall impact value.

Once the first four columns of the risk table have been completed, the table is

sorted by probability and by impact. High-probability, high-impact risks percolate to

the top of the table, and low-probability risks drop to the bottom. This accomplishes

first-order risk prioritization.

The project manager studies the resultant sorted table and defines a cutoff line.

The cutoff line (drawn horizontally at some point in the table) implies that only risks

that lie above the line will be given further attention. Risks that fall below the line are

re-evaluated to accomplish second-order prioritization. Referring to Figure 6.3, risk

impact and probability have a distinct influence on management concern. A risk fac-

1.0

0

Very low

Very high

Impact

Management
concern

HighDisregard
risk factor

Probability
of occurrence

FIGURE 6.3
Risk and
management
concern

Think hard about the
software you’re about
to build and ask
yourself, “What can go
wrong?” Create your
own list and ask other
members of the
software team to do
the same.

3 A weighted average can be used if one risk component has more significance for the project.

The risk table is sorted
by probability and
impact to rank risks.
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tor that has a high impact but a very low probability of occurrence should not absorb

a significant amount of management time. However, high-impact risks with moder-

ate to high probability and low-impact risks with high probability should be carried

forward into the risk analysis steps that follow.

All risks that lie above the cutoff line must be managed. The column labeled

RMMM contains a pointer into a Risk Mitigation, Monitoring and Management Plan

or alternatively, a collection of risk information sheets developed for all risks that

lie above the cutoff. The RMMM plan and risk information sheets are discussed in

Sections 6.5 and 6.6.

Risk probability can be determined by making individual estimates and then devel-

oping a single consensus value. Although that approach is workable, more sophisti-

cated techniques for determining risk probability have been developed [AFC88]. Risk

drivers can be assessed on a qualitative probability scale that has the following val-

ues: impossible, improbable, probable, and frequent. Mathematical probability can

then be associated with each qualitative value (e.g., a probability of 0.7 to 1.0 implies

a highly probable risk).

6.4.2  Assessing Risk Impact

Three factors affect the consequences that are likely if a risk does occur: its nature,

its scope, and its timing. The nature of the risk indicates the problems that are likely

if it occurs. For example, a poorly defined external interface to customer hardware (a

technical risk) will preclude early design and testing and will likely lead to system

integration problems late in a project. The scope of a risk combines the severity (just

how serious is it?) with its overall distribution (how much of the project will be affected

or how many customers are harmed?). Finally, the timing of a risk considers when

and for how long the impact will be felt. In most cases, a project manager might want

the “bad news” to occur as soon as possible, but in some cases, the longer the delay,

the better. 

Returning once more to the risk analysis approach proposed by the U.S. Air Force

[AFC88], the following steps are recommended to determine the overall consequences

of a risk:

1. Determine the average probability of occurrence value for each risk component. 

2. Using Figure 6.1, determine the impact for each component based on the cri-

teria shown.

3. Complete the risk table and analyze the results as described in the preceding

sections.

The overall risk exposure, RE, is determined using the following relationship 

[HAL98]:

RE = P x C
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“Failure to prepare is
preparing to fail.”
Ben Franklin

How do we
assess the

consequences of a
risk?

?
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where P is the probability of occurrence for a risk, and C is the the cost to the project

should the risk occur.

For example, assume that the software team defines a project risk in the follow-

ing manner:

Risk identification. Only 70 percent of the software components scheduled for reuse

will, in fact, be integrated into the application. The remaining functionality will have to

be custom developed.

Risk probability. 80% (likely).

Risk impact. 60 reusable software components were planned. If only 70 percent can be

used, 18 components would have to be developed from scratch (in addition to other cus-

tom software that has been scheduled for development). Since the average component is

100 LOC and local data indicate that the software engineering cost for each LOC is $14.00,

the overall cost (impact) to develop the components would be 18 x 100 x 14 = $25,200.

Risk exposure. RE = 0.80 x 25,200 ~ $20,200.

Risk exposure can be computed for each risk in the risk table, once an estimate of

the cost of the risk is made. The total risk exposure for all risks (above the cutoff in

the risk table) can provide a means for adjusting the final cost estimate for a project.

It can also be used to predict the probable increase in staff resources required at var-

ious points during the project schedule.

The risk projection and analysis techniques described in Sections 6.4.1 and 6.4.2

are applied iteratively as the software project proceeds. The project team should revisit

the risk table at regular intervals, re-evaluating each risk to determine when new cir-

cumstances cause its probability and impact to change. As a consequence of this

activity, it may be necessary to add new risks to the table, remove some risks that are

no longer relevant, and change the relative positions of still others.

6.4.3  Risk Assessment

At this point in the risk management process, we have established a set of triplets of

the form [CHA89]:

[ri, li, xi]

where ri is risk, li is the likelihood (probability) of the risk, and xi is the impact of the

risk. During risk assessment, we further examine the accuracy of the estimates that

were made during risk projection, attempt to rank the risks that have been uncov-

ered, and begin thinking about ways to control and/or avert risks that are likely to

occur.

For assessment to be useful, a risk referent level [CHA89] must be defined. For most

software projects, the risk components discussed earlier—performance, cost, sup-

port, and schedule—also represent risk referent levels. That is, there is a level for per-

Compare RE for all
risks to the cost
estimate for the
project. If RE is greater
than 50 percent of
project cost, the
viability of the project
must be evaluated.
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formance degradation, cost overrun, support difficulty, or schedule slippage (or any

combination of the four) that will cause the project to be terminated. If a combina-

tion of risks create problems that cause one or more of these referent levels to be

exceeded, work will stop. In the context of software risk analysis, a risk referent level

has a single point, called the referent point or break point, at which the decision to

proceed with the project or terminate it (problems are just too great) are equally

weighted.  Figure 6.4 represents this situation graphically.

In reality, the referent level can rarely be represented as a smooth line on a graph.

In most cases it is a region in which there are areas of uncertainty; that is, attempt-

ing to predict a management decision based on the combination of referent values

is often impossible. Therefore, during risk assessment, we perform the following

steps:

1. Define the risk referent levels for the project.

2. Attempt to develop a relationship between each (ri, li, xi) and each of the ref-

erent levels.

3. Predict the set of referent points that define a region of termination, bounded

by a curve or areas of uncertainty.

4. Try to predict how compound combinations of risks will affect a referent

level.

A detailed discussion of risk referent level is best left to books that are dedicated to

risk analysis (e.g., [CHA89], [ROW88]). 
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The risk referent level
establishes your
tolerance for pain.
Once risk exposure
exceeds the referent
level, the project may
be terminated.
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Project termination will occur

FIGURE 6.4
Risk referent
level
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6.5 RISK REFINEMENT

During early stages of project planning, a risk may be stated quite generally. As time

passes and more is learned about the project and the risk, it may be possible to refine

the risk into a set of more detailed risks, each somewhat easier to mitigate, monitor,

and manage.

One way to do this is to represent the risk in condition-transition-consequence (CTC)

format [GLU94]. That is, the risk is stated in the following form:

Given that <condition> then there is concern that (possibly) <consequence>.

Using the CTC format for the reuse risk noted in Section 6.4.2, we can write:

Given that all reusable software components must conform to specific design standards

and that some do not conform, then there is concern that (possibly) only 70 percent of the

planned reusable modules may actually be integrated into the as-built system, resulting in

the need to custom engineer the remaining 30 percent of components.

This general condition can be refined in the following manner:

Subcondition 1. Certain reusable components were developed by a third party with no

knowledge of internal design standards.

Subcondition 2. The design standard for component interfaces has not been solidified

and may not conform to certain existing reusable components.

Subcondition 3. Certain reusable components have been implemented in a language that

is not supported on the target environment.

The consequences associated with these refined subconditions remains the same (i.e.,

30 percent of software components must be customer engineered), but the refinement

helps to isolate the underlying risks and might lead to easier analysis and response.

6.6  RISK MITIGATION, MONITORING, AND MANAGEMENT

All of the risk analysis activities presented to this point have a single goal—to assist

the project team in developing a strategy for dealing with risk. An effective strategy

must consider three issues:

• risk avoidance

• risk monitoring

• risk management and contingency planning 

If a software team adopts a proactive approach to risk, avoidance is always the best

strategy. This is achieved by developing a plan for risk mitigation. For example, assume

that high staff turnover is noted as a project risk, r1. Based on past history and man-

“If I take so many
precautions, it is
because I leave
nothing to chance.”
Napolean

What is a
good way to

describe a risk?
?
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agement intuition, the likelihood, l1, of high turnover is estimated to be 0.70 (70 per-

cent, rather high) and the impact, x1, is projected at level 2. That is, high turnover will

have a critical impact on project cost and schedule.

To mitigate this risk, project management must develop a strategy for reducing

turnover. Among the possible steps to be taken are

• Meet with current staff to determine causes for turnover (e.g., poor working

conditions, low pay, competitive job market).

• Mitigate those causes that are under our control before the project 

starts.

• Once the project commences, assume turnover will occur and develop tech-

niques to ensure continuity when people leave.

• Organize project teams so that information about each development activity

is widely dispersed.

• Define documentation standards and establish mechanisms to be sure that

documents are developed in a timely manner.

• Conduct peer reviews of all work (so that more than one person is "up to speed”).

• Assign a backup staff member for every critical technologist.

As the project proceeds, risk monitoring activities commence. The project manager

monitors factors that may provide an indication of whether the risk is becoming

more or less likely. In the case of high staff turnover, the following factors can be

monitored:

• General attitude of team members based on project pressures.

• The degree to which the team has jelled.

• Interpersonal relationships among team members.

• Potential problems with compensation and benefits.

• The availability of jobs within the company and outside it.

In addition to monitoring these factors, the project manager should monitor the effec-

tiveness of risk mitigation steps. For example, a risk mitigation step noted here called

for the definition of documentation standards and mechanisms to be sure that doc-

uments are developed in a timely manner. This is one mechanism for ensuring con-

tinuity, should a critical individual leave the project. The project manager should

monitor documents carefully to ensure that each can stand on its own and that each

imparts information that would be necessary if a newcomer were forced to join the

software team somewhere in the middle of the project. 

Risk management and contingency planning assumes that mitigation efforts have

failed and that the risk has become a reality. Continuing the example, the project is
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“We are ready for an
unforseen event that
may or may not
occur.”
Dan Quayle

WebRef
An excellent FAQ on risk
management can be
obtained at 
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organization/
programs/sepm/
risk/risk.faq.html



PART TWO MANAGING SOFTWARE PROJECTS158

well underway and a number of people announce that they will be leaving. If the mit-

igation strategy has been followed, backup is available, information is documented,

and knowledge has been dispersed across the team. In addition, the project manager

may temporarily refocus resources (and readjust the project schedule) to those func-

tions that are fully staffed, enabling newcomers who must be added to the team to

“get up to speed.” Those individuals who are leaving are asked to stop all work and

spend their last weeks in “knowledge transfer mode.” This might include video-based

knowledge capture, the development of “commentary documents,” and/or meeting

with other team members who will remain on the project.  

It is important to note that RMMM steps incur additional project cost. For exam-

ple, spending the time to "backup" every critical technologist costs money. Part of

risk management, therefore, is to evaluate when the benefits accrued by the RMMM

steps are outweighed by the costs associated with implementing them. In essence,

the project planner performs a classic cost/benefit analysis. If risk aversion steps for

high turnover will increase both project cost and duration by an estimated 15 per-

cent, but the predominant cost factor is "backup," management may decide not to

implement this step. On the other hand, if the risk aversion steps are projected to

increase costs by 5 percent and duration by only 3 percent management will likely

put all into place.

For a large project, 30 or 40 risks may identified. If between three and seven risk

management steps are identified for each, risk management may become a project

in itself! For this reason, we adapt the Pareto 80–20 rule to software risk. Experience

indicates that 80 percent of the overall project risk (i.e., 80 percent of the potential

for project failure) can be accounted for by only 20 percent of the identified risks. The

work performed during earlier risk analysis steps will help the planner to determine

which of the risks reside in that 20 percent (e.g., risks that lead to the highest risk

exposure). For this reason, some of the risks identified, assessed, and projected may

not make it into the RMMM plan—they don't fall into the critical 20 percent (the risks

with highest project priority).

6.7 SAFETY RISKS AND HAZARDS

Risk is not limited to the software project itself. Risks can occur after the software

has been successfully developed and delivered to the customer. These risks are typ-

ically associated with the consequences of software failure in the field.  

In the early days of computing, there was reluctance to use computers (and soft-

ware) to control safety critical processes such as nuclear reactors, aircraft flight con-

trol, weapons systems, and large-scale industrial processes. Although the probability

of failure of a well-engineered system was small, an undetected fault in a computer-

based control or monitoring system could result in enormous economic damage or,

worse, significant human injury or loss of life. But the cost and functional benefits of

If RE for a specific risk
is less than the cost of
risk mitigation, don’t
try to mitigate the risk
but continue to
monitor it.
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computer-based control and monitoring far outweigh the risk. Today, computer hard-

ware and software are used regularly to control safety critical systems.

When software is used as part of a control system, complexity can increase by an

order of magnitude or more. Subtle design faults induced by human error—some-

thing that can be uncovered and eliminated in hardware-based conventional con-

trol—become much more difficult to uncover when software is used.

Software safety and hazard analysis [LEV95] are software quality assurance activ-

ities (Chapter 8) that focus on the identification and assessment of potential hazards

that may affect software negatively and cause an entire system to fail. If hazards can

be identified early in the software engineering process, software design features can

be specified that will either eliminate or control potential hazards.

6.8 THE RMMM PLAN

A risk management strategy can be included in the software project plan or the risk

management steps can be organized into a separate Risk Mitigation, Monitoring and

Management Plan. The RMMM plan documents all work performed as part of risk

analysis and is used by the project manager as part of the overall project plan.

Some software teams do not develop a formal RMMM document. Rather, each risk

is documented individually using a risk information sheet (RIS) [WIL97]. In most cases,

the RIS is maintained using a database system, so that creation and information entry,

priority ordering, searches, and other analysis may be accomplished easily. The for-

mat of the RIS is illustrated in Figure 6.5. 

Once RMMM has been documented and the project has begun, risk mitigation and

monitoring steps commence. As we have already discussed, risk mitigation is a prob-

lem avoidance activity. Risk monitoring is a project tracking activity with three pri-

mary objectives: (1) to assess whether predicted risks do, in fact, occur; (2) to ensure

that risk aversion steps defined for the risk are being properly applied; and (3) to col-

lect information that can be used for future risk analysis. In many cases, the prob-

lems that occur during a project can be traced to more than one risk. Another job of

risk monitoring is to attempt to allocate origin (what risk(s) caused which problems

throughout the project). 

6.9 SUMMARY

Whenever a lot is riding on a software project, common sense dictates risk analy-

sis. And yet, most software project managers do it informally and superficially, if

they do it at all. The time spent identifying, analyzing, and managing risk pays itself

back in many ways: less upheaval during the project, a greater ability to track and

control a project, and the confidence that comes with planning for problems before

they occur. 
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RMMM Plan

WebRef
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at 
catless.ncl.ac.uk/
Risks/search.html
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Risk analysis can absorb a significant amount of project planning effort. Identifi-

cation, projection, assessment, management, and monitoring all take time. But the

effort is worth it. To quote Sun Tzu, a Chinese general who lived 2500 years ago, "If

you know the enemy and know yourself, you need not fear the result of a hundred

battles." For the software project manager, the enemy is risk.

REFERENCES

[AFC88] Software Risk Abatement, AFCS/AFLC Pamphlet 800-45, U.S. Air Force, Sep-

tember 30, 1988.

[BOE89] Boehm, B.W., Software Risk Management, IEEE Computer Society Press,

1989.

[CHA89] Charette, R.N., Software Engineering Risk Analysis and Management, McGraw-

Hill/Intertext, 1989.

Risk information sheet

Date:  5/9/02 Prob:  80% Impact: highRisk ID:  P02-4-32

Description:
Only 70 percent of the software components scheduled for reuse will, in fact, be
integrated into the application.  The remaining functionality will have to be custom 
developed.

Refinement/context:
Subcondition 1: Certain reusable components were developed by a third party 
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solidified and may not conform to certain existing reusable components.
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Trigger:  Mitigation steps unproductive as of 7/1/02

Current status:
5/12/02: Mitigation steps initiated.

Originator: D. Gagne  Assigned: B. Laster

FIGURE 6.5
Risk
information
sheet [WIL97]
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PROBLEMS AND POINTS TO PONDER

6.1. Provide five examples from other fields that illustrate the problems associated

with a reactive risk strategy.

6.2. Describe the difference between “known risks” and “predictable risks.”

6.3. Add three additional questions or topics to each of the risk item checklists pre-

sented at the SEPA Web site. 

6.4. You’ve been asked to build software to support a low-cost video editing sys-

tem. The system accepts videotape as input, stores the video on disk, and then allows

the user to do a wide range of edits to the digitized video. The result can then be out-

put to tape. Do a small amount of research on systems of this type and then make a

list of technology risks that you would face as you begin a project of this type.

6.5. You’re the project manager for a major software company. You’ve been asked

to lead a team that’s developing “next generation” word-processing software (see

Section 3.4.2 for a brief description). Create a risk table for the project.
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6.6. Describe the difference between risk components and risk drivers.

6.7. Develop a risk mitigation strategy and specific risk mitigation activities for three

of the risks noted in Figure 6.2. 

6.8. Develop a risk monitoring strategy and specific risk monitoring activities for

three of the risks noted in Figure 6.2. Be sure to identify the factors that you’ll be mon-

itoring to determine whether the risk is becoming more or less likely.

6.9. Develop a risk management strategy and specific risk management activities

for three of the risks noted in Figure 6.2.

6.10. Attempt to refine three of the risks noted in Figure 6.2 and then create risk

information sheets for each.

6.11. Represent three of the risks noted in Figure 6.2 using a CTC format.

6.12. Recompute the risk exposure discussed in Section 6.4.2 when cost/LOC is $16

and the probability is 60 percent.  

6.13. Can you think of a situation in which a high-probability, high-impact risk would

not be considered as part of your RMMM plan?

6.14. Referring the the risk referent shown on Figure 6.4, would the curve always

have the symmetric arc shown or would there be situations in which the curve would

be more distorted. If so, suggest a scenario in which this might happen. 

6.15. Do some research on software safety issues and write a brief paper on the

subject. Do a Web search to get current information.

6.16. Describe five software application areas in which software safety and hazard

analysis would be a major concern.

FURTHER READINGS AND INFORMATION SOURCES

The software risk management literature has expanded significantly in recent years.

Hall [HAL98] presents one of the more thorough treatments of the subject. Karolak

[KAR96] has written a guidebook that introduces an easy-to-use risk analysis model

with worthwhile checklists and questionnaires. A useful snapshot of risk assessment

has been written by Grey (Practical Risk Assessment for Project Management, Wiley,

1995). His abbreviated treatment provides a good introduction to the subject. Addi-

tional books worth examining include

Chapman, C.B. and S. Ward, Project Risk Management: Processes, Techniques and Insights,

Wiley, 1997. 

Schuyler, J.R., Decision Analysis in Projects, Project Management Institute Publications, 1997. 

Wideman, R.M. (editor), Project & Program Risk Management: A Guide to Managing Project

Risks and Opportunities, Project Management Institute Publications, 1998.
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Capers Jones (Assessment and Control of Software Risks, Prentice-Hall, 1994) pre-

sents a detailed discussion of software risks that includes data collected from hun-

dreds of software projects. Jones defines 60 risk factors that can affect the outcome

of software projects. Boehm [BOE89] suggests excellent questionnaire and checklist

formats that can prove invaluable in identifying risk. Charette [CHA89] presents a

detailed treatment of the mechanics of risk analysis, calling on probability theory and

statistical techniques to analyze risks. In a companion volume, Charette (Application

Strategies for Risk Analysis, McGraw-Hill, 1990) discusses risk in the context of both

system and software engineering and suggests pragmatic strategies for risk man-

agement. Gilb (Principles of Software Engineering Management, Addison-Wesley, 1988)

presents a set of "principles" (which are often amusing and sometimes profound) that

can serve as a worthwhile guide for risk management.

The March 1995 issue of American Programmer, the May 1997 issue of IEEE Soft-

ware, and the June 1998 issue of the Cutter IT Journal all are dedicated to risk man-

agement.   

The Software Engineering Institute has published many detailed reports and guide-

books on risk analysis and management. The Air Force Systems Command pamphlet

AFSCP 800-45 [AFC88] describes risk identification and reduction techniques.  Every

issue of the ACM Software Engineering Notes has a section entitled "Risks to the Pub-

lic" (editor, P.G. Neumann). If you want the latest and best software horror stories,

this is the place to go.  

A wide variety of information sources on risk analysis and management is avail-

able on the Internet. An up-to-date list of World Wide Web references that are rele-

vant to risk can be found at the SEPA Web site:

http://www.mhhe.com/engcs/compsci/pressman/resources/risk.mhtml
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In the late 1960s, a bright-eyed young engineer was chosen to "write" a com-
puter program for an automated manufacturing application. The reason for
his selection was simple. He was the only person in his technical group who

had attended a computer programming seminar. He knew the ins and outs of
assembly language and FORTRAN but nothing about software engineering and
even less about project scheduling and tracking.

His boss gave him the appropriate manuals and a verbal description of what
had to be done. He was informed that the project must be completed in two
months.

He read the manuals, considered his approach, and began writing code.
After two weeks, the boss called him into his office and asked how things were
going. 

"Really great," said the young engineer with youthful enthusiasm, "This was
much simpler than I thought. I'm probably close to 75 percent finished."

The boss smiled. "That's really terrific," he said, encouraging the young
engineer to keep up the good work. They planned to meet again in a week’s
time. 

A week later the boss called the engineer into his office and asked, "Where
are we?" 

7 PROJECT SCHEDULING AND
TRACKING

What is it? You’ve selected 

an appropriate process model,

you’ve identified the software

engineering tasks that have to be performed, you

estimated the amount of work and the number of

people, you know the deadline, you’ve even con-

sidered the risks. Now it’s time to connect the dots.

That is, you have to create a network of software

engineering tasks that will enable you to get the

job done on time. Once the network is created,

you have to assign responsibility for each task,

make sure it gets done, and adapt the network as

risks become reality. In a nutshell, that’s software

project scheduling and tracking.

Who does it? At the project level, software proj-ect

managers using information solicited from soft-

ware engineers. At an individual level, software

engineers themselves.

Why is it important? In order to build a complex sys-

tem, many software engineering tasks occur in

parallel, and the result of work performed during

one task may have a profound effect on work to

be conducted in another task. These interdepen-

dencies are very difficult to understand without a

schedule. lt’s also virtually impossible to assess

progress on a moderate or large software project

without a detailed schedule.

What are the steps? The software engineering 

tasks dictated by the software process model are

refined for the functionality to be built. Effort and 

duration are allocated to each task and a task

network (also called an “activity network”) is 

Q U I C K
L O O K
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"Everything's going well," said the youngster, “but I've run into a few small snags.
I'll get them ironed out and be back on track soon."

"How does the deadline look?" the boss asked.
"No problem," said the engineer. "I'm close to 90 percent complete."

If you've been working in the software world for more than a few years, you can fin-
ish the story. It'll come as no surprise that the young engineer1 stayed 90 percent
complete for the entire project duration and finished (with the help of others) only
one month late.

This story has been repeated tens of thousands of times by software developers
during the past three decades. The big question is why?

7.1 BASIC CONCEPTS

Although there are many reasons why software is delivered late, most can be traced

to one or more of the following root causes:

• An unrealistic deadline established by someone outside the software devel-

opment group and forced on managers and practitioner's within the group.

• Changing customer requirements that are not reflected in schedule changes.

• An honest underestimate of the amount of effort and/or the number of

resources that will be required to do the job.

• Predictable and/or unpredictable risks that were not considered when the

project commenced.

• Technical difficulties that could not have been foreseen in advance.

• Human difficulties that could not have been foreseen in advance.

• Miscommunication among project staff that results in delays.

• A failure by project management to recognize that the project is falling

behind schedule and a lack of action to correct the problem.

Aggressive (read "unrealistic") deadlines are a fact of life in the software business.

Sometimes such deadlines are demanded for reasons that are legitimate, from the

created in a manner that enables

the software team to meet the

delivery deadline established. 

What is the work product? The project schedule and

related information are produced.

How do I ensure that I’ve done it right? Proper sched-

uling requires that (1) all tasks appear in the net-

work, (2) effort and timing are intelligently allo-

cated to each task, (3) interdependencies between

tasks are properly indicated, (4) resources are allo-

cated for the work to be done, and (5) closely

spaced milestones are provided so that progress

can be tracked.

Q U I C K
L O O K

1 If you’re wondering whether this story is autobiographical, it is!

“Excessive or
irrational schedules
are probably the
single most
destructive influence
in all of software.”
Capers Jones
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point of view of the person who sets the deadline. But common sense says that legit-

imacy must also be perceived by the people doing the work.

7.1.1 Comments on “Lateness”

Napoleon once said: "Any commander in chief who undertakes to carry out a plan

which he considers defective is at fault; he must put forth his reasons, insist on the

plan being changed, and finally tender his resignation rather than be the instrument

of his army's downfall." These are strong words that many software project man-

agers should ponder.

The estimation and risk analysis activities discussed in Chapters 5 and 6, and the

scheduling techniques described in this chapter are often implemented under the

constraint of a defined deadline. If best estimates indicate that the deadline is unre-

alistic, a competent project manager should "protect his or her team from undue

[schedule] pressure . . . [and] reflect the pressure back to its originators" [PAG85]. 

To illustrate, assume that a software development group has been asked to build

a real-time controller for a medical diagnostic instrument that is to be introduced to

the market in nine months. After careful estimation and risk analysis, the software

project manager comes to the conclusion that the software, as requested, will require

14 calendar months to create with available staff. How does the project manager 

proceed?

It is unrealistic to march into the customer's office (in this case the likely customer

is marketing/sales) and demand that the delivery date be changed. External market

pressures have dictated the date, and the product must be released. It is equally fool-

hardy to refuse to undertake the work (from a career standpoint). So, what to do? 

The following steps are recommended in this situation:

1. Perform a detailed estimate using historical data from past projects. Deter-

mine the estimated effort and duration for the project.

2. Using an incremental process model (Chapter 2), develop a software engi-

neering strategy that will deliver critical functionality by the imposed dead-

line, but delay other functionality until later. Document the plan.

3. Meet with the customer and (using the detailed estimate), explain why the

imposed deadline is unrealistic. Be certain to note that all estimates are

based on performance on past projects. Also be certain to indicate the per-

cent improvement that would be required to achieve the deadline as it cur-

rently exists.2 The following comment is appropriate: 

"I think we may have a problem with the delivery date for the XYZ controller

software. I've given each of you an abbreviated breakdown of production
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2 If the percent of improvement is 10 to 25 percent, it may actually be possible to get the job done.
But, more likely, the percent of improvement in team performance must be greater than 50 per-
cent. This is an unrealistic expectation.

“I love deadlines. I
like the whooshing
sound they make as
they fly by.”
Douglas Adams 

What should
we do when

management
demands that we
make a deadline
that is
impossible?

?
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rates for past projects and an estimate that we've done a number of different

ways. You'll note that I've assumed a 20 percent improvement in past pro-

duction rates, but we still get a delivery date that's 14 calendar months rather

than 9 months away."

4. Offer the incremental development strategy as an alternative:

“We have a few options, and I'd like you to make a decision based on them.

First, we can increase the budget and bring on additional resources so that

we'll have a shot at getting this job done in nine months. But understand that

this will increase risk of poor quality due to the tight timeline.3 Second, we

can remove a number of the software functions and capabilities that you're

requesting. This will make the preliminary version of the product somewhat

less functional, but we can announce all functionality and then deliver over

the 14 month period. Third, we can dispense with reality and wish the project

complete in nine months. We'll wind up with nothing that can be delivered to

a customer. The third option, I hope you'll agree, is unacceptable. Past his-

tory and our best estimates say that it is unrealistic and a recipe for disaster."

There will be some grumbling, but if solid estimates based on good historical data

are presented, it's likely that negotiated versions of option 1 or 2 will be chosen. The

unrealistic deadline evaporates. 

7.1.2 Basic Principles 

Fred Brooks, the well-known author of The Mythical Man-Month [BRO95], was once

asked how software projects fall behind schedule. His response was as simple as it

was profound: "One day at a time."

The reality of a technical project (whether it involves building a hydroelectric plant

or developing an operating system) is that hundreds of small tasks must occur to

accomplish a larger goal. Some of these tasks lie outside the mainstream and may

be completed without worry about impact on project completion date. Other tasks

lie on the "critical” path.4 If these "critical" tasks fall behind schedule, the completion

date of the entire project is put into jeopardy.

The project manager’s objective is to define all project tasks, build a network that

depicts their interdependencies, identify the tasks that are critical within the network,

and then track their progress to ensure that delay is recognized "one day at a time."

To accomplish this, the manager must have a schedule that has been defined at a

degree of resolution that enables the manager to monitor progress and control the

project.

Software project scheduling is an activity that distributes estimated effort across the

planned project duration by allocating the effort to specific software engineering tasks.

3 You might also add that adding more people does not reduce calendar time proportionally.

4 The critical path will be discussed in greater detail later in this chapter.

The tasks required to
achieve the project
manager’s objective
should not be
performed manually.
There are many
excellent project
scheduling tools. Use
them.

XRef
Incremental process
models are described in
Chapter 2.
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It is important to note, however, that the schedule evolves over time. During early

stages of project planning, a macroscopic schedule is developed. This type of sched-

ule identifies all major software engineering activities and the product functions to

which they are applied. As the project gets under way, each entry on the macroscopic

schedule is refined into a detailed schedule. Here, specific software tasks (required to

accomplish an activity) are identified and scheduled.

Scheduling for software engineering projects can be viewed from two rather dif-

ferent perspectives.  In the first, an end-date for release of a computer-based system

has already (and irrevocably) been established.  The software organization is con-

strained to distribute effort within the prescribed time frame. The second view of soft-

ware scheduling assumes that rough chronological bounds have been discussed but

that the end-date is set by the software engineering organization. Effort is distributed

to make best use of resources and an end-date is defined after careful analysis of the

software. Unfortunately, the first situation is encountered far more frequently than

the second. 

Like all other areas of software engineering, a number of basic principles guide

software project scheduling:

Compartmentalization. The project must be compartmentalized into a

number of manageable activities and tasks. To accomplish compartmental-

ization, both the product and the process are decomposed (Chapter 3). 

Interdependency. The interdependency of each compartmentalized activity

or task must be determined. Some tasks must occur in sequence while others

can occur in parallel. Some activities cannot commence until the work prod-

uct produced by another is available. Other activities can occur independently.

Time allocation. Each task to be scheduled must be allocated some num-

ber of work units (e.g., person-days of effort). In addition, each task must be

assigned a start date and a completion date that are a function of the interde-

pendencies and whether work will be conducted on a full-time or part-time

basis.

Effort validation. Every project has a defined number of  staff members. As

time allocation occurs, the project manager must ensure that no more than

the allocated number of people have been scheduled at any given time. For

example, consider a project that has three assigned staff members (e.g., 3

person-days are available per day of assigned effort5). On a given day, seven

concurrent tasks must be accomplished. Each task requires 0.50 person days

of effort. More effort has been allocated than there are people to do the work.

Defined responsibilities.  Every task that is scheduled should be assigned

to a specific team member.
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“Overly optimistic
scheduling doesn’t
result in shorter
actual schedules, it
results in longer
ones.”
Steve McConnell

5 In reality, less than three person-days are available because of unrelated meetings, sickness,
vacation, and a variety of other reasons. For our purposes, however, we assume 100 percent
availability.

When you develop a
schedule, compartmen-
talize the work,
represent task inter-
dependencies, allocate
effort and time to each
task, define respon-
sibilities for the work
to be done, and define
outcomes and
milestones.
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Defined outcomes. Every task that is scheduled should have a defined out-

come. For software projects, the outcome is normally a work product (e.g.,

the design of a module) or a part of a work product. Work products are often

combined in deliverables.

Defined milestones. Every task or group of tasks should be associated with

a project milestone. A milestone is accomplished when one or more work

products has been reviewed for quality (Chapter 8) and has been approved.

Each of these principles is applied as the project schedule evolves. 

7.2 THE RELATIONSHIP BETWEEN PEOPLE AND EFFORT

In a small software development project a single person can analyze requirements,

perform design, generate code, and conduct tests.  As the size of a project increases,

more people must become involved.  (We can rarely afford the luxury of approach-

ing a ten person-year effort with one person working for ten years!) 

There is a common myth (discussed in Chapter 1) that is still believed by many

managers who are responsible for software development effort: "If we fall behind

schedule, we can always add more programmers and catch up later in the project."

Unfortunately, adding people late in a project often has a disruptive effect on the proj-

ect, causing schedules to slip even further. The people who are added must learn the

system, and the people who teach them are the same people who were doing the

work. While teaching, no work is done, and the project falls further behind.

In addition to the time it takes to learn the system, more people increase the num-

ber of communication paths and the complexity of communication throughout a proj-

ect. Although communication is absolutely essential to successful software

development, every new communication path requires additional effort and there-

fore additional time.

7.2.1 An Example

Consider four software engineers, each capable of producing 5000 LOC/year when

working on an individual project. When these four engineers are placed on a team

project, six potential communication paths are possible. Each communication path

requires time that could otherwise be spent developing software. We shall assume

that team productivity (when measured in LOC) will be reduced by 250 LOC/year for

each communication path, due to the overhead associated with communication.

Therefore, team productivity is 20,000 � (250 x 6) = 18,500 LOC/year—7.5 percent

less than what we might expect.6

6 It is possible to pose a counterargument: Communication, if it is effective, can enhance the qual-
ity of the work being performed, thereby reducing the amount of rework and increasing the indi-
vidual productivity of team members. The jury is still out!

If you must add people
to a late project, be
certain that you’ve
assigned them work
that is highly
compartmentalized.
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The one-year project on which the team is working falls behind schedule, and with

two months remaining, two additional people are added to the team. The number of

communication paths escalates to 14. The productivity input of the new staff is the

equivalent of 840 x 2 = 1680 LOC for the two months remaining before delivery. Team

productivity now is 20,000 + 1680 � (250 x 14) = 18,180 LOC/year. 

Although the example is a gross oversimplification of real-world circumstances,

it does illustrate another key point: The relationship between the number of people

working on a software project and overall productivity is not linear.

Based on the people/work relationship, are teams counterproductive?  The answer

is an emphatic "no," if communication improves software quality.  In fact, formal

technical reviews (see Chapter 8) conducted by software teams can lead to better

analysis and design, and more important, can reduce the number of errors that go

undetected until testing (thereby reducing testing effort). Hence, productivity and

quality, when measured by time to project completion and customer satisfaction, can

actually improve.

7.2.2. An Empirical Relationship

Recalling the software equation [PUT92] that was introduced in Chapter 5, we can

demonstrate the highly nonlinear relationship between chronological time to com-

plete a project and human effort applied to the project. The number of delivered

lines of code (source statements), L, is related to effort and development time by

the equation:

L = P x E1/3t4/3

where E is development effort in person-months, P is a productivity parameter that

reflects a variety of factors that lead to high-quality software engineering work (typ-

ical values for P range between 2,000 and 12,000), and t is the project duration in cal-

endar months.

Rearranging this software equation, we can arrive at an expression for develop-

ment effort E:

E = L3/( P3t4 ) (7-1)

where E is the effort expended (in person-years) over the entire life cycle for software

development and maintenance and t is the development time in years. The equation

for development effort can be related to development cost by the inclusion of a bur-

dened labor rate factor ($/person-year).

This leads to some interesting results. Consider a complex, real-time software proj-

ect estimated at 33,000 LOC, 12 person-years of effort. If eight people are assigned

to the project team, the project can be completed in approximately 1.3 years. If, how-

ever, we extend the end-date to 1.75 years, the highly nonlinear nature of the model

described in Equation (7-1) yields: 

E = L3/( P3t4 ) ~ 3.8 person-years.       
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The relationship
between the number
of people working on a
software project and
overall productivity is
not linear.

As the deadline
becomes tighter and
tighter, you reach a
point at which the
work cannot be
completed on
schedule, regardless of
the number of people
doing the work. Face
reality and define a
new delivery date.
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This implies that, by extending the end-date six months, we can reduce the number

of people from eight to four!  The validity of such results is open to debate, but the

implication is clear: Benefit can be gained by using fewer people over a somewhat

longer time span to accomplish the same objective.

7.2.3 Effort Distribution

Each of the software project estimation techniques discussed in Chapter 5 leads to

estimates of work units (e.g., person-months) required to complete software devel-

opment. A recommended distribution of effort across the definition and development

phases is often referred to as the 40–20–40 rule.7 Forty percent of all effort is allocated

to front-end analysis and design. A similar percentage is applied to back-end testing.

You can correctly infer that coding (20 percent of effort) is de-emphasized.

This effort distribution should be used as a guideline only. The characteristics of

each project must dictate the distribution of effort. Work expended on project plan-

ning rarely accounts for more than 2–3 percent of effort, unless the plan commits an

organization to large expenditures with high risk. Requirements analysis may com-

prise 10–25 percent of project effort. Effort expended on analysis or prototyping should

increase in direct proportion with project size and complexity. A range of 20 to 25

percent of effort is normally applied to software design. Time expended for design

review and subsequent iteration must also be considered.

Because of the effort applied to software design, code should follow with relatively

little difficulty. A range of 15–20 percent of overall effort can be achieved. Testing and

subsequent debugging can account for 30–40 percent of software development effort.

The criticality of the software often dictates the amount of testing that is required. If

software is human rated (i.e., software failure can result in loss of life), even higher

percentages are typical.

7.3 DEFINING A TASK SET FOR THE SOFTWARE PROJECT

A number of different process models were described in Chapter 2. These models

offer different paradigms for software development. Regardless of whether a soft-

ware team chooses a linear sequential paradigm, an iterative paradigm, an evolu-

tionary paradigm, a concurrent paradigm or some permutation, the process model

is populated by a set of tasks that enable a software team to define, develop, and ulti-

mately support computer software. 

No single set of tasks is appropriate for all projects. The set of tasks that would be

appropriate for a large, complex system would likely be perceived as overkill for a

small, relatively simple software product. Therefore, an effective software process

7 Today, more than 40 percent of all project effort is often recommended for analysis and design
tasks for large software development projects. Hence, the name 40–20–40 no longer applies in a
strict sense.

How much
effort should

be expended on
each of the major
software
engineering
tasks?

?
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should define a collection of task sets, each designed to meet the needs of different

types of projects.

A task set is a collection of software engineering work tasks, milestones, and deliv-

erables that must be accomplished to complete a particular project. The task set to

be chosen must provide enough discipline to achieve high software quality. But, at

the same time, it must not burden the project team with unnecessary work. 

Task sets are designed to accommodate different types of projects and different

degrees of rigor. Although it is difficult to develop a comprehensive taxonomy of soft-

ware project types, most software organizations encounter the following projects:

1. Concept development projects that are initiated to explore some new business

concept or application of some new technology.

2. New application development projects that are undertaken as a consequence

of a specific customer request.

3. Application enhancement projects that occur when existing software under-

goes major modifications to function, performance, or interfaces that are

observable by the end-user.

4. Application maintenance projects that correct, adapt, or extend existing soft-

ware in ways that may not be immediately obvious to the end-user.

5. Reengineering projects that are undertaken with the intent of rebuilding an

existing (legacy) system in whole or in part.

Even within a single project type, many factors influence the task set to be chosen.

When taken in combination, these factors provide an indication of the degree of rigor

with which the software process should be applied.

7.3.1   Degree of Rigor

Even for a project of a particular type, the degree of rigor with which the software

process is applied may vary significantly. The degree of rigor is a function of many

project characteristics. As an example, small, non-business-critical projects can gen-

erally be addressed with somewhat less rigor than large, complex business-critical

applications. It should be noted, however, that all projects must be conducted in a

manner that results in timely, high-quality deliverables. Four different degrees of rigor

can be defined:

Casual. All process framework activities (Chapter 2) are applied, but only a

minimum task set is required. In general, umbrella tasks will be minimized

and documentation requirements will be reduced. All basic principles of soft-

ware engineering are still applicable.

Structured. The process framework will be applied for this project. Frame-

work activities and related tasks appropriate to the project type will be

applied and umbrella activities necessary to ensure high quality will be
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applied. SQA, SCM, documentation, and measurement tasks will be con-

ducted in a streamlined manner. 

Strict. The full process will be applied for this project with a degree of disci-

pline that will ensure high quality. All umbrella activities will be applied and

robust work products will be produced.

Quick reaction. The process framework will be applied for this project, but

because of an emergency situation8 only those tasks essential to maintaining

good quality will be applied. “Back-filling” (i.e., developing a complete set of

documentation, conducting additional reviews) will be accomplished after

the application/product is delivered to the customer.

The project manager must develop a systematic approach for selecting the degree

of rigor that is appropriate for a particular project. To accomplish this, project adap-

tation criteria are defined and a task set selector value is computed.

7.3.2 Defining Adaptation Criteria

Adaptation criteria are used to determine the recommended degree of rigor with which

the software process should be applied on a project. Eleven adaptation criteria [PRE99]

are defined for software projects:

• Size of the project

• Number of potential users

• Mission criticality

• Application longevity

• Stability of requirements

• Ease of customer/developer communication

• Maturity of applicable technology

• Performance constraints

• Embedded and nonembedded characteristics

• Project staff

• Reengineering factors

Each of the adaptation criteria is assigned a grade that ranges between 1 and 5, where

1 represents a project in which a small subset of process tasks are required and over-

all methodological and documentation requirements are minimal, and 5 represents

a project in which a complete set of process tasks should be applied and overall

methodological and documentation requirements are substantial.

8 Emergency situations should be rare (they should not occur on more than 10 percent of all work
conducted within the software engineering context). An emergency is not the same as a project
with tight time constraints.

Adaptable Process Model

If everything is an
emergency, there’s
something wrong with
your software process
or with the people who
manage the business
or both.
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7.3.3 Computing a Task Set Selector Value

To select the appropriate task set for a project, the following steps should be con-

ducted:

1. Review each of the adaptation criteria in Section 7.3.2 and assign the appro-

priate grades (1 to 5) based on the characteristics of the project. These grades

should be entered into Table 7.1.

2. Review the weighting factors assigned to each of the criteria. The value of a

weighting factor ranges from 0.8 to 1.2 and provides an indication of the rel-

ative importance of a particular adaptation criterion to the types of software

developed within the local environment. If modifications are required to bet-

ter reflect local circumstances, they should be made.

3. Multiply the grade entered in Table 7.1 by the weighting factor and by the

entry point multiplier for the type of project to be undertaken. The entry point

multiplier takes on a value of  0 or 1 and indicates the relevance of the adap-

tation criterion to the project type. The result of the product

grade x weighting factor x entry point multiplier

is placed in the Product column of Table 7.1 for each adaptation criteria indi-

vidually.

4. Compute the average of all entries in the Product column and place the result

in the space marked task set selector (TSS). This value will be used to help

select the task set that is most appropriate for the project.
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TABLE 7.1 COMPUTING THE TASK SET SELECTOR

Adaptation Criteria Grade Weight Entry Point Multiplier Product
Conc. NDev. Enhan. Maint. Reeng.

Size of project _____ 1.20 0 1 1 1 1 _____

Number of users _____ 1.10 0 1 1 1 1 _____

Business criticality _____ 1.10 0 1 1 1 1 _____

Longevity _____ 0.90 0 1 1 0 0 _____

Stability of requirements _____ 1.20 0 1 1 1 1 _____

Ease of communication _____ 0.90 1 1 1 1 1 _____

Maturity of technology _____ 0.90 1 1 0 0 1 _____

Performance constraints _____ 0.80 0 1 1 0 1 _____

Embedded/nonembedded _____ 1.20 1 1 1 0 1 _____

Project staffing _____ 1.00 1 1 1 1 1 _____

Interoperability _____ 1.10 0 1 1 1 1 _____

Reengineering factors _____ 1.20 0 0 0 0 1 _____

Task set selector (TSS) _____
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7.3.4 Interpreting the TSS Value and Selecting the Task Set

Once the task set selector is computed, the following guidelines can be used to select

the appropriate task set for a project:

Task set selector value Degree of rigor
TSS < 1.2 casual

1.0 < TSS < 3.0 structured

TSS > 2.4 strict 

The overlap in TSS values from one recommended task set to another is purposeful

and is intended to illustrate that sharp boundaries are impossible to define when mak-

ing task set selections. In the final analysis, the task set selector value, past experi-

ence, and common sense must all be factored into the choice of the task set for a

project.

Table 7.2 illustrates how TSS might be computed for a hypothetical project. The

project manager selects the grades shown in the Grade column. The project type is

new application development. Therefore, entry point multipliers are selected from the

NDev column. The entry in the Product column is computed using 

Grade x Weight x NewDev entry point multiplier

The value of TSS (computed as the average of all entries in the product column) is

2.8. Using the criteria discussed previously, the manager has the option of using either

the structured or the strict task set. The final decision is made once all project factors

have been considered.

If the task set selector
value is in an overlap
area, it usually is OK to
choose the less formal
degree of rigor, unless
project risk is high.

TABLE 7.2 COMPUTING THE TASK SET SELECTOR—AN EXAMPLE

Adaptation Criteria Grade Weight Entry Point Multiplier Product
Conc. NDev. Enhan. Maint. Reeng.

Size of project 2 1.2 _____ 1 _____ _____ _____ 2.4

Number of users 3 1.1 _____ 1 _____ _____ _____ 3.3

Business criticality 4 1.1 _____ 1 _____ _____ _____ 4.4

Longevity 3 0.9 _____ 1 _____ _____ _____ 2.7

Stability of requirements 2 1.2 _____ 1 _____ _____ _____ 2.4

Ease of communication 2 0.9 _____ 1 _____ _____ _____ 1.8

Maturity of technology 2 0.9 _____ 1 _____ _____ _____ 1.8

Performance constraints 3 0.8 _____ 1 _____ _____ _____ 2.4

Embedded/nonembedded 3 1.2 _____ 1 _____ _____ _____ 3.6

Project staffing 2 1.0 _____ 1 _____ _____ _____ 2.0

Interoperability 4 1.1 _____ 1 _____ _____ _____ 4.4

Reengineering factors 0 1.2 _____ 0 _____ _____ _____ 0.0

Task set selector (TSS) 2.8
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7.4 SELECTING SOFTWARE ENGINEERING TASKS

In order to develop a project schedule, a task set must be distributed on the project

time line. As we noted in Section 7.3, the task set will vary depending upon the proj-

ect type and the degree of rigor. Each of the project types described in Section 7.3

may be approached using a process model that is linear sequential, iterative (e.g., the

prototyping or incremental models), or evolutionary (e.g., the spiral model). In some

cases, one project type flows smoothly into the next. For example, concept develop-

ment projects that succeed often evolve into new application development projects.

As a new application development project ends, an application enhancement proj-

ect sometimes begins. This progression is both natural and predictable and will occur

regardless of the process model that is adopted by an organization. Therefore, the

major software engineering tasks described in the sections that follow are applica-

ble to all process model flows. As an example, we consider the software engineering

tasks for a concept development project.

Concept development projects are initiated when the potential for some new tech-

nology must be explored. There is no certainty that the technology will be applica-

ble, but a customer (e.g., marketing) believes that potential benefit exists. Concept

development projects are approached by applying the following major tasks:

Concept scoping determines the overall scope of the project.

Preliminary concept planning establishes the organization’s ability to

undertake the work implied by the project scope.

Technology risk assessment evaluates the risk associated with the tech-

nology to be implemented as part of project scope.

Proof of concept demonstrates the viability of a new technology in the soft-

ware context.

Concept implementation implements the concept representation in a

manner that can be reviewed by a customer and is used for “marketing” pur-

poses when a concept must be sold to other customers or management.

Customer reaction to the concept solicits feedback on a new technology

concept and targets specific customer applications.

A quick scan of these tasks should yield few surprises. In fact, the software engi-

neering flow for concept development projects (and for all other types of projects as

well) is little more than common sense. 

The software team must understand what must be done (scoping); then the team

(or manager) must determine whether anyone is available to do it (planning), con-

sider the risks associated with the work (risk assessment), prove the technology in

some way (proof of concept), and implement it in a prototypical manner so that the

customer can evaluate it (concept implementation and customer evaluation). Finally,

if the concept is viable, a production version (translation) must be produced.
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It is important to note that concept development framework activities are itera-

tive in nature. That is, an actual concept development project might approach these

activities in a number of planned increments, each designed to produce a deliverable

that can be evaluated by the customer.

If a linear process model flow is chosen, each of these increments is defined in a

repeating sequence as illustrated in Figure 7.1. During each sequence, umbrella activ-

ities (described in Chapter 2) are applied; quality is monitored; and at the end of each

sequence, a deliverable is produced. With each iteration, the deliverable should con-

verge toward the defined end product for the concept development stage. If an evo-

lutionary model is chosen, the layout of tasks 1.1 through 1.6 would appear as shown

in Figure 7.2. Major software engineering tasks for other project types can be defined

and applied in a similar manner.

7.5 REFINEMENT OF MAJOR TASKS

The major tasks described in Section 7.4 may be used to define a macroscopic

schedule for a project. However, the macroscopic schedule must be refined to

create a detailed project schedule. Refinement begins by taking each major task

and decomposing it into a set of subtasks (with related work products and mile-

stones).

As an example of task decomposition, consider concept scoping for a development

project, discussed in Section 7.4. Task refinement can be accomplished using an out-

line format, but in this book, a process design language approach is used to illustrate

the flow of the concept scoping activity:

Project
definition

Planning Engineering/
construction

Release Customer
evaluation

1.1 Concept scoping

1.2 Preliminary concept planning
1.3 Technology risk assessment

1.4 Proof of concept 1.6 Customer reaction

1.5 Concept implementation

Concept development

New application
development projects

Application
enhancement projects

Application
maintenance

Reengineering

FIGURE 7.1
Concept 
development
tasks in a 
linear 
sequential
model
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Task definition:  Task I.1  Concept Scoping  

I.1.1 Identify need, benefits and potential customers;
I.1.2 Define desired output/control and input events that drive the application;

Begin Task I.1.2
I.1.2.1 FTR:  Review written description of need9

I.1.2.2 Derive a list of customer visible outputs/inputs
case of:  mechanics
mechanics = quality function deployment

meet with customer to isolate major concept requirements;
interview end-users;
observe current approach to problem, current process;
review past requests and complaints;

mechanics = structured analysis
make list of major data objects; 
define relationships between objects;
define object attributes;

mechanics = object view
make list of problem classes;
develop class hierarchy and class connections;
define attributes for classes;

endcase
I.1.2.3 FTR:  Review outputs/inputs with customer and revise as required;
endtask Task I.1.2

I.1.3 Define the functionality/behavior for each major function;
Begin Task I.1.3
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Release

Customer
evaluation

Planning

Project definition Engineering/
construction

Concept scoping

Preliminary concept planning
Technology risk assessment

Proof of concept

Customer reaction

Concept implementation
Re-engineering

Application
maintenance

Application
enhancement

New Application
development

FIGURE 7.2
Concept 
development
tasks using an
evolutionary
model

9 FTR indicates that a formal technical review (Chapter 8) is to be conducted.

The adaptable process
model (APM) contains a
complete process design
language description for
all software engineering
tasks.
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I.1.3.1 FTR:  Review output and input data objects derived in task I.1.2;
I.1.3.2 Derive a model of functions/behaviors;

case of:  mechanics
mechanics = quality function deployment

meet with customer to review major concept requirements;
interview end-users;
observe current approach to problem, current process;
develop a hierarchical outline of functions/behaviors;

mechanics = structured analysis
derive a context level data flow diagram; 
refine the data flow diagram to provide more detail;
write processing narratives for functions at lowest level of refinement; 

mechanics = object view
define operations/methods that are relevant for each class;

endcase
I.1.3.3 FTR:  Review functions/behaviors with customer and revise as required;
endtask Task I.1.3

I.1.4 Isolate those elements of the technology to be implemented in software; 
I.1.5 Research availability of existing software;
I.1.6 Define technical feasibility;
I.1.7 Make quick estimate of size;
I.1.8 Create a Scope Definition;

endTask definition:   Task I.1

The tasks and subtasks noted in the process design language refinement form the

basis for a detailed schedule for the concept scoping activity.

7.6 DEFINING A TASK NETWORK

Individual tasks and subtasks have interdependencies based on their sequence. In

addition, when more than one person is involved in a software engineering project,

it is likely that development activities and tasks will be performed in parallel. When

this occurs, concurrent tasks must be coordinated so that they will be complete when

later tasks require their work product(s).

A task network, also called an activity network, is a graphic representation of the

task flow for a project. It is sometimes used as the mechanism through which task

sequence and dependencies are input to an automated project scheduling tool. In its

simplest form (used when creating a macroscopic schedule), the task network depicts

major software engineering tasks. Figure 7.3 shows a schematic task network for a

concept development project. 

The concurrent nature of software engineering activities leads to a number of

important scheduling requirements. Because parallel tasks occur asynchronously, the

planner must determine intertask dependencies to ensure continuous progress toward

completion. In addition, the project manager should be aware of those tasks that lie

on the critical path. That is, tasks that must be completed on schedule if the project

The task network is a
useful mechanism for
depicting intertask
dependencies and
determining the critical
path.
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as a whole is to be completed on schedule. These issues are discussed in more detail

later in this chapter.

It is important to note that the task network shown in Figure 7.3 is macroscopic.

In a detailed task network (a precursor to a detailed schedule), each activity shown

in Figure 7.3 would be expanded. For example, Task I.1 would be expanded to show

all tasks detailed in the refinement of Tasks I.1 shown in Section 7.5.

7.7 SCHEDULING

Scheduling of a software project does not differ greatly from scheduling of any multi-

task engineering effort. Therefore, generalized project scheduling tools and tech-

niques can be applied with little modification to software projects.

Program evaluation and review technique (PERT) and critical path method (CPM)

[MOD83] are two project scheduling methods that can be applied to software devel-

opment. Both techniques are driven by information already developed in earlier proj-

ect planning activities:

• Estimates of effort

• A decomposition of the product function

• The selection of the appropriate process model and task set

• Decomposition of tasks

Interdependencies among tasks may be defined using a task network. Tasks,  some-

times called the project work breakdown structure (WBS), are defined for the product

as a whole or for individual functions.

Both PERT and CPM provide quantitative tools that allow the software planner to

(1) determine the critical path—the chain of tasks that determines the duration of the
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I.1
Concept
scoping

I.2
Concept
planning

I.3b
Tech.Risk

assessment 

I.4
Proof of
concept

I.5b
Concept

implement.

Integrate
a, b, c

I.6
Customer
reaction

I.3a
Tech. risk

assessment

I.5a
Concept

implement.

I.3c
Tech. risk

assessment

I.5c
Concept

implement.

Three I.5 tasks are
applied in parallel to
3 different concept
functions

FIGURE 7.3 A task network for concept development

For all but the simplest
projects, scheduling
should be done with
the aid of a project
scheduling tool.



PART TWO MANAGING SOFTWARE PROJECTS182

project; (2) establish “most likely” time estimates for individual tasks by applying sta-

tistical models; and (3) calculate “boundary times” that define a time "window" for a

particular task.

Boundary time calculations can be very useful in software project scheduling. Slip-

page in the design of one function, for example, can retard further development of

other functions. Riggs [RIG81] describes important boundary times that may be dis-

cerned from a PERT or CPM network: (1) the earliest time that a task can begin when

all preceding tasks are completed in the shortest possible time, (2) the latest time for

task initiation before the minimum project completion time is delayed, (3) the earli-

est finish—the sum of the earliest start and the task duration, (4) the latest finish—

the latest start time added to task duration, and (5) the total float—the amount of

surplus time or leeway allowed in scheduling tasks so that the network critical path

is maintained on schedule. Boundary time calculations lead to a determination of

critical path and provide the manager with a quantitative method for evaluating

progress as tasks are completed. 

Both PERT and CPM have been implemented in a wide variety of automated tools

that are available for the personal computer [THE93]. Such tools are easy to use and

make the scheduling methods described previously available to every software proj-

ect manager.

7.7.1 Timeline Charts

When creating a software project schedule, the planner begins with a set of tasks (the

work breakdown structure). If automated tools are used, the work breakdown is input

as a task network or task outline. Effort, duration, and start date are then input for

each task. In addition, tasks may be assigned to specific individuals.

As a consequence of this input, a timeline chart, also called a Gantt chart, is gen-

erated.  A timeline chart can be developed for the entire project. Alternatively, sepa-

rate charts can be developed for each project function or for each individual working

on the project.

Figure 7.4 illustrates the format of a timeline chart. It depicts a part of a software

project schedule that emphasizes the concept scoping task (Section 7.5) for a new

word-processing (WP) software product. All project tasks (for concept scoping) are

listed in the left-hand column. The horizontal bars indicate the duration of each task.

When multiple bars occur at the same time on the calendar, task concurrency is

implied. The diamonds indicate milestones.

Once the information necessary for the generation of a timeline chart has been

input, the majority of software project scheduling tools produce project tables—a tab-

ular listing of all project tasks, their planned and actual start- and end-dates, and a

variety of related information (Figure 7.5). Used in conjunction with the timeline chart,

project tables enable the project manager to track progress. 

CASE tools
project/scheduling and

planning

A timeline chart
enables you to
determine what tasks
will be conducted at a
given point in time.
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Identify needs and benefits
Meet with customers
Identify needs and project constraints
Establish product statement
Milestone: Product statement defined
Define desired output/control/input (OCI)
Scope keyboard functions
Scope voice input functions
Scope modes of interaction
Scope document diagnosis
Scope other WP functions
Document OCI
FTR: Review OCI with customer
Revise OCI as required 
Milestone: OCI defined
Define the function/behavior
Define keyboard functions
Define voice input functions
Describe modes of interaction
Describe spell/grammar check
Describe other WP functions
FTR: Review OCI definition with customer
Revise as required
Milestone: OCI definition complete
Isolation software elements
Milestone: Software elements defined
Research availability of existing software
Research text editing components
Research voice input components
Research file management components
Research spell/grammar check components
Milestone: Reusable components identified
Define technical feasibility
Evaluate voice input
Evaluate grammar checking
Milestone: Technical feasibility assessed
Make quick estimate of size
Create a scope definition
Review scope document with customer
Revise document as required
Milestone: Scope document complete

I.1.1

I.1.2

I.1.3

I.1.4

I.1.5

I.1.6

I.1.7
I.1.8

Work tasks Week 1 Week 2 Week 3 Week 4 Week 5

FIGURE 7.4 An example timeline chart
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Planned
start

Actual
start

Planned
complete

Actual
complete

Assigned
person

Effort
allocated Notes

wk1, d1
wk1, d2
wk1, d3
wk1, d3

wk1, d4
wk1, d3
wk2, d1
wk2, d1
wk1, d4
wk2, d1
wk2, d3
wk2, d4
wk2, d5

wk1, d1
wk1, d2
wk1, d3
wk1, d3

wk1, d4
wk1, d3

wk1, d4

wk1, d2
wk1, d2
wk1, d3
wk1, d3

wk2, d2
wk2, d2
wk2, d3
wk2, d2
wk2, d3
wk2, d3
wk2, d3
wk2, d4
wk2, d5

wk1, d2
wk1, d2
wk1, d3
wk1, d3

BLS
JPP
BLS/JPP

BLS
JPP
MLL
BLS
JPP
MLL
all
all

2 p-d
1 p-d
1 p-d

1.5 p-d
2 p-d
1 p-d
1.5 p-d
2 p-d
3 p-d
3 p-d
3 p-d

Scoping will
require more
effort/time

Work tasks

Identify needs and benefits
Meet with customers
Identify needs and project constraints
Establish product statement
Milestone: Product statement defined
Define desired output/control/input (OCI)
Scope keyboard functions
Scope voice input functions
Scope modes of interaction
Scope document diagnostics
Scope other WP functions
Document OCI
FTR: Review OCI with customer
Revise OCI as required
Milestone: OCI defined
Define the function/behavior

I.1.1

I.1.2

I.1.3

FIGURE 7.5 An example project table
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7.7.2 Tracking the Schedule

The project schedule provides a road map for a software project manager. If it has

been properly developed, the project schedule defines the tasks and milestones that

must be tracked and controlled as the project proceeds. Tracking can be accomplished

in a number of different ways:

• Conducting periodic project status meetings in which each team member

reports progress and problems.

• Evaluating the results of all reviews conducted throughout the software engi-

neering process.

• Determining whether formal project milestones (the diamonds shown in Fig-

ure 7.4) have been accomplished by the scheduled date.

• Comparing actual start-date to planned start-date for each project task listed

in the resource table (Figure 7.5).

• Meeting informally with practitioners to obtain their subjective assessment of

progress to date and problems on the horizon.

• Using earned value analysis (Section 7.8) to assess progress quantitatively.

In reality, all of these tracking techniques are used by experienced project managers.

Control is employed by a software project manager to administer project

resources, cope with problems, and direct project staff. If things are going well

(i.e., the project is on schedule and within budget, reviews indicate that real progress

is being made and milestones are being reached), control is light. But when prob-

lems occur, the project manager must exercise control to reconcile them as quickly

as possible. After a problem has been diagnosed,10 additional resources may be

focused on the problem area: staff may be redeployed or the project schedule can

be redefined.

When faced with severe deadline pressure, experienced project managers some-

times use a project scheduling and control technique called time-boxing [ZAH95]. The

time-boxing strategy recognizes that the complete product may not be deliverable

by the predefined deadline. Therefore, an incremental software paradigm (Chapter 2)

is chosen and a schedule is derived for each incremental delivery. 

The tasks associated with each increment are then time-boxed. This means that

the schedule for each task is adjusted by working backward from the delivery date

for the increment. A “box” is put around each task. When a task hits the boundary of

its time box (plus or minus 10 percent), work stops and the next task begins. 

The initial reaction to the time-boxing approach is often negative: “If the work isn’t

finished, how can we proceed?” The answer lies in the way work is accomplished.

By the time the time-box boundary is encountered, it is likely that 90 percent of the
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Capers Jones

10 It is important to note that schedule slippage is a symptom of some underlying problem. The role
of the project manager is to diagnose the underlying problem and act to correct it. 
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defined software work
product.
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task has been completed.11 The remaining 10 percent, although important, can 

(1) be delayed until the next increment or (2) be completed later if required. Rather

than becoming “stuck” on a task, the project proceeds toward the delivery date. 

7.8 EARNED VALUE ANALYSIS

In Section 7.7.2, we discussed a number of qualitative approaches to project track-

ing. Each provides the project manager with an indication of progress, but an assess-

ment of the information provided is somewhat subjective. It is reasonable to ask

whether there is a quantitative technique for assessing progress as the software team

progresses through the work tasks allocated to the project schedule. In fact, a tech-

nique for performing quantitative analysis of progress does exist. It is called earned

value analysis (EVA).

Humphrey [HUM95] discusses earned value in the following manner:

The earned value system provides a common value scale for every [software project] task,

regardless of the type of work being performed. The total hours to do the whole project are

estimated, and every task is given an earned value based on its estimated percentage of

the total.

Stated even more simply, earned value is a measure of progress. It enables us to

assess the “percent of completeness” of a project using quantitative analysis rather

than rely on a gut feeling. In fact, Fleming and Koppleman [FLE98] argue that earned

value analysis “provides accurate and reliable readings of performance from as early

as 15 percent into the project.”

To determine the earned value, the following steps are performed:

1. The budgeted cost of work scheduled (BCWS) is determined for each work task

represented in the schedule. During the estimation activity (Chapter 5), the

work (in person-hours or person-days) of each software engineering task is

planned. Hence, BCWSi is the effort planned for work task i.  To determine

progress at a given point along the project schedule, the value of BCWS is the

sum of the BCWSi values for all work tasks that should have been completed

by that point in time on the project schedule. 

2. The BCWS values for all work tasks are summed to derive the budget at com-

pletion, BAC. Hence,

BAC = � (BCWSk) for all tasks k

3. Next, the value for budgeted cost of work performed (BCWP) is computed. The

value for BCWP is the sum of the BCWS values for all work tasks that have

actually been completed by a point in time on the project schedule.

11 A cynic might recall the saying: “The first 90 percent of a system takes 90 percent of the time. The

last 10 percent of the system takes 90 percent of the time.”

Earned value provides
a quantitative
indication of progress.

How do I
compute

earned value to
assess progress?

?
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Wilkens [WIL99] notes that “the distinction between the BCWS and the BCWP is that the

former represents the budget of the activities that were planned to be completed and

the latter represents the budget of the activities that actually were completed.” Given

values for BCWS, BAC, and BCWP, important progress indicators can be computed:

Schedule performance index,  SPI = BCWP/BCWS

Schedule variance, SV =  BCWP – BCWS

SPI is an indication of the efficiency with which the project is utilizing scheduled

resources. An SPI value close to 1.0 indicates efficient execution of the project sched-

ule. SV is simply an absolute indication of variance from the planned schedule.

Percent scheduled for completion = BCWS/BAC

provides an indication of the percentage of work that should have been completed

by time t.

Percent complete = BCWP/BAC

provides a quantitative indication of the percent of completeness of the project at a

given point in time, t.

It is also possible to compute the actual cost of work performed, ACWP. The value

for ACWP is the sum of the effort actually expended on work tasks that have been

completed by a point in time on the project schedule. It is then possible to compute

Cost performance index, CPI = BCWP/ACWP

Cost variance, CV =  BCWP – ACWP

A CPI value close to 1.0 provides a strong indication that the project is within its

defined budget. CV is an absolute indication of cost savings (against planned costs)

or shortfall at a particular stage of a project.

Like over-the-horizon radar, earned value analysis illuminates scheduling diffi-

culties before they might otherwise be apparent. This enables the software project

manager to take corrective action before a project crisis develops.  

7.9 ERROR TRACKING

Throughout the software process, a project team creates work products (e.g., require-

ments specifications or prototype, design documents, source code). But the team also

creates (and hopefully corrects) errors associated with each work product. If error-

related measures and resultant metrics are collected over many software projects, a

project manager can use these data as a baseline for comparison against error data

collected in real time. Error tracking can be used as one means for assessing the sta-

tus of a current project.

In Chapter 4, the concept of defect removal efficiency was discussed. To review

briefly, the software team performs formal technical reviews (and, later, testing) to

find and correct errors, E, in work products produced during software engineering
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WebRef
A wide array of earned
value analysis resources
(comprehensive
bibliography, papers,
hotlinks) can be found at 
www.acq.osd.mil/
pm/

Error tracking allows
you to compare current
work with past efforts
and provides a
quantitative indication
of the quality of the
work being conducted.
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tasks. Any errors that are not uncovered (but found in later tasks) are considered to

be defects, D. Defect removal efficiency (Chapter 4) has been defined as

DRE = E/(E + D)

DRE is a process metric that provides a strong indication of the effectiveness of

quality assurance activities, but DRE and the error and defect counts associated with

it can also be used to assist a project manager in determining the progress that is

being made as a software project moves through its scheduled work tasks.

Let us assume that a software organization has collected error and defect data

over the past 24 months and has developed averages for the following metrics:

• Errors per requirements specification page, Ereq

• Errors per component—design level, Edesign

• Errors per component—code level, Ecode

• DRE—requirements analysis

• DRE—architectural design

• DRE—component level design

• DRE—coding

As the project progresses through each software engineering step, the software team

records and reports the number of errors found during requirements, design, and

code reviews. The project manager calculates current values for  Ereq, Edesign, and

Ecode. These are then compared to averages for past projects. If current results vary

by more than 20% from the average, there may be cause for concern and there is cer-

tainly cause for investigation.

For example, if Ereq = 2.1 for project X, yet the organizational average is 3.6, one

of two scenarios is possible: (1) the software team has done an outstanding job of

developing the requirements specification or (2) the team has been lax in its review

approach.  If the second scenario appears likely, the project manager should take

immediate steps to build additional design time12 into the schedule to accommodate

the requirements defects that have likely been propagated into the design activity.

These error tracking metrics can also be used to better target review and/or test-

ing resources. For example, if a system is composed of 120 components, but 32 of

these component exhibit Edesign values that have substantial variance from the aver-

age, the project manager might elect to dedicate code review resources to the 32

components and allow others to pass into testing with no code review. Although all

components should undergo code review in an ideal setting, a selective approach

(reviewing only those modules that have suspect quality based on the Edesign value)

might be an effective means for recouping lost time and/or saving costs for a proj-

ect that has gone over budget.

The more quantitative
your approach to
project tracking and
control, the more likely
you’ll be able to
foresee potential
problems and respond
to them proactively.
Use earned value and
tracking metrics.

12 In reality, the extra time will be spent reworking requirements defects, but the work will occur
when the design is underway.
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7.10 THE PROJECT PLAN

Each step in the software engineering process should produce a deliverable that can

be reviewed and that can act as a foundation for the steps that follow.  The Software

Project Plan is produced at the culmination of the planning tasks. It provides baseline

cost and scheduling information that will be used throughout the software process. 

The Software Project Plan is a relatively brief document that is addressed to a diverse

audience. It must (1) communicate scope and resources to software management,

technical staff, and the customer; (2) define risks and suggest risk aversion techniques;

(3) define cost and schedule for management review; (4) provide an overall approach

to software development for all people associated with the project; and (5) outline

how quality will be ensured and change will be managed.  

A presentation of cost and schedule will vary with the audience addressed. If the

plan is used only as an internal document, the results of each estimation technique

can be presented. When the plan is disseminated outside the organization, a recon-

ciled cost breakdown (combining the results of all estimation techniques) is provided.

Similarly, the degree of detail contained within the schedule section may vary with

the audience and formality of the plan.

It is important to note that the Software Project Plan is not a static document. That

is, the project team revisits the plan repeatedly—updating risks, estimates, schedules

and related information—as the project proceeds and more is learned. 

7.11 SUMMARY

Scheduling is the culmination of a planning activity that is a primary component of

software project management. When combined with estimation methods and risk

analysis, scheduling establishes a road map for the project manager.

Scheduling begins with process decomposition. The characteristics of the project

are used to adapt an appropriate task set for the work to be done. A task network

depicts each engineering task, its dependency on other tasks, and its projected dura-

tion. The task network is used to compute the critical path, a timeline chart and a

variety of project information. Using the schedule as a guide, the project manager

can track and control each step in the software process.
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PROBLEMS AND POINTS TO PONDER

7.1. “Unreasonable” deadlines are a fact of life in the software business. How should

you proceed if you’re faced with one?

7.2. What is the difference between a macroscopic schedule and a detailed sched-

ule. Is it possible to manage a project if only a macroscopic schedule is developed?

Why?

7.3. Is there ever a case where a software project milestone is not tied to a review?

If so, provide one or more examples.

7.4. In Section 7.2.1, we present an example of the “communication overhead” that

can occur when multiple people work on a software project. Develop a counterex-

ample that illustrates how engineers who are well-versed in good software engi-

neering practices and use formal technical reviews can increase the production rate

of a team (when compared to the sum of individual production rates). Hint: You can

assume that reviews reduce rework and that rework can account for 20–40 percent

of a person’s time. 

7.5. Although adding people to a late software project can make it later, there are

circumstances in which this is not true. Describe them.

7.6. The relationship between people and time is highly nonlinear. Using Putnam's

software equation (described in Section 7.2.2), develop a table that relates number of

people to project duration for a software project requiring 50,000 LOC and 15 person-

years of effort (the productivity parameter is 5000 and B = 0.37). Assume that the soft-

ware must be delivered in 24 months plus or minus 12 months.

7.7. Assume that you have been contracted by a university to develop an on-line

course registration system (OLCRS). First, act as the customer (if you're a student,

that should be easy!) and specify the characteristics of a good system. (Alternatively,

your instructor will provide you with a set of preliminary requirements for the sys-

tem.) Using the estimation methods discussed in Chapter 5, develop an effort and

duration estimate for OLCRS. Suggest how you would:
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a. Define parallel work activities during the OLCRS project.

b. Distribute effort throughout the project.

c. Establish milestones for the project.

7.8. Using Section 7.3 as a guide compute the TSS for OLCRS. Be sure to show all

of your work. Select a project type and an appropriate task set for the project.

7.9. Define a task network for OLCRS, or alternatively, for another software project

that interests you. Be sure to show tasks and milestones and to attach effort and dura-

tion estimates to each task. If possible, use an automated scheduling tool to perform

this work.

7.10. If an automated scheduling tool is available, determine the critical path for the

network defined in problem 7.7.

7.11. Using a scheduling tool (if available) or paper and pencil (if necessary), develop

a timeline chart for the OLCRS project.

7.12. Refine the task called “technology risk assessment” in Section 7.4 in much the

same way as concept scoping was refined in Section 7.5.

7.13. Assume you are a software project manager and that you’ve been asked to

compute earned value statistics for a small software project. The project has 56

planned work tasks that are estimated to require 582 person-days to complete. At

the time that you’ve been asked to do the earned value analysis, 12 tasks have been

completed. However the project schedule indicates that 15 tasks should have been

completed. The following scheduling data (in person-days) are available:

Task Planned effort Actual effort
1 12.0 12.5
2 15.0 11.0
3 13.0 17.0
4 8.0 9.5
5 9.5 9.0
6 18.0 19.0
7 10.0 10.0
8 4.0 4.5
9 12.0 10.0

10 6.0 6.5
11 5.0 4.0
12 14.0 14.5
13 16.0 —   
14 6.0 —  
15 8.0 —   

Compute the SPI, schedule variance, percent scheduled for completion, percent com-

plete, CPI, and cost variance for the project.

7.14. Is it possible to use DRE as a metric for error tracking throughout a software

project? Discuss the pros and cons of using DRE for this purpose. 

191
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FURTHER READINGS AND INFORMATION SOURCES

McConnell (Rapid Development, Microsoft Press, 1996) presents an excellent discus-

sion of the issues that lead to overly optimistic software project scheduling and what

you can do about it. O'Connell (How to Run Successful Projects II: The Silver Bullet,

Prentice-Hall, 1997) presents a step-by-step approach to project management that

will help you to develop a realistic schedule for your projects. 

Project scheduling issues are covered in most books on software project man-

agement. McConnell (Software Project Survival Guide, Microsoft Press, 1998),  Hoff-

man and Beaumont (Application Development: Managing a Project's Life Cycle, Midrange

Computing, 1997), Wysoki and his colleagues (Effective Project Management, Wiley,

1995), and Whitten (Managing Software Development Projects, 2nd ed., Wiley, 1995)

consider the topic in detail. Boddie (Crunch Mode, Prentice-Hall, 1987) has written a

book for all managers who "have 90 days to do a six month project." 

Worthwhile information on project scheduling can also be obtained in general pur-

pose project management books. Among the many offerings available are

Kerzner, H., Project Management: A Systems Approach to Planning, Scheduling, and Control-

ling, Wiley, 1998. 

Lewis, J.P.,  Mastering Project Management: Applying Advanced Concepts of Systems Thinking,

Control and Evaluation, McGraw-Hill, 1998.

Fleming and Koppelman (Earned Value Project Management, Project Management

Institute Publications, 1996) discuss the use of earned value techniques for project

tracking and control in considerable detail.

A wide variety of information sources on project scheduling and management is

available on the Internet. An up-to-date list of World Wide Web references that are

relevant to scheduling can be found at the SEPA Web site:

http://www.mhhe.com/engcs/compsci/pressman/resources/

project-sched.mhtml
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The software engineering approach described in this book works toward
a single goal: to produce high-quality software. Yet many readers will be
challenged by the question: "What is software quality?"      

Philip Crosby [CRO79], in his landmark book on quality, provides a wry answer
to this question:

The problem of quality management is not what people don't know about it. The

problem is what they think they do know . . .              

In this regard, quality has much in common with sex. Everybody is for it. (Under

certain conditions, of course.) Everyone feels they understand it. (Even though they

wouldn't want to explain it.) Everyone thinks execution is only a matter of following

natural inclinations. (After all, we do get along somehow.) And, of course, most peo-

ple feel that problems in these areas are caused by other people. (If only they would

take the time to do things right.)

Some software developers continue to believe that software quality is some-
thing you begin to worry about after code has been generated. Nothing could
be further from the truth! Software quality assurance (SQA) is an umbrella activ-
ity (Chapter 2) that is applied throughout the software process. 

8 SOFTWARE QUALITY
ASSURANCE

What is it? It’s not enough to

talk the talk by saying that soft-

ware quality is important, you

have to (1) explicitly define what is meant when

you say “software quality,” (2) create a set of

activities that will help ensure that every soft-

ware engineering work product exhibits high

quality, (3) perform quality assurance activities

on every software project, (4) use metrics to

develop strategies for improving your software

process and, as a consequence, the quality of

the end product. 

Who does it? Everyone involved in the software engi-

neering process is responsible for quality.

Why is it important? You can do it right, or you can

do it over again. If a software team stresses qual-

ity in all software engineering activities, it reduces

the amount of rework that it must do. That results

in lower costs, and more importantly, improved

time-to-market.

What are the steps? Before software quality assur-

ance activities can be initiated, it is important to

define ‘software quality’ at a number of different

levels of abstraction. Once you understand what

quality is, a software team must identify a set of

SQA activities that will filter errors out of work prod-

ucts before they are passed on. 

What is the work product? A Software Quality Assur-

ance Plan is created to define a software team’s

SQA strategy. During analysis, design, and code

generation, the primary SQA work product is the

formal technical review summary report. During

Q U I C K
L O O K
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SQA encompasses (1) a quality management approach, (2) effective software engi-
neering technology (methods and tools), (3) formal technical reviews that are applied
throughout the software process, (4) a multitiered testing strategy, (5) control of soft-
ware documentation and the changes made to it, (6) a procedure to ensure compli-
ance with software development standards (when applicable), and (7) measurement
and reporting mechanisms.

In this chapter, we focus on the management issues and the process-specific activ-
ities that enable a software organization to ensure that it does “the right things at the
right time in the right way.”

8.1 QUALITY CONCEPTS1

It has been said that no two snowflakes are alike.  Certainly when we watch snow

falling it is hard to imagine that snowflakes differ at all, let alone that each flake pos-

sesses a unique structure. In order to observe differences between snowflakes, we

must examine the specimens closely, perhaps using a magnifying glass. In fact, the

closer we look, the more differences we are able to observe.

This phenomenon, variation between samples, applies to all products of human as

well as natural creation. For example, if two “identical” circuit boards are examined

closely enough, we may observe that the copper pathways on the boards differ slightly

in geometry, placement, and thickness.  In addition, the location and diameter of the

holes drilled in the boards varies as well.

All engineered and manufactured parts exhibit variation. The variation between

samples may not be obvious without the aid of precise equipment to measure the

geometry, electrical characteristics, or other attributes of the parts.  However, with

sufficiently sensitive instruments, we will likely come to the conclusion that no two

samples of any item are exactly alike.

Variation control is the heart of quality control. A manufacturer wants to minimize

the variation among the products that are produced, even when doing something rel-

atively simple like duplicating diskettes.  Surely, this cannot be a problem—duplicat-

testing, test plans and procedures

are produced. Other work prod-

ucts associated with process

improvement may also be generated.

How do I ensure that I’ve done it right? Find 

errors before they become defects! That is, work to

improve your defect removal efficiency (Chapters

4 and 7), thereby reducing the amount of rework

that your software team has to perform.

Q U I C K
L O O K

1 This section, written by Michael Stovsky, has been adapted from “Fundamentals of ISO 9000,” a
workbook developed for Essential Software Engineering, a video curriculum developed by R. S.
Pressman & Associates, Inc. Reprinted with permission.

“People forget how
fast you did a job —
but they always
remember how well
you did it.”
Howard  Newton.
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ing diskettes is a trivial manufacturing operation, and we can guarantee that exact

duplicates of the software are always created.

Or can we?  We need to ensure the tracks are placed on the diskettes within a

specified tolerance so that the overwhelming majority of disk drives can read the

diskettes. In addition, we need to ensure the magnetic flux for distinguishing a zero

from a one is sufficient for read/write heads to detect. The disk duplication machines

can, and do, wear and go out of tolerance.  So even a “simple” process such as disk

duplication may encounter problems due to variation between samples.

But how does this apply to software work? How might a software development

organization need to control variation? From one project to another, we want to min-

imize the difference between the predicted resources needed to complete a project

and the actual resources used, including staff, equipment, and calendar time. In gen-

eral, we would like to make sure our testing program covers a known percentage of

the software, from one release to another.  Not only do we want to minimize the

number of defects that are released to the field, we’d like to ensure that the variance

in the number of bugs is also minimized from one release to another. (Our customers

will likely be upset if the third release of a product has ten times as many defects as

the previous release.) We would like to minimize the differences in speed and accu-

racy of our hotline support responses to customer problems. The list goes on and on.

8.1.1 Quality

The American Heritage Dictionary defines quality as “a characteristic or attribute of

something.”  As an attribute of an item, quality refers to measurable characteristics—

things we are able to compare to known standards such as length, color, electrical

properties, and malleability. However, software, largely an intellectual entity, is more

challenging to characterize than physical objects.

Nevertheless, measures of a program’s characteristics do exist. These properties

include cyclomatic complexity, cohesion, number of function points, lines of code,

and many others, discussed in Chapters 19 and 24. When we examine an item based

on its measurable characteristics, two kinds of quality may be encountered: quality

of design and quality of conformance.

Quality of design refers to the characteristics that designers specify for an item. The

grade of materials, tolerances, and performance specifications all contribute to the

quality of design. As higher-grade materials are used, tighter tolerances and greater

levels of performance are specified, the design quality of a product increases, if the

product is manufactured according to specifications.

Quality of conformance is the degree to which the design specifications are fol-

lowed during manufacturing. Again, the greater the degree of conformance, the higher

is the level of quality of conformance.

In software development, quality of design encompasses requirements, specifica-

tions, and the design of the system. Quality of conformance is an issue focused 
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Controlling variation is
the key to a high-
quality product. In the
software context, we
strive to control the
variation in the process
we apply, the
resources we expend,
and the quality
attributes of the end
product.

“It takes less time to
do a thing right than
explain why you did
it wrong.” 
Henry Wadsworth
Longfellow
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primarily on implementation.  If the implementation follows the design and the result-

ing system meets its requirements and performance goals, conformance quality is

high.

But are quality of design and quality of conformance the only issues that software

engineers must consider? Robert Glass [GLA98] argues that a more “intuitive” rela-

tionship is in order:

User satisfaction = compliant product + good quality + 

delivery within budget and schedule

At the bottom line, Glass contends that quality is important, but if the user isn’t sat-

isfied, nothing else really matters. DeMarco [DEM99] reinforces this view when he

states: “A product’s quality is a function of how much it changes the world for the

better.” This view of quality contends that if a software product provides substantial

benefit to its end-users, they may be willing to tolerate occasional reliability or per-

formance problems. 

8.1.2 Quality Control

Variation control may be equated to quality control. But how do we achieve quality

control? Quality control involves the series of inspections, reviews, and tests used

throughout the software process to ensure each work product meets the require-

ments placed upon it. Quality control includes a feedback loop to the process that

created the work product. The combination of measurement and feedback allows us

to tune the process when the work products created fail to meet their specifications.

This approach views quality control as part of the manufacturing process.

Quality control activities may be fully automated, entirely manual, or a combina-

tion of automated tools and human interaction. A key concept of quality control is

that all work products have defined, measurable specifications to which we may com-

pare the output of each process.  The feedback loop is essential to minimize the

defects produced.

8.1.3 Quality Assurance

Quality assurance consists of the auditing and reporting functions of management.

The goal of quality assurance is to provide management with the data necessary to

be informed about product quality, thereby gaining insight and confidence that prod-

uct quality is meeting its goals. Of course, if the data provided through quality assur-

ance identify problems, it is management’s responsibility to address the problems

and apply the necessary resources to resolve quality issues.

8.1.4 Cost of Quality

The cost of quality includes all costs incurred in the pursuit of quality or in perform-

ing quality-related activities.  Cost of quality studies are conducted to provide a base-

WebRef
A wide variety of software
quality resources can be
found at 
www.qualitytree.
com/links/links.htm

What is
software

quality control?
?



CHAPTER 8 SOFTWARE QUALITY ASSURANCE

line for the current cost of quality, identify opportunities for reducing the cost of qual-

ity, and provide a normalized basis of comparison. The basis of normalization is

almost always dollars. Once we have normalized quality costs on a dollar basis, we

have the necessary data to evaluate where the opportunities lie to improve our

processes.  Furthermore, we can evaluate the effect of changes in dollar-based terms.

Quality costs may be divided into costs associated with prevention, appraisal, and

failure. Prevention costs include

• quality planning

• formal technical reviews

• test equipment

• training

Appraisal costs include activities to gain insight into product condition the “first time

through” each process. Examples of appraisal costs include

• in-process and interprocess inspection 

• equipment calibration and maintenance

• testing

Failure costs are those that would disappear if no defects appeared before shipping a

product to customers. Failure costs may be subdivided into internal failure costs and

external failure costs. Internal failure costs are incurred when we detect a defect in

our product prior to shipment. Internal failure costs include

• rework

• repair

• failure mode analysis

External failure costs are associated with defects found after the product has been

shipped to the customer. Examples of external failure costs are

• complaint resolution

• product return and replacement

• help line support

• warranty work

As expected, the relative costs to find and repair a defect increase dramatically as 

we go from prevention to detection to internal failure to external failure costs.  Fig-

ure 8.1, based on data collected by Boehm [BOE81] and others, illustrates this phe-

nomenon.

Anecdotal data reported by Kaplan, Clark, and Tang [KAP95] reinforces earlier cost

statistics and is based on work at IBM’s Rochester development facility:
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Don’t be afraid to incur
significant prevention
costs. Rest assured
that your investment
will provide an
excellent return.

What are the
components

of the cost of
quality?

?
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A total of 7053 hours was spent inspecting 200,000 lines of code with the result that 3112

potential defects were prevented. Assuming a programmer cost of $40.00 per hour, the total

cost of preventing 3112 defects was $282,120, or roughly $91.00 per defect.

Compare these numbers to the cost of defect removal once the product has been

shipped to the customer. Suppose that there had been no inspections, but that program-

mers had been extra careful and only one defect per 1000 lines of code [significantly better

than industry average] escaped into the shipped product. That would mean that 200 defects

would still have to be fixed in the field. At an estimated cost of $25,000 per field fix, the cost

would be $5 million, or approximately 18 times more expensive than the total cost of the

defect prevention effort.

It is true that IBM produces software that is used by hundreds of thousands of cus-

tomers and that their costs for field fixes may be higher than those for software orga-

nizations that build custom systems. This in no way negates the results just noted.

Even if the average software organization has field fix costs that are 25 percent of

IBM’s (most have no idea what their costs are!), the cost savings associated with qual-

ity control and assurance activities are compelling.

8.2 THE QUALITY MOVEMENT

Today, senior managers at companies throughout the industrialized world recognize

that high product quality translates to cost savings and an improved bottom line.

However, this was not always the case. The quality movement began in the 1940s

with the seminal work of W. Edwards Deming [DEM86] and had its first true test in

Japan. Using Deming’s ideas as a cornerstone, the Japanese developed a systematic
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but it’s also a very
expensive way to find
errors. Spend time
finding errors early in
the process and you
may be able to
significantly reduce
testing and debugging
costs.
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approach to the elimination of the root causes of product defects. Throughout the

1970s and 1980s, their work migrated to the western world and was given names

such as “total quality management” (TQM).2 Although terminology differs across dif-

ferent companies and authors, a basic four step progression is normally encountered

and forms the foundation of any good TQM program.

The first step, called kaizen, refers to a system of continuous process improvement.

The goal of kaizen is to develop a process (in this case, the software process) that is

visible, repeatable, and measurable.

The second step, invoked only after kaizen has been achieved, is called atarimae

hinshitsu. This step examines intangibles that affect the process and works to opti-

mize their impact on the process. For example, the software process may be affected

by high staff turnover, which itself is caused by constant reorganization within a com-

pany. Maybe a stable organizational structure could do much to improve the quality

of software. Atarimae hinshitsu would lead management to suggest changes in the

way reorganization occurs.

While the first two steps focus on the process, the next step, called kansei (trans-

lated as “the five senses”), concentrates on the user of the product (in this case, soft-

ware). In essence, by examining the way the user applies the product kansei leads to

improvement in the product itself and, potentially, to the process that created it.

Finally, a step called miryokuteki hinshitsu broadens management concern beyond

the immediate product. This is a business-oriented step that looks for opportunity in

related areas identified by observing the use of the product in the marketplace. In the

software world, miryokuteki hinshitsu might be viewed as an attempt to uncover new

and profitable products or applications that are an outgrowth from an existing 

computer-based system.

For most companies kaizen should be of immediate concern. Until a mature soft-

ware process (Chapter 2) has been achieved, there is little point in moving to the next

steps.

8.3  SOFTWARE QUALITY ASSURANCE

Even the most jaded software developers will agree that high-quality software is an

important goal. But how do we define quality? A wag once said, "Every program does

something right, it just may not be the thing that we want it to do."

Many definitions of software quality have been  proposed in the literature. For our

purposes, software quality is defined as

Conformance to explicitly stated functional and performance requirements, explicitly doc-

umented development standards, and implicit characteristics that are expected of all pro-

fessionally developed software. 
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2 See [ART92] for a comprehensive discussion of TQM and its use in a software context and
[KAP95] for a discussion of the use of the Baldrige Award criteria in the software world.

TQM can be applied to
computer software.
The TQM approach
stresses continuous
process improvement.
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There is little question that this definition could be modified or extended. In fact, a

definitive definition of software quality could be debated endlessly. For the purposes

of this book, the definition serves to emphasize three important points:

1. Software requirements are the foundation from which quality is measured.

Lack of conformance to requirements is lack of quality.

2. Specified standards define a set of development criteria that guide the man-

ner in which software is engineered. If the criteria are not followed, lack of

quality will almost surely result.

3. A set of implicit requirements often goes unmentioned (e.g., the desire for

ease of use and good maintainability). If software conforms to its explicit

requirements but fails to meet implicit requirements, software quality is sus-

pect.

8.3.1  Background Issues

Quality assurance is an essential activity for any business that produces products to

be used by others. Prior to the twentieth century, quality assurance was the sole

responsibility of the craftsperson who built a product. The first formal quality assur-

ance and control function was introduced at Bell Labs in 1916 and spread rapidly

throughout the manufacturing world. During the 1940s, more formal approaches to

quality control were suggested. These relied on measurement and continuous process

improvement as key elements of quality management.

Today, every company has mechanisms to ensure quality in its products. In fact,

explicit statements of a company's concern for quality have become a marketing ploy

during the past few decades.

The history of quality assurance in software development parallels the history of

quality in hardware manufacturing. During the early days of computing (1950s and

1960s), quality was the sole responsibility of the programmer. Standards for quality

assurance for software were introduced in military contract software development

during the 1970s and have spread rapidly into software development in the com-

mercial world [IEE94]. Extending the definition presented earlier, software quality

assurance is a "planned and systematic pattern of actions" [SCH98] that are required

to ensure high quality in software. The scope of quality assurance responsibility might

best be characterized by paraphrasing a once-popular automobile commercial: "Qual-

ity Is Job #1." The implication for software is that many different constituencies have

software quality assurance responsibility—software engineers, project managers,

customers, salespeople, and the individuals who serve within an SQA group.

The SQA group serves as the customer's in-house representative. That is, the peo-

ple who perform SQA must look at the software from the customer's point of view.

Does the software adequately meet the quality factors noted in Chapter 19? Has soft-

“We made too many
wrong mistakes.”
Yogi Berra 

WebRef
An in-depth tutorial and
wide-ranging resources for
quality management can
be found at 
www.management.
gov.
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ware development been conducted according to pre-established standards? Have

technical disciplines properly performed their roles as part of the SQA activity? The

SQA group attempts to answer these and other questions to ensure that software

quality is maintained.

8.3.2  SQA Activities

Software quality assurance is composed of a variety of tasks associated with two dif-

ferent constituencies—the software engineers who do technical work and an SQA

group that has responsibility for quality assurance planning, oversight, record keep-

ing, analysis, and reporting. 

Software engineers address quality (and perform quality assurance and quality

control activities) by applying solid technical methods and measures, conducting for-

mal technical reviews, and performing well-planned software testing. Only reviews

are discussed in this chapter. Technology topics are discussed in Parts Three through

Five of this book.

The charter of the SQA group is to assist the software team in achieving a high-

quality end product. The Software Engineering Institute [PAU93] recommends a set

of SQA activities that address quality assurance planning, oversight, record keeping,

analysis, and reporting. These activities are performed (or facilitated) by an inde-

pendent SQA group that:

Prepares an SQA plan for a project. The plan is developed during project plan-

ning and is reviewed by all interested parties. Quality assurance activities performed

by the software engineering team and the SQA group are governed by the plan. The

plan identifies

• evaluations to be performed

• audits and reviews to be performed

• standards that are applicable to the project

• procedures for error reporting and tracking

• documents to be produced by the SQA group

• amount of feedback provided to the software project team

Participates in the development of the project’s software process descrip-

tion. The software team selects a process for the work to be performed. The SQA

group reviews the process description for compliance with organizational policy,

internal software standards, externally imposed standards (e.g., ISO-9001), and other

parts of the software project plan.

Reviews software engineering activities to verify compliance with the defined

software process. The SQA group identifies, documents, and tracks deviations from

the process and verifies that corrections have been made.
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Audits designated software work products to verify compliance with those

defined as part of the software process. The SQA group reviews selected work

products; identifies, documents, and tracks deviations; verifies that corrections have

been made; and periodically reports the results of its work to the project manager.

Ensures that deviations in software work and work products are documented

and handled according to a documented procedure. Deviations may be encoun-

tered in the project plan, process description, applicable standards, or technical work

products. 

Records any noncompliance and reports to senior management. Noncom-

pliance items are tracked until they are resolved.

In addition to these activities, the SQA group coordinates the control and manage-

ment of change (Chapter 9) and helps to collect and analyze software metrics.

8.4  SOFTWARE REVIEWS

Software reviews are a "filter" for the software engineering process. That is, reviews

are applied at various points during software development and serve to uncover errors

and defects that can then be removed. Software reviews "purify" the software engi-

neering activities that we have called analysis, design, and coding. Freedman and

Weinberg [FRE90] discuss the need for reviews this way:

Technical work needs reviewing for the same reason that pencils need erasers: To err is

human. The second reason we need technical reviews is that although people are good at

catching some of their own errors, large classes of errors escape the originator more eas-

ily than they escape anyone else. The review process is, therefore, the answer to the prayer

of Robert Burns:

O wad some power the giftie give us

to see ourselves as other see us 

A review—any review—is a way of using the diversity of a group of people to:

1. Point out needed improvements in the product of a single person or team;

2. Confirm those parts of a product in which improvement is either not desired or not 

needed;

3. Achieve technical work of more uniform, or at least more predictable, quality than can

be achieved without reviews, in order to make technical work more manageable.

Many different types of reviews can be conducted as part of software engineer-

ing. Each has its place. An informal meeting around the coffee machine is a form of

review, if technical problems are discussed. A formal presentation of software design

to an audience of customers, management, and technical staff is also a form of

Like water filters, FTRs
tend to retard the
“flow” of software
engineering activities.
Too few and the flow
is “dirty.” Too many
and the flow slows to
a trickle. Use metrics
to determine which
reviews work and
which may not be
effective. Take the
ineffective ones out of
the flow.
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review.  In this book, however, we focus on the formal technical review, sometimes

called a walkthrough or an inspection. A formal technical review is the most effec-

tive filter from a quality assurance standpoint. Conducted by software engineers (and

others) for software engineers, the FTR is an effective means for improving software

quality. 

8.4.1  Cost Impact of Software Defects

The IEEE Standard Dictionary of Electrical and Electronics Terms (IEEE Standard 100-

1992) defines a defect as “a product anomaly.”  The definition for fault in the hardware

context can be found in IEEE Standard 610.12-1990:

(a) A defect in a hardware device or component; for example, a short circuit or broken

wire. (b) An incorrect step, process, or data definition in a computer program. Note: This

definition is used primarily by the fault tolerance discipline. In common usage, the terms

"error" and "bug" are used to express this meaning. See also: data-sensitive fault; program-

sensitive fault; equivalent faults; fault masking; intermittent fault.

Within the context of the software process, the terms defect and fault are synony-

mous. Both imply a quality problem that is discovered after the software has been

released to end-users (or to another activity in the software process). In earlier chap-

ters, we used the term error to depict a quality problem that is discovered by software

engineers (or others) before the software is released to the end-user (or to another

activity in the software process).

The primary objective of formal technical reviews is to find errors during the process

so that they do not become defects after release of the software. The obvious bene-

fit of formal technical reviews is the early discovery of errors so that they do not prop-

agate to the next step in the software process.

A number of industry studies (by TRW, Nippon Electric, Mitre Corp., among oth-

ers) indicate that design activities introduce between 50 and 65 percent of all errors

(and ultimately, all defects) during the software process. However, formal review tech-

niques have been shown to be up to 75 percent effective [JON86] in uncovering design

flaws. By detecting and removing a large percentage of these errors, the review process

substantially reduces the cost of subsequent steps in the development and support

phases.     

To illustrate the cost impact of early error detection, we consider a series of rela-

tive costs that are based on actual cost data collected for large software projects

[IBM81].3 Assume that an error uncovered during design will cost 1.0 monetary unit

to correct. Relative to this cost, the same error uncovered just before testing com-

mences will cost 6.5 units; during testing, 15 units; and after release, between 60 and

100 units.
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The primary objective
of an FTR is to find
errors before they are
passed on to another
software engineering
activity or released to
the customer.

3 Although these data are more than 20 years old, they remain applicable in a modern context.
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8.4.2  Defect Amplification and Removal

A defect amplification model [IBM81] can be used to illustrate the generation and

detection of errors during the preliminary design, detail design, and coding steps 

of the software engineering process. The model is illustrated schematically in Fig-

ure 8.2. A box represents a software development step. During the step, errors may

be inadvertently generated. Review may fail to uncover newly generated errors and

errors from previous steps, resulting in some number of errors that are passed through.

In some cases, errors passed through from previous steps are amplified (amplifica-

tion factor, x) by current work. The box subdivisions represent each of these charac-

teristics and the percent of efficiency for detecting errors, a function of the thoroughness

of the review.

Figure 8.3 illustrates a hypothetical example of defect amplification for a software

development process in which no reviews are conducted. Referring to the figure, each

test step is assumed to uncover and correct 50 percent of all incoming errors with-

out introducing any new errors (an optimistic assumption). Ten preliminary design

defects are amplified to 94 errors before testing commences. Twelve latent errors are

released to the field. Figure 8.4 considers the same conditions except that design and

code reviews are conducted as part of each development step. In this case, ten ini-

tial preliminary design errors are amplified to 24 errors before testing commences.

Only three latent errors exist. Recalling the relative costs associated with the dis-

covery and correction of errors, overall cost (with and without review for our hypo-

thetical example) can be established. The number of errors uncovered during each

of the steps noted in Figures 8.3 and 8.4 is multiplied by the cost to remove an error

(1.5 cost units for design, 6.5 cost units before test, 15 cost units during test, and 67

cost units after release). Using these data, the total cost for development and main-

tenance when reviews are conducted is 783 cost units. When no reviews are con-

ducted, total cost is 2177 units—nearly three times more costly. 

To conduct reviews, a software engineer must expend time and effort and the

development organization must spend money. However, the results of the preceding

example leave little doubt that we can pay now or pay much more later. Formal tech-

Errors passed through

Development step
Defects Detection

Errors from
previous step

Amplified errors 1 : x

Newly generated errors

Percent
efficiency
for error
detection

Errors passed
to next step

FIGURE 8.2
Defect
amplification
model

“Some maladies, as
doctors say, at their
beginning are easy
to cure but difficult
to recognize . . . but
in the course of time
when they have not
at first been
recognized and
treated, become
easy to recognize
but difficult to cure.”
Niccolo Machiavelli 
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nical reviews (for design and other technical activities) provide a demonstrable cost

benefit. They should be conducted.

8.5  FORMAL TECHNICAL REVIEWS

A formal technical review is a software quality assurance activity performed by soft-

ware engineers (and others). The objectives of the FTR are (1) to uncover errors in

function, logic, or implementation for any representation of the software; (2) to verify

205

6

Preliminary design

0

10

0

0%
10

6

4

Detail design

4 × 1.5
   x = 1.5

25

0% 3710

27

Code/unit test

10

25

27 × 3
     x = 3 20% 94

To integration

94 Integration test

0

0

50% 47
Validation test

0

0

50%
24

System test

0

0

50%
12

Latent errors

FIGURE 8.3
Defect
amplification,
no reviews

FIGURE 8.4
Defect
amplification,
reviews
conducted

Preliminary design 

0

10

0 Detail design

25

Code/unit test

25

To integration

Integration test

0

0

50%

Validation test

0

0

50%

System test

0

0

50%

Latent errors

3 2

1

70%

50%

2

1   1.5

24

6

3

2460%

5

10  3

•

•

15 5

10

12



PART TWO MANAGING SOFTWARE PROJECTS206

that the software under review meets its requirements; (3) to ensure that the software

has been represented according to predefined standards; (4) to achieve software that

is developed in a uniform manner; and (5) to make projects more manageable. In addi-

tion, the FTR serves as a training ground, enabling junior engineers to observe differ-

ent approaches to software analysis, design, and implementation. The FTR also serves

to promote backup and continuity because a number of people become familiar with

parts of the software that they may not have otherwise seen.

The FTR is actually a class of reviews that includes walkthroughs, inspections,

round-robin reviews and other small group technical assessments of software. Each

FTR is conducted as a meeting and will be successful only if it is properly planned,

controlled, and attended. In the sections that follow, guidelines similar to those for a

walkthrough [FRE90], [GIL93] are presented as a representative formal technical review.

8.5.1  The Review Meeting

Regardless of the FTR format that is chosen, every review meeting should abide by

the following constraints:

• Between three and five people (typically) should be involved in the review.

• Advance preparation should occur but should require no more than two

hours of work for each person.

• The duration of the review meeting should be less than two hours.

Given these constraints, it should be obvious that an FTR focuses on a specific (and

small) part of the overall software. For example, rather than attempting to review an

entire design, walkthroughs are conducted for each component or small group of

components. By narrowing focus, the FTR has a higher likelihood of uncovering errors.   

The focus of the FTR is on a work product (e.g., a portion of a requirements spec-

ification, a detailed component design, a source code listing for a component). The

individual who has developed the work product—the producer—informs the project

leader that the work product is complete and that a review is required. The project

leader contacts a review leader, who evaluates the product for readiness, generates

copies of product materials, and distributes them to two or three reviewers for advance

preparation. Each reviewer is expected to spend between one and two hours review-

ing the product, making notes, and otherwise becoming familiar with the work. Con-

currently, the review leader also reviews the product and establishes an agenda for

the review meeting, which is typically scheduled for the next day.

The review meeting is attended by the review leader, all reviewers, and the pro-

ducer. One of the reviewers takes on the role of the recorder; that is, the individual

who records (in writing) all important issues raised during the review. The FTR begins

with an introduction of the agenda and a brief introduction by the producer. The pro-

ducer then proceeds to "walk through" the work product, explaining the material,

while reviewers raise issues based on their advance preparation. When valid prob-

lems or errors are discovered, the recorder notes each.

The FTR focuses on a
relatively small portion
of a work product.

“A meeting is too
often an event
where minutes are
taken and hours are
wasted.”  
author unknown

WebRef
The NASA SATC Formal
Inspection Guidebook can
be downloaded from 
satc.gsfc.nasa.gov/
fi/fipage.html

When we
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what are our
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At the end of the review, all attendees of the FTR must decide whether to (1) accept

the product without further modification, (2) reject the product due to severe errors

(once corrected, another review must be performed), or (3) accept the product pro-

visionally (minor errors have been encountered and must be corrected, but no addi-

tional review will be required). The decision made, all FTR attendees complete a

sign-off, indicating their participation in the review and their concurrence with the

review team's findings.

8.5.2  Review Reporting and Record Keeping

During the FTR, a reviewer (the recorder) actively records all issues that have been

raised. These are summarized at the end of the review meeting and a review issues

list is produced. In addition, a formal technical review summary report is completed.

A review summary report answers three questions: 

1. What was reviewed? 

2. Who reviewed it? 

3. What were the findings and conclusions? 

The review summary report is a single page form (with possible attachments). It

becomes part of the project historical record and may be distributed to the project

leader and other interested parties.

The review issues list serves two purposes: (1) to identify problem areas within the

product and (2) to serve as an action item checklist that guides the producer as cor-

rections are made. An issues list is normally attached to the summary report.      

It is important to establish a follow-up procedure to ensure that items on the issues

list have been properly corrected. Unless this is done, it is possible that issues raised

can “fall between the cracks.” One approach is to assign the responsibility for follow-

up to the review leader.

8.5.3  Review Guidelines

Guidelines for the conduct of formal technical reviews must be established in advance,

distributed to all reviewers, agreed upon, and then followed. A review that is uncon-

trolled can often be worse that no review at all. The following represents a minimum

set of guidelines for formal technical reviews:

1. Review the product, not the producer. An FTR involves people and egos. Con-

ducted properly, the FTR should leave all participants with a warm feeling of

accomplishment. Conducted improperly, the FTR can take on the aura of an

inquisition. Errors should be pointed out gently; the tone of the meeting

should be loose and constructive; the intent should not be to embarrass or

belittle. The review leader should conduct the review meeting to ensure that

the proper tone and attitude are maintained and should immediately halt a

review that has gotten out of control. 
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2. Set an agenda and maintain it. One of the key maladies of meetings of all

types is drift. An FTR must be kept on track and on schedule. The review

leader is chartered with the responsibility for maintaining the meeting sched-

ule and should not be afraid to nudge people when drift sets in. 

3. Limit debate and rebuttal. When an issue is raised by a reviewer, there may

not be universal agreement on its impact. Rather than spending time debat-

ing the question, the issue should be recorded for further discussion off-line. 

4. Enunciate problem areas, but don't attempt to solve every problem noted. A

review is not a problem-solving session. The solution of a problem can often

be accomplished by the producer alone or with the help of only one other

individual. Problem solving should be postponed until after the review meet-

ing. 

5. Take written notes. It is sometimes a good idea for the recorder to make notes

on a wall board, so that wording and priorities can be assessed by other

reviewers as information is recorded. 

6. Limit the number of participants and insist upon advance preparation. Two

heads are better than one, but 14 are not necessarily better than 4. Keep the

number of people involved to the necessary minimum. However, all review

team members must prepare in advance. Written comments should be

solicited by the review leader (providing an indication that the reviewer has

reviewed the material). 

7. Develop a checklist for each product that is likely to be reviewed. A checklist

helps the review leader to structure the FTR meeting and helps each reviewer

to focus on important issues. Checklists should be developed for analysis,

design, code, and even test documents. 

8. Allocate resources and schedule time for FTRs. For reviews to be effective, they

should be scheduled as a task during the software engineering process. In

addition, time should be scheduled for the inevitable modifications that will

occur as the result of an FTR. 

9. Conduct meaningful training for all reviewers. To be effective all review partici-

pants should receive some formal training. The training should stress both

process-related issues and the human psychological side of reviews. Freed-

man and Weinberg [FRE90] estimate a one-month learning curve for every 20

people who are to participate effectively in reviews.

10. Review your early reviews. Debriefing can be beneficial in uncovering prob-

lems with the review process itself. The very first product to be reviewed

should be the review guidelines themselves.

Because many variables (e.g., number of participants, type of work products, tim-

ing and length, specific review approach) have an impact on a successful review, a

"It is one of the most
beautiful
compensations of
life, that no man can
sincerely try to help
another without
helping himself."
Ralph Waldo
Emerson

FTR Checklists
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software organization should experiment to determine what approach works best in

a local context. Porter and his colleagues [POR95] provide excellent guidance for this

type of experimentation.  

8.6 FORMAL APPROACHES TO SQA

In the preceding sections, we have argued that software quality is everyone's job;

that it can be achieved through competent analysis, design, coding, and testing, as

well as through the application of formal technical reviews, a multitiered testing strat-

egy, better control of software work products and the changes made to them, and

the application of accepted software engineering standards. In addition, quality can

be defined in terms of a broad array of quality factors and measured (indirectly) using

a variety of indices and metrics.

Over the past two decades, a small, but vocal, segment of the software engineer-

ing community has argued that a more formal approach to software quality assur-

ance  is required. It can be argued that a computer program is a mathematical object

[SOM96]. A rigorous syntax and semantics can be defined for every programming

language, and work is underway to develop a similarly rigorous approach to the spec-

ification of software requirements. If the requirements model (specification) and the

programming language can be represented in a rigorous manner, it should be pos-

sible to apply mathematic proof of correctness to demonstrate that a program con-

forms exactly to its specifications. 

Attempts to prove programs correct are not new. Dijkstra [DIJ76] and Linger, Mills,

and Witt [LIN79], among others, advocated proofs of program correctness and tied

these to the use of structured programming concepts (Chapter 16).

8.7  STATISTICAL SOFTWARE QUALITY ASSURANCE 

Statistical quality assurance reflects a growing trend throughout industry to become

more quantitative about quality. For software, statistical quality assurance implies

the following steps:

1. Information about software defects is collected and categorized.

2. An attempt is made to trace each defect to its underlying cause (e.g., non-

conformance to specifications, design error, violation of standards, poor

communication with the customer).

3. Using the Pareto principle (80 percent of the defects can be traced to 20 per-

cent of all possible causes), isolate the 20 percent (the "vital few").

4. Once the vital few causes have been identified, move to correct the problems

that have caused the defects.
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This relatively simple concept represents an important step towards the creation of

an adaptive software engineering process in which changes are made to improve

those elements of the process that introduce error. 

To illustrate this, assume that a software engineering organization collects infor-

mation on defects for a period of one year. Some of the defects are uncovered as soft-

ware is being developed. Others are encountered after the software has been released

to its end-users. Although hundreds of different errors are uncovered, all can be

tracked to one (or more) of the following causes:

• incomplete or erroneous specifications (IES)

• misinterpretation of customer communication (MCC)

• intentional deviation from specifications (IDS)

• violation of programming standards (VPS)

• error in data representation (EDR)

• inconsistent component interface (ICI)

• error in design logic (EDL)

• incomplete or erroneous testing (IET)

• inaccurate or incomplete documentation (IID)

• error in programming language translation of design (PLT)

• ambiguous or inconsistent human/computer interface (HCI)

• miscellaneous (MIS)

To apply statistical SQA, Table 8.1 is built. The table indicates that IES, MCC, and EDR

are the vital few causes that account for 53 percent of all errors. It should be noted,

however, that IES, EDR, PLT, and EDL would be selected as the vital few causes if

only serious errors are considered. Once the vital few causes are determined, the

software engineering organization can begin corrective action. For example, to cor-

rect MCC, the software developer might implement facilitated application specifica-

tion techniques (Chapter 11) to improve the quality of customer communication and

specifications. To improve EDR, the developer might acquire CASE tools for data mod-

eling and perform more stringent data design reviews.

It is important to note that corrective action focuses primarily on the vital few. As

the vital few causes are corrected, new candidates pop to the top of the stack. 

Statistical quality assurance techniques for software have been shown to provide

substantial quality improvement [ART97]. In some cases, software organizations have

achieved a 50 percent reduction per year in defects after applying these techniques.

In conjunction with the collection of defect information, software developers can

calculate an error index (EI) for each major step in the software process {IEE94]. After

analysis, design, coding, testing, and release, the following data are gathered:

Ei = the total number of errors uncovered during the ith step in the software engi-

neering process

“20 percent of the
code has 80 percent
of the defects. Find
them, fix them!”
Lowell Arthur 

WebRef
The Chinese Association
for Software Quality
presents one of the most
comprehensive quality
Web sites at 
www.casq.org
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Si = the number of serious errors

Mi = the number of moderate errors

Ti = the number of minor errors

PS = size of the product (LOC, design statements, pages of documentation) at the

ith step

ws, wm, wt =  weighting factors for serious, moderate, and trivial errors, where rec-

ommended values are ws = 10, wm = 3, wt = 1. The weighting factors for each phase

should become larger as development progresses. This rewards an organization that

finds errors early.  

At each step in the software process, a phase index, PIi, is computed:

PIi = ws (Si/Ei) + wm (Mi/Ei) + wt (Ti/Ei)

The error index is computed by calculating the cumulative effect on each PIi, weight-

ing errors encountered later in the software engineering process more heavily than

those encountered earlier:

EI = �(i x PIi)/PS

=  (PI1 + 2PI2 + 3PI3 + . . . iPIi)/PS

The error index can be used in conjunction with information collected in Table 8.1 to

develop an overall indication of improvement in software quality.

The application of the statistical SQA and the Pareto principle can be summarized

in a single sentence: Spend your time focusing on things that really matter, but first be

sure that you understand what really matters!
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TABLE 8.1 DATA COLLECTION FOR STATISTICAL SQA

Total Serious Moderate Minor

Error No. % No. % No. % No. %

IES 205 22% 34 27% 68 18% 103 24%

MCC 156 17% 12 9% 68 18% 76 17%

IDS 48 5% 1 1% 24 6% 23 5%

VPS 25 3% 0 0% 15 4% 10 2%

EDR 130 14% 26 20% 68 18% 36 8%

ICI 58 6% 9 7% 18 5% 31 7%

EDL 45 5% 14 11% 12 3% 19 4%

IET 95 10% 12 9% 35 9% 48 11%

IID 36 4% 2 2% 20 5% 14 3%

PLT 60 6% 15 12% 19 5% 26 6%

HCI 28 3% 3 2% 17 4% 8 2%

MIS 56 6% 0 0% 15 4% 41 9%

Totals 942 100% 128 100% 379 100% 435 100%
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A comprehensive discussion of statistical SQA is beyond the scope of this book.

Interested readers should see [SCH98], [KAP95], or [KAN95].

8.8  SOFTWARE RELIABILITY

There is no doubt that the reliability of a computer program is an important element

of its overall quality. If a program repeatedly and frequently fails to perform, it mat-

ters little whether other software quality factors are acceptable.      

Software reliability, unlike many other quality factors, can be measured directed and

estimated using historical and developmental data. Software reliability is defined in sta-

tistical terms as "the probability of failure-free operation of a computer program in a

specified environment for a specified time" [MUS87]. To illustrate, program X is estimated

to have a reliability of 0.96 over eight elapsed processing hours. In other words, if pro-

gram X were to be executed 100 times and require eight hours of elapsed processing

time (execution time), it is likely to operate correctly (without failure) 96 times out of 100.

Whenever software reliability is discussed, a pivotal question arises: What is meant

by the term failure? In the context of any discussion of software quality and reliabil-

ity, failure is nonconformance to software requirements. Yet, even within this defin-

ition, there are gradations. Failures can be only annoying or catastrophic. One failure

can be corrected within seconds while another requires weeks or even months to

correct. Complicating the issue even further, the correction of one failure may in fact

result in the introduction of other errors that ultimately result in other failures. 

8.8.1  Measures of Reliability and Availability

Early work in software reliability attempted to extrapolate the mathematics of hard-

ware reliability theory (e.g., [ALV64]) to the prediction of software reliability. Most

hardware-related reliability models are predicated on failure due to wear rather than

failure due to design defects. In hardware, failures due to physical wear (e.g., the

effects of temperature, corrosion, shock) are more likely than a design-related fail-

ure. Unfortunately, the opposite is true for software. In fact, all software failures can

be traced to design or implementation problems; wear (see Chapter 1) does not enter

into the picture.

There has been debate over the relationship between key concepts in hardware

reliability and their applicability to software (e.g., [LIT89], [ROO90]). Although an

irrefutable link has yet be be established, it is worthwhile to consider a few simple

concepts that apply to both system elements.

If we consider a computer-based system, a simple measure of reliability is mean-

time-between-failure (MTBF), where 

MTBF = MTTF + MTTR

The acronyms MTTF and MTTR are mean-time-to-failure and mean-time-to-repair,

respectively.

Software reliability
problems can almost
always be traced to
errors in design or
implementation.

WebRef
The Reliability Analysis
Center provides much
useful information on
reliability, maintainability,
supportability, and quality
at rac.iitri.org
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Many researchers argue that MTBF is a far more useful measure than defects/KLOC

or defects/FP. Stated simply, an end-user is concerned with failures, not with the total

error count. Because each error contained within a program does not have the same

failure rate, the total error count provides little indication of the reliability of a sys-

tem. For example, consider a program that has been in operation for 14 months. Many

errors in this program may remain undetected for decades before they are discov-

ered. The MTBF of such obscure errors might be 50 or even 100 years. Other errors,

as yet undiscovered, might have a failure rate of 18 or 24 months. Even if every one

of the first category of errors (those with long MTBF) is removed, the impact on soft-

ware reliability is negligible.

In addition to a reliability measure, we must develop a measure of availability.

Software availability is the probability that a program is operating according to require-

ments at a given point in time and is defined as

Availability = [MTTF/(MTTF + MTTR)] � 100% 

The MTBF reliability measure is equally sensitive to MTTF and MTTR. The availabil-

ity measure is somewhat more sensitive to MTTR, an indirect measure of the main-

tainability of software.

8.8.2  Software Safety

Leveson [LEV86] discusses the impact of software in safety critical systems when she

writes:

Before software was used in safety critical systems, they were often controlled by conven-

tional (nonprogrammable) mechanical and electronic devices. System safety techniques

are designed to cope with random failures in these [nonprogrammable] systems. Human

design errors are not considered since it is assumed that all faults caused by human errors

can be avoided completely or removed prior to delivery and operation.

When software is used as part of the control system, complexity can increase by an

order of magnitude or more. Subtle design faults induced by human error—some-

thing that can be uncovered and eliminated in hardware-based conventional con-

trol—become much more difficult to uncover when software is used.

Software safety is a software quality assurance activity that focuses on the identi-

fication and assessment of potential hazards that may affect software negatively and

cause an entire system to fail. If hazards can be identified early in the software engi-

neering process, software design features can be specified that will either eliminate

or control potential hazards.

A modeling and analysis process is conducted as part of software safety. Initially,

hazards are identified and categorized by criticality and risk. For example, some of the

hazards associated with a computer-based cruise control for an automobile might be

• causes uncontrolled acceleration that cannot be stopped

• does not respond to depression of brake pedal (by turning off)
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“I cannot imagine
any condition which
would cause this
ship to founder.
Modern shipbuilding
has gone beyond
that.”
E.I. Smith, captain
of the Titanic 

Why is MTBF
a more useful

metric than
defects/KLOC?

?
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• does not engage when switch is activated

• slowly loses or gains speed

Once these system-level hazards are identified, analysis techniques are used to assign

severity and probability of occurrence.4 To be effective, software must be analyzed

in the context of the entire system. For example, a subtle user input error (people are

system components) may be magnified by a software fault to produce control data

that improperly positions a mechanical device. If a set of external environmental con-

ditions are met (and only if they are met), the improper position of the mechanical

device will cause a disastrous failure. Analysis techniques such as fault tree analysis

[VES81], real-time logic [JAN86], or petri net models [LEV87] can be used to predict

the chain of events that can cause hazards and the probability that each of the events

will occur to create the chain.

Once hazards are identified and analyzed, safety-related requirements can be spec-

ified for the software. That is, the specification can contain a list of undesirable events

and the desired system responses to these events. The role of software in managing

undesirable events is then indicated.

Although software reliability and software safety are closely related to one another,

it is important to understand the subtle difference between them. Software reliabil-

ity uses statistical analysis to determine the likelihood that a software failure will

occur. However, the occurrence of a failure does not necessarily result in a hazard

or mishap. Software safety examines the ways in which failures result in conditions

that can lead to a mishap. That is, failures are not considered in a vacuum, but are

evaluated in the context of an entire computer-based system. 

A comprehensive discussion of software safety is beyond the scope of this book.

Those readers with further interest should refer to Leveson’s [LEV95] book on the

subject. 

8.9  MISTAKE-PROOFING FOR SOFTWARE

If William Shakespeare had commented on the modern software engineer’s condi-

tion, he might have written: “To err is human, to find the error quickly and correct it

is divine.”  In the 1960s, a Japanese industrial engineer, Shigeo Shingo [SHI86], work-

ing at Toyota, developed a quality assurance technique that led to the prevention

and/or early correction of errors in the manufacturing process. Called poka-yoke 

(mistake-proofing), Shingo’s concept makes use of poka-yoke devices—mechanisms

that lead to (1) the prevention of a potential quality problem before it occurs or (2)

the rapid detection of quality problems if they are introduced. We encounter poka-

yoke devices in our everyday lives (even if we are unaware of the concept). For exam-

4 This approach is analogous to the risk analysis approach described for software project manage-
ment in Chapter 6. The primary difference is the emphasis on technology issues as opposed to
project-related topics.

WebRef
Worthwhile papers on
software safety (and a
detailed glossary) can be
found at
www.rstcorp.com/
hotlist/topics-
safety.html

What is the
difference

between software
reliability and
software safety?

?
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ple, the ignition switch for an automobile will not work if an automatic transmission

is in gear (a prevention device); an auto’s warning beep will sound if the seat belts are

not buckled (a detection device).

An effective poka-yoke device exhibits a set of common characteristics: 

• It is simple and cheap. If a device is too complicated or expensive, it will

not be cost effective.

• It is part of the process. That is, the poka-yoke device is integrated into an

engineering activity.

• It is located near the process task where the mistakes occur. Thus, it

provides rapid feedback and error correction.

Although poka-yoke was originally developed for use in “zero quality control”

[SHI86] for manufactured hardware, it can be adapted for use in software engineer-

ing. To illustrate, we consider the following problem [ROB97]:

A software products company sells application software to an international market. The

pull-down menus and associated mnemonics provided with each application must reflect

the local language. For example, the English language menu item for “Close” has the

mnemonic “C” associated with it. When the application is sold in a French-speaking coun-

try, the same menu item is “Fermer” with the mnemonic “F.” To implement the appropriate

menu entry for each locale, a “localizer” (a person conversant in the local language and

terminology) translates the menus accordingly. The problem is to ensure that (1) each menu

entry (there can be hundreds) conforms to appropriate standards and that there are no con-

flicts, regardless of the language that is used.  

The use of poka-yoke for testing various application menus implemented in different

languages as just described is discussed in a paper by Harry Robinson [ROB97]:5

We first decided to break the menu testing problem down into parts that we could solve.

Our first advance on the problem was to understand that there were two separate aspects

to the message catalogs. There was the content aspect: the simple text translations, such

as changing "Close" to "Fermer." Since the test team was not fluent in the 11 target lan-

guages, we had to leave this aspect to the language experts.

The second aspect of the message catalogs was the structure, the syntax rules that a

properly constructed target catalog must obey. Unlike content, it would be possible for the

test team to verify the structural aspects of the catalogs.

As an example of what is meant by structure, consider the labels and mnemonics of an

application menu. A menu is made up of labels and associated mnemonics. Each menu, regard-

less of its contents or its locale, must obey the following rules listed in the Motif Style Guide: 

• Each mnemonic must be contained in its associated label 

• Each mnemonic must be unique within the menu 
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WebRef
A comprehensive collection
of poka-yoke resources can
be obtained at
www.campbell.berry.
edu/faculty/jgrout/
pokayoke.shtml

5 The paragraphs that follow have been excerpted (with minor editing) from [ROB97] with the per-

mission of the author.
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• Each mnemonic must be a single character 

• Each mnemonic must be in ASCII 

These rules are invariant across locales, and can be used to verify that a menu is constructed

correctly in the target locale.

There were several possibilities for how to mistake-proof the menu mnemonics:

Prevention device. We could write a program to generate mnemonics automatically, given

a list of the labels in each menu. This approach would prevent mistakes, but the problem

of choosing a good mnemonic is difficult and the effort required to write the program would

not be justified by the benefit gained. 

Prevention device. We could write a program that would prevent the localizer from choos-

ing mnemonics that did not meet the criteria. This approach would also prevent mistakes,

but the benefit gained would be minimal; incorrect mnemonics are easy enough to detect

and correct after they occur. 

Detection device. We could provide a program to verify that the chosen menu labels and

mnemonics meet the criteria above. Our localizers could run the programs on their trans-

lated message catalogs before sending the catalogs to us. This approach would provide

very quick feedback on mistakes, and it is likely as a future step.

Detection device. We could write a program to verify the menu labels and mnemonics,

and run the program on message catalogs after they are returned to us by the localizers.

This approach is the path we are currently taking. It is not as efficient as some of the above

methods, and it can require communication back and forth with the localizers, but the

detected errors are still easy to correct at this point. 

Several small poka-yoke scripts were used as poka-yoke devices to validate the structural

aspects of the menus. A small poka-yoke script would read the table, retrieve the mnemon-

ics and labels from the message catalog, and compare the retrieved strings against the

established criteria noted above. 

The poka-yoke scripts were small (roughly 100 lines), easy to write (some were written

in under an hour) and easy to run. We ran our poka-yoke scripts against 16 applications in

the default English locale plus 11 foreign locales. Each locale contained 100 menus, for a

total of 1200 menus. The poka-yoke devices found 311 mistakes in menus and mnemon-

ics. Few of the problems we uncovered were earth-shattering, but in total they would have

amounted to a large annoyance in testing and running our localized applications.

This example depicts a poka-yoke device that has been integrated into software

engineering testing activity. The poka-yoke technique can be applied at the design,

code, and testing levels and provides an effective quality assurance filter. 

8.10  THE ISO 9000 QUALITY STANDARDS6

A quality assurance system may be defined as the organizational structure, responsi-

bilities, procedures, processes, and resources for implementing quality management

6 This section, written by Michael Stovsky, has been adapted from “Fundamentals of ISO 9000” and
“ISO 9001 Standard,” workbooks developed for Essential Software Engineering, a video curriculum
developed by R. S. Pressman & Associates, Inc. Reprinted with permission.
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[ANS87]. Quality assurance systems are created to help organizations ensure their

products and services satisfy customer expectations by meeting their specifications.

These systems cover a wide variety of activities encompassing a product’s entire life

cycle including planning, controlling, measuring, testing and reporting, and improv-

ing quality levels throughout the development and manufacturing process. ISO 9000

describes quality assurance elements in generic terms that can be applied to any busi-

ness regardless of the products or services offered.

The ISO 9000 standards have been adopted by many countries including all mem-

bers of the European Community, Canada, Mexico, the United States, Australia, New

Zealand, and the Pacific Rim. Countries in Latin and South America have also shown

interest in the standards.

After adopting the standards, a country typically permits only ISO registered com-

panies to supply goods and services to government agencies and public utilities.

Telecommunication equipment and medical devices are examples of product cate-

gories that must be supplied by ISO registered companies. In turn, manufacturers of

these products often require their suppliers to become registered. Private companies

such as automobile and computer manufacturers frequently require their suppliers

to be ISO registered as well.

To become registered to one of the quality assurance system models contained in

ISO 9000, a company’s quality system and operations are scrutinized by third party

auditors for compliance to the standard and for effective operation. Upon successful

registration, a company is issued a certificate from a registration body represented

by the auditors. Semi-annual surveillance audits ensure continued compliance to the

standard.

8.10.1 The ISO Approach to Quality Assurance Systems

The ISO 9000 quality assurance models treat an enterprise as a network of inter-

connected processes.  For a quality system to be ISO compliant, these processes must

address the areas identified in the standard and must be documented and practiced

as described. 

ISO 9000 describes the elements of a quality assurance system in general terms.

These elements include the organizational structure, procedures, processes, and

resources needed to implement quality planning, quality control, quality assurance,

and quality improvement. However, ISO 9000 does not describe how an organiza-

tion should implement these quality system elements. Consequently, the challenge

lies in designing and implementing a quality assurance system that meets the stan-

dard and fits the company’s products, services, and culture.

8.10.2  The ISO 9001 Standard

ISO 9001 is the quality assurance standard that applies to software engineering. The

standard contains 20 requirements that must be present for an effective quality assur-

ance system. Because the ISO 9001 standard is applicable to all engineering 
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disciplines, a special set of ISO guidelines (ISO 9000-3) have been developed to help

interpret the standard for use in the software process.

The requirements delineated by ISO 9001 address topics such as management

responsibility, quality system, contract review, design control, document and data

control, product identification and traceability, process control, inspection and test-

ing, corrective and preventive action, control of quality records, internal quality audits,

training, servicing, and statistical techniques. In order for a software organization to

become registered to ISO 9001, it must establish policies and procedures to address

each of the requirements just noted (and others) and then be able to demonstrate

that these policies and procedures are being followed. For further information on ISO

9001, the interested reader should see [HOY98], [SCH97], or [SCH94].

8.11 THE SQA PLAN

The SQA Plan provides a road map for instituting software quality assurance. Devel-

oped by the SQA group, the plan serves as a template for SQA activities that are insti-

tuted for each software project. 

A standard for SQA plans has been recommended by the IEEE [IEE94]. Initial sec-

tions describe the purpose and scope of the document and indicate those software

process activities that are covered by quality assurance. All documents noted in the

SQA Plan are listed and all applicable standards are noted. The management section

of the plan describes SQA’s place in the organizational structure, SQA tasks and activ-

ities and their placement throughout the software process, and the organizational

roles and responsibilities relative to product quality.

The documentation section describes (by reference) each of the work products

produced as part of the software process. These include

• project documents (e.g., project plan)

• models (e.g., ERDs, class hierarchies)

• technical documents (e.g., specifications, test plans)

• user documents (e.g., help files)

In addition, this section defines the minimum set of work products that are accept-

able to achieve high quality.

The standards, practices, and conventions section lists all applicable standards

and practices that are applied during the software process (e.g., document standards,

coding standards, and review guidelines). In addition, all project, process, and (in

some instances) product metrics that are to be collected as part of software engi-

neering work are listed.

The reviews and audits section of the plan identifies the reviews and audits to be

conducted by the software engineering team, the SQA group, and the customer. It

provides an overview of the approach for each review and audit.

ISO 9000 for Software

The SQA plan
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The test section references the Software Test Plan and Procedure (Chapter 18). It

also defines test record-keeping requirements. Problem reporting and corrective action

defines procedures for reporting, tracking, and resolving errors and defects, and iden-

tifies the organizational responsibilities for these activities.

The remainder of the SQA Plan identifies the tools and methods that support SQA

activities and tasks; references software configuration management procedures for

controlling change; defines a contract management approach; establishes methods

for assembling, safeguarding, and maintaining all records; identifies training required

to meet the needs of the plan; and defines methods for identifying, assessing, moni-

toring, and controlling risk.

8.12 SUMMARY

Software quality assurance is an umbrella activity that is applied at each step in the

software process. SQA encompasses procedures for the effective application of meth-

ods and tools, formal technical reviews, testing strategies and techniques, poka-yoke

devices, procedures for change control, procedures for assuring compliance to stan-

dards, and measurement and reporting mechanisms.

SQA is complicated by the complex nature of software quality—an attribute of

computer programs that is defined as "conformance to explicitly and implicitly spec-

ified requirements." But when considered more generally, software quality encom-

passes many different product and process factors and related metrics.

Software reviews are one of the most important SQA activities. Reviews serve as

filters throughout all software engineering activities, removing errors while they are

relatively inexpensive to find and correct. The formal technical review is a stylized

meeting that has been shown to be extremely effective in uncovering errors.

To properly conduct software quality assurance, data about the software engi-

neering process should be collected, evaluated, and disseminated. Statistical SQA

helps to improve the quality of the product and the software process itself. Software

reliability models extend measurements, enabling collected defect data to be extrap-

olated into projected failure rates and reliability predictions.

In summary, we recall the words of Dunn and Ullman [DUN82]: "Software quality

assurance is the mapping of the managerial precepts and design disciplines of qual-

ity assurance onto the applicable managerial and technological space of software

engineering." The ability to ensure quality is the measure of a mature engineering

discipline. When the mapping is successfully accomplished, mature software engi-

neering is the result.
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PROBLEMS AND POINTS TO PONDER

8.1. Early in this chapter we noted that “variation control is the heart of quality con-

trol.”  Since every program that is created is different from every other program, what

are the variations that we look for and how do we control them? 

8.2. Is it possible to assess the quality of software if the customer keeps changing

what it is supposed to do? 

8.3. Quality and reliability are related concepts but are fundamentally different in a

number of ways. Discuss them. 

8.4. Can a program be correct and still not be reliable? Explain. 

8.5. Can a program be correct and still not exhibit good quality? Explain. 

8.6. Why is there often tension between a software engineering group and an inde-

pendent software quality assurance group? Is this healthy? 

8.7. You have been given the responsibility for improving the quality of software

across your organization. What is the first thing that you should do? What's next? 

8.8. Besides counting errors, are there other countable characteristics of software

that imply quality? What are they and can they be measured directly? 
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8.9. A formal technical review is effective only if everyone has prepared in advance.

How do you recognize a review participant who has not prepared? What do you do

if you're the review leader? 

8.10. Some people argue that an FTR should assess programming style as well as

correctness. Is this a good idea? Why? 

8.11. Review Table 8.1 and select four vital few causes of serious and moderate

errors. Suggest corrective actions using information presented in other chapters.

8.12. An organization uses a five-step software engineering process in which errors

are found according to the following percentage distribution:

Step Percentage of errors found
1 20%

2 15%

3 15%

4 40%

5 10%

Using Table 8.1 information and this percentage distribution, compute the overall

defect index for the organization. Assume PS = 100,000.

8.13. Research the literature on software reliability and write a paper that describes

one software reliability model. Be sure to provide an example.

8.14. The MTBF concept for software is open to criticism. Can you think of a few

reasons why?

8.15. Consider two safety critical systems that are controlled by computer. List at

least three hazards for each that can be directly linked to software failures.

8.16. Using Web and print resources, develop a 20 minute tutorial on poka-yoke and

present it to your class.

8.17. Suggest a few poka-yoke devices that might be used to detect and/or prevent

errors that are commonly encountered prior to “sending” an e-mail message.

8.18. Acquire a copy of ISO 9001 and ISO 9000-3. Prepare a presentation that dis-

cusses three ISO 9001 requirements and how they apply in a software context. 

FURTHER READINGS AND INFORMATION SOURCES

Books by Moriguchi (Software Excellence: A Total Quality Management Guide, Produc-

tivity Press, 1997) and Horch (Practical Guide to Software Quality Management, Artech

Publishing, 1996)  are excellent management-level presentations on the benefits of

formal quality assurance programs for computer software. Books by Deming [DEM86]

and Crosby [CRO79] do not focus on software, but both books are must reading for



CHAPTER 8 SOFTWARE QUALITY ASSURANCE

senior managers with software development responsibility. Gluckman and Roome

(Everyday Heroes of the Quality Movement, Dorset House, 1993) humanizes quality

issues by telling the story of the players in the quality process. Kan (Metrics and Mod-

els in Software Quality Engineering, Addison-Wesley, 1995) presents a quantitative

view of software quality.

Tingley (Comparing ISO 9000, Malcolm Baldrige, and the SEI CMM for Software,

Prentice-Hall, 1996) provides useful guidance for organizations that are striving to

improve their quality management processes. Oskarsson (An ISO 9000 Approach to

Building Quality Software, Prentice-Hall, 1995) discusses the ISO standard as it applies

to software. 

Dozens of books have been written about software quality issues in recent years.

The following is a small sampling of useful sources:

Clapp, J.A., et al., Software Quality Control, Error Analysis and Testing, Noyes Data Corp., 1995. 

Dunn, R.H. and R.S. Ullman, TQM for Computer Software, McGraw-Hill, 1994. 

Fenton, N., R. Whitty, and Y. Iizuka, Software Quality Assurance and Measurement: Worldwide

Industrial Applications, Chapman & Hall, 1994. 

Ferdinand, A.E., Systems, Software, and Quality Engineering, Van Nostrand-Reinhold,  1993.

Ginac, F.P.,  Customer Oriented Software Quality Assurance, Prentice-Hall, 1998.

Ince, D. , ISO 9001 and Software Quality Assurance, McGraw-Hill, 1994.

Ince, D., An Introduction to Software Quality Assurance and Its Implementation, McGraw-Hill,

1994.

Jarvis, A. and V. Crandall, Inroads to Software Quality: “How to” Guide and Toolkit, Prentice-

Hall, 1997.

Sanders, J., Software Quality: A Framework for Success in Software Development, Addison-Wes-

ley, 1994.

Sumner, F.H., Software Quality Assurance, Macmillan, 1993. 

Wallmuller, E., Software Quality Assurance: A Practical Approach, Prentice-Hall, 1995. 

Weinberg, G.M., Quality Software Management, four volumes, Dorset House, 1992, 1993, 1994,

1996.

Wilson, R.C., Software Rx: Secrets of Engineering Quality Software, Prentice-Hall, 1997.

An anthology edited by Wheeler, Brykczynski, and Meeson (Software Inspection:

Industry Best Practice, IEEE Computer Society Press, 1996) presents useful informa-

tion on this important SQA activity. Friedman and Voas (Software Assessment, Wiley,

1995) discuss both theoretical underpinnings and practical methods for ensuring the

reliability and safety of computer programs. 

Musa (Software Reliability Engineering: More Reliable Software, Faster Development

and Testing, McGraw-Hill, 1998) has written a practical guide to applied software reli-

ability techniques. Anthologies of important papers on software reliability have been

edited by Kapur et al. (Contributions to Hardware and Software Reliability Modelling,

World Scientific Publishing Co., 1999), Gritzalis (Reliability, Quality and Safety of 

Software-Intensive Systems, Kluwer Academic Publishers, 1997), and Lyu (Handbook
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of Software Reliability Engineering, McGraw-Hill, 1996).  Storey (Safety-Critical Com-

puter Systems, Addison-Wesley, 1996) and Leveson [LEV95] continue to be the most

comprehensive discussions of software safety published to date.

In addition to [SHI86], the poka-yoke technique for mistake-proofing software is

discussed by Shingo (The Shingo Production Management System: Improving Process

Functions, Productivity Press, 1992) and Shimbun (Poka-Yoke: Improving Product Qual-

ity by Preventing Defects, Productivity Press, 1989). 

A wide variety of information sources on software quality assurance, software reli-

ability, and related subjects is available on the Internet. An up-to-date list of World

Wide Web references that are relevant to software quality can be found at the SEPA

Web site:

http://www.mhhe.com/engcs/compsci/pressman/resources/sqa.mhtml 
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Change is inevitable when computer software is built. And change
increases the level of confusion among software engineers who are
working on a project. Confusion arises when changes are not analyzed

before they are made, recorded before they are implemented, reported to those
with a need to know, or controlled in a manner that will improve quality and
reduce error. Babich [BAB86] discusses this when he states:

The art of coordinating software development to minimize . . . confusion is called

configuration management. Configuration management is the art of identifying, orga-

nizing, and controlling modifications to the software being built by a programming

team. The goal is to maximize productivity by minimizing mistakes.

Software configuration management (SCM) is an umbrella activity that is
applied throughout the software process. Because change can occur at any
time, SCM activities are developed to (1) identify change, (2) control change,
(3) ensure that change is being properly implemented, and (4) report changes
to others who may have an interest.

It is important to make a clear distinction between software support and
software configuration management. Support is a set of software engineering
activities that occur after software has been delivered to the customer and put

9 SOFTWARE CONFIGURATION
MANAGEMENT

What is it? When you build com-

puter software, change happens.

And because it happens, you

need to control it effectively. Software configura-

tion management (SCM) is a set of activities

designed to control change by identifying the

work products that are likely to change, estab-

lishing relationships among them, defining mech-

anisms for managing different versions of these

work products, controlling the changes imposed,

and auditing and reporting on the changes

made.

Who does it? Everyone involved in the software engi-

neering process is involved with SCM to some

extent, but specialized support positions are some-

times created to manage the SCM process.

Why is it important? If you don’t control change, it

controls you. And that’s never good. It’s very easy

for a stream of uncontrolled changes to turn a

well-run software project into chaos. For that rea-

son, SCM is an essential part of good project man-

agement and solid software engineering

practice. 

What are the steps? Because many work products

are produced when software is built, each must

be uniquely identified. Once this is accomplished,

mechanisms for version and change control can

be established. To ensure that quality is main-

tained as changes are made, the process is

audited; and to ensure that those with a need to

know are informed about changes, reporting is

conducted. 

Q U I C K
L O O K
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into operation. Software configuration management is a set of tracking and control
activities that begin when a software engineering project begins and terminate only
when the software is taken out of operation.

A primary goal of software engineering is to improve the ease with which changes
can be accommodated and reduce the amount of effort expended when changes
must be made. In this chapter, we discuss the specific activities that enable us to man-
age change.

9.1 SOFTWARE CONFIGURATION MANAGEMENT

The output of the software process is information that may be divided into three broad
categories: (1) computer programs (both source level and executable forms); (2) doc-
uments that describe the computer programs (targeted at both technical practition-
ers and users), and (3) data (contained within the program or external to it). The items
that comprise all information produced as part of the software process are collec-
tively called a software configuration.

As the software process progresses, the number of software configuration items
(SCIs) grows rapidly. A System Specification spawns a Software Project Plan and Soft-
ware Requirements Specification (as well as hardware related documents). These in
turn spawn other documents to create a hierarchy of information. If each SCI simply
spawned other SCIs, little confusion would result. Unfortunately, another variable
enters the process—change. Change may occur at any time, for any reason. In fact,
the First Law of System Engineering [BER80] states:  “No matter where you are in the
system life cycle, the system will change, and the desire to change it will persist
throughout the life cycle.”

What is the origin of these changes? The answer to this question is as varied as
the changes themselves. However, there are four fundamental sources of change:

• New business or market conditions dictate changes in product requirements
or business rules.

• New customer needs demand modification of data produced by information
systems, functionality delivered by products, or services delivered by a
computer-based system.

What is the work product? The

Software Configuration Manage-

ment Plan defines the project

strategy for SCM. In addition, when formal SCM

is invoked, the change control process produces

software change requests and reports and engi-

neering change orders. 

How do I ensure that I’ve done it right? When

every work product can be accounted for, traced,

and controlled; when every change can be

tracked and analyzed; when everyone who needs

to know about a change has been informed—

you’ve done it right. 

Q U I C K
L O O K

“There is nothing
permanent except
change.”

Heraclitus
500 B.C.
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• Reorganization or business growth/downsizing causes changes in project
priorities or software engineering team structure.

• Budgetary or scheduling constraints cause a redefinition of the system or
product.

Software configuration management is a set of activities that have been devel-
oped to manage change throughout the life cycle of computer software. SCM can be
viewed as a software quality assurance activity that is applied throughout the soft-
ware process. In the sections that follow, we examine major SCM tasks and impor-
tant concepts that help us to manage change.

9.1.1  Baselines
Change is a fact of life in software development. Customers want to modify require-
ments. Developers want to modify the technical approach. Managers want to mod-
ify the project strategy. Why all this modification? The answer is really quite simple.
As time passes, all constituencies know more (about what they need, which approach
would be best, how to get it done and still make money). This additional knowledge
is the driving force behind most changes and leads to a statement of fact that is dif-
ficult for many software engineering practitioners to accept: Most changes are justi-
fied!

A baseline is a software configuration management concept that helps us to con-
trol change without seriously impeding justifiable change. The IEEE (IEEE Std. No.
610.12-1990) defines a baseline as:

A specification or product that has been formally reviewed and agreed upon, that thereafter

serves as the basis for further development, and that can be changed only through formal

change control procedures.

One way to describe a baseline is through analogy:

Consider the doors to the kitchen in a large restaurant. One door is marked OUT and the

other is marked IN. The doors have stops that allow them to be opened only in the appro-

priate direction.

If a waiter picks up an order in the kitchen, places it on a tray and then realizes he has

selected the wrong dish, he may change to the correct dish quickly and informally before

he leaves the kitchen.

If, however, he leaves the kitchen, gives the customer the dish and then is informed of

his error, he must follow a set procedure: (1) look at the check to determine if an error has

occurred, (2) apologize profusely, (3) return to the kitchen through the IN door, (4) explain

the problem, and so forth.

A baseline is analogous to the kitchen doors in the restaurant. Before a software
configuration item becomes a baseline, change may be made quickly and informally.
However, once a baseline is established, we figuratively pass through a swinging one-
way door. Changes can be made, but a specific, formal procedure must be applied to
evaluate and verify each change. 
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Most software changes
are justified. Don’t
bemoan changes.
Rather, be certain that
you have mechanisms
in place to handle
them.

A software
engineering work
product becomes a
baseline only after it
has been reviewed and
approved.
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In the context of software engineering, a baseline is a milestone in the develop-
ment of software that is marked by the delivery of one or more software configura-
tion items and the approval of these SCIs that is obtained through a formal technical
review (Chapter 8). For example, the elements of a Design Specification have been
documented and reviewed. Errors are found and corrected. Once all parts of the spec-
ification have been reviewed, corrected and then approved, the Design Specification
becomes a baseline. Further changes to the program architecture (documented in
the Design Specification) can be made only after each has been evaluated and approved.
Although baselines can be defined at any level of detail, the most common software
baselines are shown in Figure 9.1.

The progression of events that lead to a baseline is also illustrated in Figure 9.1.
Software engineering tasks produce one or more SCIs. After SCIs are reviewed and
approved, they are placed in a project database (also called a project library or soft-
ware repository). When a member of a software engineering team wants to make a
modification to a baselined SCI, it is copied from the project database into the engi-
neer's private work space. However, this extracted SCI can be modified only if SCM
controls (discussed later in this chapter) are followed. The arrows in Figure 9.1 illus-
trate the modification path for a baselined SCI. 

9.1.2  Software Configuration Items
We have already defined a software configuration item as information that is created
as part of the software engineering process. In the extreme, a SCI could be consid-
ered to be a single section of a large specification or one test case in a large suite of

SCIs

SCIs

Modified

Software
engineering

tasks

Formal
technical
reviews

SCIs

Approved

SCIs

Extracted
SCM

controls

SCIs

Stored

Project database

System Specification
Software Requirements
Design Specification 
Source Code
Test Plans/Procedures/Data
Operational System   

BASELINES:

FIGURE 9.1 Baselined SCIs and the project database

Be sure that the
project database is
maintained in a
centralized, controlled
location.
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tests. More realistically, an SCI is a document, a entire suite of test cases, or a named
program component (e.g., a C++ function or an Ada package).

In addition to the SCIs that are derived from software work products, many soft-
ware engineering organizations also place software tools under configuration con-
trol. That is, specific versions of editors, compilers, and other CASE tools are "frozen"
as part of the software configuration. Because these tools were used to produce doc-
umentation, source code, and data, they must be available when changes to the soft-
ware configuration are to be made. Although problems are rare, it is possible that a
new version of a tool (e.g., a compiler) might produce different results than the orig-
inal version. For this reason, tools, like the software that they help to produce, can
be baselined as part of a comprehensive configuration management process.

In reality, SCIs are organized to form configuration objects that may be cataloged
in the project database with a single name. A configuration object has a name, attri-
butes, and is "connected" to other objects by relationships. Referring to Figure 9.2, the
configuration objects, Design Specification, data model, component N, source
code and Test Specification are each defined separately. However, each of the
objects is related to the others as shown by the arrows. A curved arrow indicates a
compositional relation. That is, data model and component N are part of the object
Design Specification. A double-headed straight arrow indicates an interrelationship.
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If a change were made to the source code object, the interrelationships enable a soft-
ware engineer to determine what other objects (and SCIs) might be affected.1

9.2  THE SCM PROCESS

Software configuration management is an important element of software quality
assurance. Its primary responsibility is the control of change. However, SCM is also
responsible for the identification of individual SCIs and various versions of the soft-
ware, the auditing of the software configuration to ensure that it has been properly
developed, and the reporting of all changes applied to the configuration.      

Any discussion of SCM introduces a set of complex questions:

• How does an organization identify and manage the many existing versions of
a program (and its documentation) in a manner that will enable change to be
accommodated efficiently?

• How does an organization control changes before and after software is
released to a customer?

• Who has responsibility for approving and ranking changes? 

• How can we ensure that changes have been made properly?

• What mechanism is used to appraise others of changes that are made? 

These questions lead us to the definition of five SCM tasks: identification, version con-
trol, change control, configuration auditing, and reporting.

9.3 IDENTIFICATION OF OBJECTS IN THE SOFTWARE
CONFIGURATION

To control and manage software configuration items, each must be separately named
and then organized using an object-oriented approach. Two types of objects can be
identified [CHO89]: basic objects and aggregate objects.2 A basic object is a "unit of
text" that has been created by a software engineer during analysis, design, code, or
test. For example, a basic object might be a section of a requirements specification,
a source listing for a component, or a suite of test cases that are used to exercise the
code. An aggregate object is a collection of basic objects and other aggregate objects.
Referring to Figure 9.2, Design Specification is an aggregate object. Conceptually,
it can be viewed as a named (identified) list of pointers that specify basic objects such
as data model and component N. 

Each object has a set of distinct features that identify it uniquely: a name, a descrip-
tion, a list of resources, and a "realization." The object name is a character string that
identifies the object unambiguously. The object description is a list of data items that
identify

1 These relationships are defined within the database. The structure of the project database will be
discussed in greater detail in Chapter 31.

2 The concept of an aggregate object [GUS89] has been proposed as a mechanism for representing
a complete version of a software configuration. 

WebRef
The Configuration
Management Yellow
Pages contains the most
comprehensive listing of
SCM resources on the
Web at 
www.cs.colorado.
edu/users/andre/
configuration_
management.html
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• the SCI type (e.g., document, program, data) represented by the object 

• a project identifier

• change and/or version information

Resources are "entities that are provided, processed, referenced or otherwise required
by the object [CHO89]." For example, data types, specific functions, or even variable
names may be considered to be object resources. The realization is a pointer to the
"unit of text" for a basic object and null for an aggregate object.

Configuration object identification must also consider the relationships that exist
between named objects. An object can be identified as <part-of> an aggregate object.
The relationship <part-of> defines a hierarchy of objects. For example, using the sim-
ple notation 

E-R diagram 1.4 <part-of> data model;
data model <part-of> design specification;

we create a hierarchy of SCIs.
It is unrealistic to assume that the only relationships among objects in an object hier-

archy are along direct paths of the hierarchical tree. In many cases, objects are inter-
related across branches of the object hierarchy. For example, a data model is interrelated
to data flow diagrams (assuming the use of structured analysis) and also interrelated
to a set of test cases for a specific equivalence class. These cross structural relation-
ships can be represented in the following manner:

data model <interrelated> data flow model;
data model <interrelated> test case class m;

In the first case, the interrelationship is between a composite object, while the sec-
ond relationship is between an aggregate object (data model) and a basic object
(test case class m).

The interrelationships between configuration objects can be represented with a
module interconnection language (MIL)  [NAR87]. A MIL describes the interdepen-
dencies among configuration objects and enables any version of a system to be con-
structed automatically.

The identification scheme for software objects must recognize that objects evolve
throughout the software process. Before an object is baselined, it may change many
times, and even after a baseline has been established, changes may be quite frequent.
It is possible to create an evolution graph [GUS89] for any object. The evolution graph
describes the change history of an object, as illustrated in Figure 9.3. Configuration
object 1.0 undergoes revision and becomes object 1.1. Minor corrections and changes
result in versions 1.1.1 and 1.1.2, which is followed by a major update that is object
1.2. The evolution of object 1.0 continues through 1.3 and 1.4, but at the same time,
a major modification to the object results in a new evolutionary path, version 2.0.
Both versions are currently supported.

Changes may be made to any version, but not necessarily to all versions. How
does the developer reference all components, documents, and test cases for ver-
sion 1.4? How does the marketing department know what customers currently have
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version 2.1? How can we be sure that changes to the version 2.1 source code are
properly reflected in the corresponding design documentation? A key element in the
answer to all these questions is identification.

A variety of automated SCM tools has been developed to aid in identification (and
other SCM) tasks. In some cases, a tool is designed to maintain full copies of only the
most recent version. To achieve earlier versions (of documents or programs) changes
(cataloged by the tool) are "subtracted" from the most recent version [TIC82]. This
scheme makes the current configuration immediately available and allows other ver-
sions to be derived easily. 

9.4 VERSION CONTROL

Version control combines procedures and tools to manage different versions of con-
figuration objects that are created during the software process. Clemm [CLE89]
describes version control in the context of SCM:

Configuration management allows a user to specify alternative configurations of the soft-

ware system through the selection of appropriate versions. This is supported by associat-

ing attributes with each software version, and then allowing a configuration to be specified

[and constructed] by describing the set of desired attributes.

These "attributes" mentioned can be as simple as a specific version number that is
attached to each object or as complex as a string of Boolean variables (switches) that
indicate specific types of functional changes that have been applied to the system
[LIE89].

One representation of the different versions of a system is the evolution graph pre-
sented in Figure 9.3. Each node on the graph is an aggregate object, that is, a com-
plete version of the software. Each version of the software is a collection of SCIs
(source code, documents, data), and each version may be composed of different vari-
ants. To illustrate this concept, consider a version of a simple program that is com-

obj
1.0

obj
1.1

obj
1.2

obj
1.3

obj
1.4

obj
2.0

obj
2.1

obj
1.1.1

obj
1.1.2

FIGURE 9.3
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The naming scheme
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should incorporate the
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posed of entities 1, 2, 3, 4, and 5.3 Entity 4 is used only when the software is imple-
mented using color displays. Entity 5 is implemented when monochrome displays
are available. Therefore, two variants of the version can be defined: (1) entities 1, 2,
3, and 4; (2) entities 1, 2, 3, and 5.

To construct the appropriate variant of a given version of a program, each entity
can be assigned an "attribute-tuple"—a list of features that will define whether the
entity should be used when a particular variant of a software version is to be con-
structed. One or more attributes is assigned for each variant. For example, a color
attribute could be used to define which entity should be included when color displays
are to be supported.

Another way to conceptualize the relationship between entities, variants and ver-
sions (revisions) is to represent them as an object pool [REI89]. Referring to Figure
9.4, the relationship between configuration objects and entities, variants and ver-
sions can be represented in a three-dimensional space. An entity is composed of a
collection of objects at the same revision level. A variant is a different collection of
objects at the same revision level and therefore coexists in parallel with other vari-
ants. A new version is defined when major changes are made to one or more objects.

A number of different automated approaches to version control have been pro-
posed over the past decade. The primary difference in approaches is the sophistica-
tion of the attributes that are used to construct specific versions and variants of a
system and the mechanics of the process for construction.
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3 In this context, the term entity refers to all composite objects and basic objects that exist for a
baselined SCI. For example, an "input" entity might be constructed with six different software
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“Any change, even a
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9.5 CHANGE CONTROL

The reality of change control in a modern software engineering context has been
summed up beautifully by James Bach [BAC98]:

Change control is vital. But the forces that make it necessary also make it annoying. We

worry about change because a tiny perturbation in the code can create a big failure in the

product. But it can also fix a big failure or enable wonderful new capabilities. We worry

about change because a single rogue developer could sink the project; yet brilliant ideas

originate in the minds of those rogues, and a burdensome change control process could

effectively discourage them from doing creative work.

Bach recognizes that we face a balancing act. Too much change control and we cre-
ate problems. Too little, and we create other problems.

For a large software engineering project, uncontrolled change rapidly leads to
chaos. For such projects, change control combines human procedures and automated
tools to provide a mechanism for the control of change. The change control process
is illustrated schematically in Figure 9.5. A change request4 is submitted and evalu-
ated to assess technical merit, potential side effects, overall impact on other config-
uration objects and system functions, and the projected cost of the change. The results
of the evaluation are presented as a change report, which is used by a change control
authority (CCA)—a person or group who makes a final decision on the status and pri-
ority of the change. An engineering change order (ECO) is generated for each approved
change. The ECO describes the change to be made, the constraints that must be
respected, and the criteria for review and audit. The object to be changed is "checked
out" of the project database, the change is made, and appropriate SQA activities are
applied. The object is then "checked in" to the database and appropriate version con-
trol mechanisms (Section 9.4) are used to create the next version of the software.

The "check-in" and "check-out" process implements two important elements of
change control—access control and synchronization control. Access control governs
which software engineers have the authority to access and modify a particular con-
figuration object. Synchronization control helps to ensure that parallel changes, per-
formed by two different people, don't overwrite one another [HAR89]. 

Access and synchronization control flow are illustrated schematically in Figure
9.6. Based on an approved change request and ECO, a software engineer checks out
a configuration object. An access control function ensures that the software engineer
has authority to check out the object, and synchronization control locks the object in
the project database so that no updates can be made to it until the currently checked-
out version has been replaced. Note that other copies can be checked-out, but other
updates cannot be made. A copy of the baselined object, called the extracted version,

4 Although many change requests are submitted during the software support phase, we take a
broader view in this discussion. A request for change can occur at any time during the software
process. 

“The art of progress is
to preserve order
amid change and to
preserve change
amid order.”
Alfred North
Whitehead 
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very serious. Access
and synchronization
control avoid
confusion. Implement
them both, even if
your approach has to
be simplified to
accommodate your
development culture.
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is modified by the software engineer. After appropriate SQA and testing, the modi-
fied version of the object is checked in and the new baseline object is unlocked.

Some readers may begin to feel uncomfortable with the level of bureaucracy implied
by the change control process description. This feeling is not uncommon. Without
proper safeguards, change control can retard progress and create unnecessary red
tape. Most software developers who have change control mechanisms (unfortunately,
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many have none) have created a number of layers of control to help avoid the prob-
lems alluded to here.

Prior to an SCI becoming a baseline, only informal change control need be applied.
The developer of the configuration object (SCI) in question may make whatever
changes are justified by project and technical requirements (as long as changes do
not affect broader system requirements that lie outside the developer's scope of work).
Once the object has undergone formal technical review and has been approved, a
baseline is created. Once an SCI becomes a baseline, project level change control is
implemented. Now, to make a change, the developer must gain approval from the
project manager (if the change is "local") or from the CCA if the change affects other
SCIs. In some cases, formal generation of change requests, change reports, and ECOs
is dispensed with. However, assessment of each change is conducted and all changes
are tracked and reviewed.

When the software product is released to customers, formal change control is insti-
tuted. The formal change control procedure has been outlined in Figure 9.5.

The change control authority plays an active role in the second and third layers of
control. Depending on the size and character of a software project, the CCA may be
composed of one person—the project manager—or a number of people (e.g., repre-
sentatives from software, hardware, database engineering, support, marketing). The
role of the CCA is to take a global view, that is, to assess the impact of change beyond
the SCI in question. How will the change affect hardware? How will the change affect
performance? How will the change modify customer's perception of the product?
How will the change affect product quality and reliability? These and many other
questions are addressed by the CCA.

Check- in

Access
control

Check- out

Software
engineer

Project
database

Ownership
info

Unlock

Lock Configuration object
(baseline version)

Configuration object
(baseline version)

Configuration object
(extracted version)

Configuration object
(modified version)

Audit info

FIGURE 9.6
Access and
synchronization
control

Opt for a bit more
change control than
you think you’ll need.
It’s likely that “too
much” will be the right
amount.

“Change is inevitable,
except from vending
machines.”
Bumper sticker 
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9.6 CONFIGURATION AUDIT

Identification, version control, and change control help the software developer to
maintain order in what would otherwise be a chaotic and fluid situation. However,
even the most successful control mechanisms track a change only until an ECO is
generated. How can we ensure that the change has been properly implemented? The
answer is twofold: (1) formal technical reviews and (2) the software configuration
audit.

The formal technical review (presented in detail in Chapter 8) focuses on the tech-
nical correctness of the configuration object that has been modified. The reviewers
assess the SCI to determine consistency with other SCIs, omissions, or potential side
effects. A formal technical review should be conducted for all but the most trivial
changes.

A software configuration audit complements the formal technical review by assess-
ing a configuration object for characteristics that are generally not considered dur-
ing review. The audit asks and answers the following questions:

1. Has the change specified in the ECO been made? Have any additional modifi-
cations been incorporated?      

2. Has a formal technical review been conducted to assess technical correct-
ness?

3. Has the software process been followed and have software engineering stan-
dards been properly applied?      

4. Has the change been "highlighted" in the SCI? Have the change date and
change author been specified? Do the attributes of the configuration object
reflect the change?      

5. Have SCM procedures for noting the change, recording it, and reporting it
been followed? 

6. Have all related SCIs been properly updated? 

In some cases, the audit questions are asked as part of a formal technical review.
However, when SCM is a formal activity, the SCM audit is conducted separately by
the quality assurance group.

9.7 STATUS REPORTING

Configuration status reporting (sometimes called status accounting) is an SCM task that
answers the following questions: (1) What happened? (2) Who did it? (3) When did it
happen? (4) What else will be affected?

The flow of information for configuration status reporting (CSR) is illustrated in
Figure 9.5. Each time an SCI is assigned new or updated identification, a CSR entry
is made. Each time a change is approved by the CCA (i.e., an ECO is issued), a CSR
entry is made. Each time a configuration audit is conducted, the results are reported
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What are the
primary

questions that we
ask during a
configuration
audit?

?
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as part of the CSR task. Output from CSR may be placed in an on-line database [TAY85],
so that software developers or maintainers can access change information by key-
word category. In addition, a CSR report is generated on a regular basis and is intended
to keep management and practitioners appraised of important changes.

Configuration status reporting plays a vital role in the success of a large software
development project. When many people are involved, it is likely that "the left hand
not knowing what the right hand is doing" syndrome will occur. Two developers may
attempt to modify the same SCI with different and conflicting intents. A software engi-
neering team may spend months of effort building software to an obsolete hardware
specification. The person who would recognize serious side effects for a proposed
change is not aware that the change is being made. CSR helps to eliminate these
problems by improving communication among all people involved.

9.8 SCM STANDARDS

Over the past two decades a number of software configuration management stan-
dards have been proposed. Many early SCM standards, such as MIL-STD-483, DOD-
STD-480A and MIL-STD-1521A, focused on software developed for military
applications. However, more recent ANSI/IEEE standards, such as ANSI/IEEE Stds.
No. 828-1983, No. 1042-1987, and Std. No. 1028-1988 [IEE94], are applicable for non-
military software and are recommended for both large and small software engineering
organizations.

9.9 SUMMARY

Software configuration management is an umbrella activity that is applied through-
out the software process. SCM identifies, controls, audits, and reports modifications
that invariably occur while software is being developed and after it has been released
to a customer. All information produced as part of software engineering becomes
part of a software configuration. The configuration is organized in a manner that
enables orderly control of change.

The software configuration is composed of a set of interrelated objects, also called
software configuration items, that are produced as a result of some software engi-
neering activity. In addition to documents, programs, and data, the development envi-
ronment that is used to create software can also be placed under configuration control.

Once a configuration object has been developed and reviewed, it becomes a base-
line. Changes to a baselined object result in the creation of a new version of that
object. The evolution of a program can be tracked by examining the revision history
of all configuration objects. Basic and composite objects form an object pool from
which variants and versions are created. Version control is the set of procedures and
tools for managing the use of these objects.

Change control is a procedural activity that ensures quality and consistency as
changes are made to a configuration object. The change control process begins with
a change request, leads to a decision to make or reject the request for change, and
culminates with a controlled update of the SCI that is to be changed.

Develop a “need to
know list” for every
SCI and keep it up-to-
date.  When a change
is made, be sure that
everyone on the list is
informed.



CHAPTER 9 SOFTWARE CONFIGURATION MANAGEMENT

The configuration audit is an SQA activity that helps to ensure that quality is main-
tained as changes are made. Status reporting provides information about each change
to those with a need to know. 

REFERENCES

[BAB86] Babich, W.A., Software Configuration Management, Addison-Wesley, 1986.
[BAC98] Bach, J., “The Highs and Lows of Change Control,” Computer, vol. 31, no. 8,
August 1998, pp. 113–115.
[BER80]  Bersoff, E.H., V.D. Henderson, and S.G. Siegel, Software Configuration Man-
agement, Prentice-Hall, 1980. 
[CHO89] Choi, S.C. and W. Scacchi, "Assuring the Correctness of a Configured Soft-
ware Description," Proc. 2nd Intl. Workshop on Software Configuration Management,
ACM, Princeton, NJ, October 1989, pp. 66–75.
[CLE89] Clemm, G.M., "Replacing Version Control with Job Control," Proc. 2nd Intl.
Workshop on Software Configuration Management, ACM, Princeton, NJ, October 1989,
pp. 162–169.
[GUS89] Gustavsson, A., "Maintaining the Evoluation of Software Objects in an Inte-
grated Environment," Proc. 2nd Intl. Workshop on Software Configuration Manage-
ment, ACM, Princeton, NJ, October 1989, pp. 114–117.
[HAR89] Harter, R., "Configuration Management," HP Professional, vol. 3, no. 6, June
1989.
[IEE94] Software Engineering Standards, 1994 edition, IEEE Computer Society, 1994. 
[LIE89] Lie, A. et al., "Change Oriented Versioning in a Software Engineering Data-
base," Proc. 2nd Intl. Workshop on Software Configuration Management, ACM, Prince-
ton, NJ, October, 1989, pp. 56–65.
[NAR87] Narayanaswamy, K. and W. Scacchi, "Maintaining Configurations of Evolv-
ing Software Systems," IEEE Trans. Software Engineering, vol. SE-13, no. 3, March
1987, pp. 324–334.
[REI89] Reichenberger, C., "Orthogonal Version Management," Proc. 2nd Intl. Work-
shop on Software Configuration Management, ACM, Princeton, NJ, October 1989, pp.
137–140. 
[TAY85]  Taylor, B., "A Database Approach to Configuration Management for Large
Projects," Proc. Conf. Software Maintenance—1985, IEEE, November 1985, pp. 15–23. 
[TIC82]  Tichy, W.F., "Design, Implementation and Evaluation of a Revision Control Sys-
tem," Proc. 6th Intl. Conf. Software Engineering, IEEE, Tokyo, September 1982, pp. 58–67. 

PROBLEMS AND POINTS TO PONDER

9.1. Why is the First Law of System Engineering true? How does it affect our per-
ception of software engineering paradigms.

9.2. Discuss the reasons for baselines in your own words. 

9.3. Assume that you're the manager of a small project. What baselines would you
define for the project and how would you control them?
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9.4. Design a project database system that would enable a software engineer to
store, cross reference, trace, update, change, and so forth all important software con-
figuration items. How would the database handle different versions of the same pro-
gram? Would source code be handled differently than documentation? How will two
developers be precluded from making different changes to the same SCI at the same
time?

9.5. Do some research on object-oriented databases and write a paper that describes
how they can be used in the context of SCM. 

9.6. Use an E-R model (Chapter 12) to describe the interrelationships among the
SCIs (objects) listed in Section 9.1.2. 

9.7. Research an existing SCM tool and describe how it implements control for ver-
sions, variants, and configuration objects in general.

9.8. The relations <part-of> and <interrelated> represent simple relationships between
configuration objects. Describe five additional relationships that might be useful in
the context of a project database. 

9.9. Research an existing SCM tool and describe how it implements the mechanics
of version control. Alternatively, read two or three of the papers on SCM and describe
the different data structures and referencing mechanisms that are used for version
control.

9.10. Using Figure 9.5 as a guide, develop an even more detailed work breakdown
for change control. Describe the role of the CCA and suggest formats for the change
request, the change report, and the ECO.

9.11. Develop a checklist for use during configuration audits.

9.12. What is the difference between an SCM audit and a formal technical review?
Can their function be folded into one review? What are the pros and cons?

FURTHER READINGS AND INFORMATION SOURCES

One of the few books that have been written about SCM in recent years is by Brown,
et al. (AntiPatterns and Patterns in Software Configuration Management, Wiley, 1999).
The authors discuss the things not to do (antipatterns) when implementing an SCM
process and then consider their remedies.

Lyon (Practical CM: Best Configuration Management Practices for the 21st Century,
Raven Publishing, 1999) and Mikkelsen and Pherigo (Practical Software Configuration
Management: The Latenight Developer's Handbook, Allyn & Bacon, 1997) provide prag-
matic tutorials on important SCM practices. Ben-Menachem (Software Configuration
Management Guidebook, McGraw-Hill, 1994), Vacca (Implementing a Successful Con-
figuration Change Management Program, I. S. Management Group, 1993), and Ayer
and Patrinnostro (Software Configuration Management, McGraw-Hill, 1992) present
good overviews for those who need further introduction to the subject.  Berlack (Soft-
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ware Configuration Management, Wiley, 1992) presents a useful survey of SCM con-
cepts, emphasizing the importance of the repository and tools in the management
of change. Babich [BAB86] provides an abbreviated, yet effective, treatment of prag-
matic issues in software configuration management. 

Buckley (Implementing Configuration Management, IEEE Computer Society Press,
1993) considers configuration management approaches for all system elements—
hardware, software, and firmware—with detailed discussions of major CM activities.
Rawlings (SCM for Network Development Environments, McGraw-Hill, 1994) is the first
SCM book to address the subject with a specific emphasis on software development
in a networked environment. Whitgift (Methods and Tools for Software Configuration
Management, Wiley, 1991) contains reasonable coverage of all important SCM top-
ics, but is distinguished by discussion of repository and CASE environment issues.
Arnold and Bohner (Software Change Impact Analysis, IEEE Computer Society Press,
1996) have edited an anthology that discusses how to analyze the impact of change
within complex software-based systems.

Because SCM identifies and controls software engineering documents, books by
Nagle (Handbook for Preparing Engineering Documents: From Concept to Completion,
IEEE, 1996), Watts (Engineering Documentation Control Handbook: Configuration Man-
agement for Industry, Noyes Publications, 1993), Ayer and Patrinnostro (Documenting
the Software Process, McGraw-Hill, 1992) provide a complement to more-focused SCM
texts. The March 1999 edition of Crosstalk contains a number of useful articles on
SCM.

A wide variety of information sources on software configuration management and
related subjects is available on the Internet. An up-to-date list of World Wide Web
references that are relevant to SCM can be found at the SEPA Web site:
http://www.mhhe.com/engcs/compsci/pressman/resources/scm.mhtml
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P A R T

In this part of Software Engineering: A Practitioner’s Approach, we
consider the technical concepts, methods, and measurements
that are applicable for the analysis, design, and testing of com-

puter software. In the chapters that follow, you’ll learn the answers
to the following questions:

• How is software defined within the context of a larger sys-
tem and how does system engineering play a role?

• What basic concepts and principles are applicable to the
analysis of software requirements?

• What is structured analysis and how do its various models
enable you to understand data, function, and behavior?

• What basic concepts and principles are applied to the soft-
ware design activity?

• How are design models for data, architecture, interfaces, and
components created?

• What basic concepts, principles, and strategies are applica-
ble to software testing?

• How are black-box and white-box testing methods used to
design effective test cases?

• What technical metrics are available for assessing the quality
of analysis and design models, source code, and test cases?

Once these questions are answered, you’ll understand how to build
computer software using a disciplined engineering approach.

CONVENTIONAL
METHODS FOR
SOFTWARE
ENGINEERING

Three
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Almost 500 years ago, Machiavelli said: "there is nothing more difficult
to take in hand, more perilous to conduct or more uncertain in its suc-
cess, than to take the lead in the introduction of a new order of things."

During the past 50 years, computer-based systems have introduced a new order.
Although technology has made great strides since Machiavelli spoke, his words
continue to ring true. 

Software engineering occurs as a consequence of a process called system
engineering. Instead of concentrating solely on software, system engineering
focuses on a variety of elements, analyzing, designing, and organizing those
elements into a system that can be a product, a service, or a technology for the
transformation of information or control. 

The system engineering process is called business process engineering when
the context of the engineering work focuses on a business enterprise. When a
product (in this context, a product includes everything from a wireless tele-
phone to an air traffic control system) is to be built, the process is called prod-
uct engineering.

Both business process engineering and product engineering attempt to bring
order to the development of computer-based systems. Although each is applied
in a different application domain, both strive to put software into context. That

10 SYSTEM ENGINEERING

What is it? Before software can

be engineered, the ”system” in

which it resides must be under-

stood. To accomplish this, the overall objective of

the system must be determined; the role of hard-

ware, software, people, database, procedures,

and other system elements must be identified; and

operational requirements must be elicited, ana-

lyzed, specified, modeled, validated, and man-

aged. These activities are the foundation of system

engineering.

Who does it? A system engineer works to under-

stand system requirements by working with the

customer, future users, and other stakeholders.

Why is it important? There’s an old saying: “You can’t

see the forest for the trees.” In this context, the ”for-

est” is the system, and the trees are the technol-

ogy elements (including software) that are

required to realize the system. If you rush to build

technology elements before you understand the

system, you’ll undoubtedly make mistakes that

will disappoint your customer. Before you worry

about the trees, understand the forest. 

What are the steps? Objectives and more detailed

operational requirements are identified by elicit-

ing information from the customer; requirements

are analyzed to assess their clarity, completeness,

and consistency; a specification, often incorpo-

rating a system model, is created and then vali-

dated by both practitioners and customers. Finally,

system requirements are managed to ensure that

changes are properly controlled.

Q U I C K
L O O K
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is, both business process engineering and product engineering1 work to allocate a
role for computer software and, at the same time, to establish the links that tie soft-
ware to other elements of a computer-based system.

In this chapter, we focus on the management issues and the process-specific activ-
ities that enable a software organization to ensure that it does the right things at the
right time in the right way.

10.1 COMPUTER-BASED SYSTEMS

The word system is possibly the most overused and abused term in the technical lex-

icon. We speak of political systems and educational systems, of avionics systems and

manufacturing systems, of banking systems and subway systems. The word tells us

little. We use the adjective describing system to understand the context in which the

word is used. Webster's Dictionary defines system in the following way:

1. a set or arrangement of things so related as to form a unity or organic whole; 2. a set of

facts, principles, rules, etc., classified and arranged in an orderly form so as to show a log-

ical plan linking the various parts; 3. a method or plan of classification or arrangement; 4.

an established way of doing something; method; procedure . . .

Five additional definitions are provided in the dictionary, yet no precise synonym is

suggested. System is a special word. 

Borrowing from Webster's definition, we define a computer-based system as

A set or arrangement of elements that are organized to accomplish some predefined goal

by processing information. 

The goal may be to support some business function or to develop a product that can

be sold to generate business revenue. To accomplish the goal, a computer-based sys-

tem makes use of a variety of system elements:

What is the work product? An

effective representation of the sys-

tem must be produced as a con-

sequence of system engineering. This can be a

prototype, a specification or even a symbolic

model, but it must communicate the operational,

functional, and behavioral characteristics of the

system to be built and provide insight into the sys-

tem architecture.

How do I ensure that I’ve done it right? Perform

requirements engineering steps, including require-

ments elicitation, that lead to a solid specification.

Then review all system engineering work prod-

ucts for clarity, completeness, and consistency. As

important, expect changes to the system require-

ments and manage them using solid SCM (Chap-

ter 9) methods.

Q U I C K
L O O K

1 In reality, the term system engineering is often used in this context. However, in this book, the
term system engineering is generic and is used to encompass both business process engineering
and product engineering.
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Software. Computer programs, data structures, and related documentation

that serve to effect the logical method, procedure, or control that is required.

Hardware. Electronic devices that provide computing capability, the inter-

connectivity devices (e.g., network switches, telecommunications devices)

that enable the flow of data, and electromechanical devices (e.g., sensors,

motors, pumps) that provide external world function.

People. Users and operators of hardware and software.

Database. A large, organized collection of information that is accessed via

software.

Documentation. Descriptive information (e.g., hardcopy manuals, on-line

help files, Web sites) that portrays the use and/or operation of the system.

Procedures. The steps that define the specific use of  each system element

or the procedural context in which the system resides.

The elements combine in a variety of ways to transform information. For exam-

ple, a marketing department transforms raw sales data into a profile of the typical

purchaser of a product; a robot transforms a command file containing specific instruc-

tions into a set of control signals that cause some specific physical action. Creating

an information system to assist the marketing department and control software to

support the robot both require system engineering.

One complicating characteristic of computer-based systems is that the elements

constituting one system may also represent one macro element of a still larger

system. The macro element is a computer-based system that is one part of a larger

computer-based system.  As an example, we consider a "factory automation system"

that is essentially a hierarchy of systems. At the lowest level of the hierarchy we have

a numerical control machine, robots, and data entry devices. Each is a computer-

based system in its own right. The elements of the numerical control machine include

electronic and electromechanical hardware (e.g., processor and memory, motors,

sensors), software (for communications, machine control, interpolation), people (the

machine operator), a database (the stored NC program), documentation, and proce-

dures. A similar decomposition could be applied to the robot and data entry device.

Each is a computer-based system.

At the next level in the hierarchy, a manufacturing cell is defined. The manufac-

turing cell is a computer-based system that may have elements of its own (e.g., com-

puters, mechanical fixtures) and also integrates the macro elements that we have

called numerical control machine, robot, and data entry device.

To summarize, the manufacturing cell and its macro elements each are composed

of system elements with the generic labels: software, hardware, people, database,

procedures, and documentation. In some cases, macro elements may share a generic

element. For example, the robot and the NC machine both might be managed by a

single operator (the people element). In other cases, generic elements are exclusive

to one system. 
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Don’t be lured into
taking a “software-
centric” view. Begin by
considering all
elements of a system
before you concentrate
on software.

Complex systems are
actually a hierarchy of
macro elements that
are themselves
systems.
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The role of the system engineer is to define the elements for a specific computer-

based system in the context of the overall hierarchy of systems (macro elements). In

the sections that follow, we examine the tasks that constitute computer system engi-

neering.

10.2 THE SYSTEM ENGINEERING HIERARCHY

Regardless of its domain of focus, system engineering encompasses a collection of

top-down and bottom-up methods to navigate the hierarchy illustrated in Figure 10.1.

The system engineering process usually begins with a “world view.” That is, the entire

business or product domain is examined to ensure that the proper business or tech-

nology context can be established. The world view is refined to focus more fully on

specific domain of interest. Within a specific domain, the need for targeted system

elements (e.g., data, software, hardware, people) is analyzed. Finally, the analysis,

Business or
product domain

World view

Domain view

Element view

Detailed view

Domain of interest

System element

FIGURE 10.1
The system
engineering
hierarchy
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design, and construction of a targeted system element is initiated. At the top of the

hierarchy, a very broad context is established and, at the bottom, detailed technical

activities, performed by the relevant engineering discipline (e.g., hardware or soft-

ware engineering), are conducted.2

Stated in a slightly more formal manner, the world view (WV) is composed of a

set of domains (Di), which can each be a system or system of systems in its own right.

WV = {D1, D2, D3, . . . , Dn}

Each domain is composed of specific elements (Ej) each of which serves some role

in accomplishing the objective and goals of the domain or component:

Di = {E1, E2, E3, . . . , Em} 

Finally, each element is implemented by specifying the technical components (Ck)

that achieve the necessary function for an element: 

Ej = {C1, C2, C3, . . . , Ck} 

In the software context, a component could be a computer program, a reusable pro-

gram component, a module, a class or object, or even a programming language state-

ment.

It is important to note that the system engineer narrows the focus of work as he

or she moves downward in the hierarchy just described. However, the world view

portrays a clear definition of overall functionality that will enable the engineer to

understand the domain, and ultimately the system or product, in the proper context.

10.2.1 System Modeling

System engineering is a modeling process. Whether the focus is on the world view

or the detailed view, the engineer creates models that [MOT92]

• Define the processes that serve the needs of the view under consideration.

• Represent the behavior of the processes and the assumptions on which the

behavior is based.

• Explicitly define both exogenous and endogenous input3 to the model.

• Represent all linkages (including output) that will enable the engineer to bet-

ter understand the view.

To construct a system model, the engineer should consider a number of restraining

factors:
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2 In some situations, however, system engineers must first consider individual system elements
and/or detailed requirements. Using this approach, subsystems are described bottom up by first
considering constituent detailed components of the subsystem.

3 Exogenous inputs link one constituent of a given view with other constituents at the same level or
other levels; endogenous input links individual components of a constituent at a particular view. 

Good system
engineering begins
with a clear
understanding of
context—the world
view— and then
progressively narrows
focus until technical
detail is understood. 

What does a
system

engineering model
accomplish?

?
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1. Assumptions that reduce the number of possible permutations and variations,

thus enabling a model to reflect the problem in a reasonable manner. As an

example, consider a three-dimensional rendering product used by the enter-

tainment industry to create realistic animation.  One domain of the product

enables the representation of 3D human forms. Input to this domain encom-

passes the ability to specify movement from a live human actor, from video,

or by the creation of graphical models. The system engineer makes certain

assumptions about the range of allowable human movement (e.g., legs can-

not be wrapped around the torso) so that the range of inputs and processing

can be limited.

2. Simplifications that enable the model to be created in a timely manner. To

illustrate, consider an office products company that sells and services a broad

range of copiers, faxes, and related equipment. The system engineer is mod-

eling the needs of the service organization and is working to understand the

flow of information that spawns a service order. Although a service order can

be derived from many origins, the engineer categorizes only two sources:

internal demand and external request. This enables a simplified partitioning

of input that is required to generate the service order. 

3. Limitations that help to bound the system. For example, an aircraft avionics

system is being modeled for a next generation aircraft. Since the aircraft will

be a two-engine design, the monitoring domain for propulsion will be mod-

eled to accommodate a maximum of two engines and associated redundant

systems. 

4. Constraints that will guide the manner in which the model is created and the

approach taken when the model is implemented.  For example, the technol-

ogy infrastructure for the three-dimensional rendering system described pre-

viously is a single G4-based processor. The computational complexity of

problems must be constrained to fit within the processing bounds imposed by

the processor. 

5. Preferences that indicate the preferred architecture for all data, functions, and

technology. The preferred solution sometimes comes into conflict with other

restraining factors. Yet, customer satisfaction is often predicated on the

degree to which the preferred approach is realized.

The resultant system model (at any view) may call for a completely automated

solution, a semi-automated solution, or a nonautomated approach. In fact, it is often

possible to characterize models of each type that serve as alternative solutions to the

problem at hand. In essence, the system engineer simply modifies the relative influ-

ence of different system elements (people, hardware, software) to derive models of

each type.

A system engineer
considers the following
factors when
developing alternative
solutions: assumptions,
simplifications,
limitations, constraints,
and customer
preferences.
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10.2.2 System Simulation

In the late 1960s, R. M. Graham [GRA69] made a distressing comment about the way

we build computer-based systems: "We build systems like the Wright brothers built air-

planes—build the whole thing, push it off a cliff, let it crash, and start over again." In

fact, for at least one class of system—the reactive system—we continue to do this today.

Many computer-based systems interact with the real world in a reactive fashion.

That is, real-world events are monitored by the hardware and software that form the

computer-based system, and based on these events, the system imposes control on

the machines, processes, and even people who cause the events to occur. Real-time

and embedded systems often fall into the reactive systems category.

Unfortunately, the developers of reactive systems sometimes struggle to make

them perform properly. Until recently, it has been difficult to predict the performance,

efficiency, and behavior of such systems prior to building them. In a very real sense,

the construction of many real-time systems was an adventure in "flying." Surprises

(most of them unpleasant) were not discovered until the system was built and "pushed

off a cliff." If the system crashed due to incorrect function, inappropriate behavior, or

poor performance, we picked up the pieces and started over again. 

Many systems in the reactive category control machines and/or processes (e.g.,

commercial aircraft or petroleum refineries) that must operate with an extremely high

degree of reliability. If the system fails, significant economic or human loss could

occur. For this reason, the approach described by Graham is both painful and dan-

gerous.

Today, software tools for system modeling and simulation are being used to help

to eliminate surprises when reactive, computer-based systems are built. These tools

are applied during the system engineering process, while the role of hardware and

software, databases and people is being specified. Modeling and simulation tools

enable a system engineer to "test drive" a specification of the system. The technical

details and specialized modeling techniques that are used to enable a test drive are

discussed briefly in Chapter 31.

10.3 BUSINESS PROCESS ENGINEERING: AN OVERVIEW

The goal of business process engineering (BPE) is to define architectures that will

enable a business to use information effectively.  Michael Guttman [GUT99] describes

the challenge when he states:

[T]oday's computing environment consists of computing power that's distributed over an

enterprise-wide array of heterogeneous processing units, scaled and configured for a wide

variety of tasks. Variously known as client-server computing, distributed processing, and

enterprise networking (to name just a few overused terms), this new environment promised

businesses the greater functionality and flexibility they demanded.
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However, the price for this change is largely borne by the IT [information technology]

organizations that must support this polyglot configuration.  Today, each IT organization

must become, in effect, its own systems integrator and architect. It must design, implement,

and support its own unique configuration of heterogeneous computing resources, distrib-

uted logically and geographically throughout the enterprise, and connected by an appro-

priate enterprise-wide networking scheme.

Moreover, this configuration can be expected to change continuously, but unevenly,

across the enterprise, due to changes in business requirements and in computing technol-

ogy. These diverse and incremental changes must be coordinated across a distributed envi-

ronment consisting of hardware and software supplied by dozens, if not hundreds, of vendors.

And, of course, we expect these changes to be seamlessly incorporated without disrupting

normal operations and to scale gracefully as those operations expand.

When taking a world view of a company’s information technology needs, there is lit-

tle doubt that system engineering is required. Not only is the specification of the appro-

priate computing architecture required, but the software architecture that populates

the “unique configuration of heterogeneous computing resources” must be devel-

oped. Business process engineering is one approach for creating an overall plan for

implementing the computing architecture [SPE93]. 

Three different architectures must be analyzed and designed within the context

of business objectives and goals:

• data architecture

• applications architecture

• technology infrastructure

The data architecture provides a framework for the information needs of a business

or business function. The individual building blocks of the architecture are the data

objects that are used by the business. A data object contains a set of attributes that

define some aspect, quality, characteristic, or descriptor of the data that are being

described. For example, an information engineer might define the data object cus-

tomer. To more fully describe customer, the following attributes are defined:

Object:  Customer

Attributes:

name

company name

job classification and purchase authority

business address and contact information

product interest(s)

past purchase(s)

date of last contact

status of contact

Once a set of data objects is defined, their relationships are identified. A relationship

indicates how objects are connected to one another. As an example, consider the

XRef
Data objects are
discussed in detail in
Chapter 12.
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objects: customer, and product A. The two objects can be connected by the rela-

tionship purchases; that is, a customer purchases product A or product A is purchased

by a customer. The data objects (there may be hundreds or even thousands for a

major business activity) flow between business functions, are organized within a

database, and are transformed to provide information that serves the needs of the

business.

The application architecture encompasses those elements of a system that trans-

form objects within the data architecture for some business purpose. In the context

of this book, we consider the application architecture to be the system of programs

(software) that performs this transformation. However, in a broader context, the appli-

cation architecture might incorporate the role of people (who are information trans-

formers and users) and business procedures that have not been automated.

The technology infrastructure provides the foundation for the data and application

architectures. The infrastructure encompasses the hardware and software that are

used to support the application and data. This includes computers, operating systems,

networks, telecommunication links, storage technologies, and the architecture (e.g.,

client/server) that has been designed to implement these technologies.

To model the system architectures described earlier, a hierarchy of business process

engineering activities is defined. Referring to Figure 10.2, the world view is achieved

through information strategy planning (ISP). ISP views the entire business as an entity

and isolates the domains of the business (e.g., engineering, manufacturing, market-

ing, finance, sales) that are important to the overall enterprise. ISP defines the data

objects that are visible at the enterprise level, their relationships, and how they flow

between the business domains [MAR90].

The domain view is addressed with a BPE activity called business area analysis

(BAA). Hares [HAR93] describes BAA in the following manner:

BAA is concerned with identifying in detail data (in the form of entity [data object] types)

and function requirements (in the form of processes) of selected business areas [domains]

identified during ISP and ascertaining their interactions (in the form of matrices). It is only

concerned with specifying what is required in a business area.

As the system engineer begins BAA, the focus narrows to a specific business domain.

BAA views the business area as an entity and isolates the business functions and proce-

dures that enable the business area to meet its objectives and goals. BAA, like ISP, defines

data objects, their relationships, and how data flow. But at this level, these characteris-

tics are all bounded by the business area being analyzed. The outcome of BAA is to iso-

late areas of opportunity in which information systems may support the business area.

Once an information system has been isolated for further development, BPE makes

a transition into software engineering. By invoking a business system design (BSD)

step, the basic requirements of a specific information system are modeled and these

requirements are translated into data architecture, applications architecture, and

technology infrastructure.
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The final BPE step—construction and integration focuses on implementation

detail. The architecture and infrastructure are implemented by constructing an

appropriate database and internal data structures, by building applications using

software components, and by selecting appropriate elements of a technology infra-

structure to support the design created during BSD. Each of these system compo-

nents must then be integrated to form a complete information system or application.

The integration activity also places the new information system into the business

area context, performing all user training and logistics support to achieve a smooth

transition.4

10.4 PRODUCT ENGINEERING: AN OVERVIEW

The goal of product engineering is to translate the customer’s desire for a set of defined

capabilities into a working product. To achieve this goal, product engineering—like

4 It should be noted that the terminology (adapted from [MAR90]) used in Figure 10.2 is associated
with information engineering, the predecessor of modern BPE. However, the area of focus
implied by each activity noted is addressed by all who consider the subject.

The enterprise Information
strategy planning

(world view)

Business area

A business area 

Processing requirement

Business
area analysis
(domain view)

Business system
design

(element view)

Information
system

Construction
&

integration
(detailed view)

Software
engineer

FIGURE 10.2
The business
process 
engineering
hierarchy



CHAPTER 10 SYSTEM ENGINEERING

business process engineering—must derive architecture and infrastructure. The archi-

tecture encompasses four distinct system components: software, hardware, data (and

databases), and people. A support infrastructure is established and  includes the tech-

nology required to tie the components together and the information (e.g., documents,

CD-ROM, video) that is used to support the components.

Referring to Figure 10.3, the world view is achieved through requirements engi-

neering. The overall requirements of the product are elicited from the customer. These

requirements encompass information and control needs, product function and behav-

ior, overall product performance, design and interfacing constraints, and other spe-

cial needs. Once these requirements are known, the job of requirements engineering

is to allocate function and behavior to each of the four components noted earlier.

Once allocation has occurred, system component engineering commences. System

component engineering is actually a set of concurrent activities that address each of

the system components separately: software engineering, hardware engineering,

human engineering, and database engineering. Each of these engineering disciplines

takes a domain-specific view, but it is important to note that the engineering disci-

plines must establish and maintain active communication with one another. Part of
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the role of requirements engineering is to establish the interfacing mechanisms that

will enable this to happen. 

The element view for product engineering is the engineering discipline itself applied

to the allocated component. For software engineering, this means analysis and design

modeling activities (covered in detail in later chapters) and construction and integra-

tion activities that encompass code generation, testing, and support steps. The analy-

sis step models allocated requirements into representations of data, function, and

behavior. Design maps the analysis model into data, architectural, interface, and soft-

ware component-level designs.

10.5 REQUIREMENTS ENGINEERING

The outcome of the system engineering process is the specification of a computer-

based system or product at the different levels described generically in Figure 10.1.

But the challenge facing system engineers (and software engineers) is profound: How

can we ensure that we have specified a system that properly meets the customer’s

needs and satisfies the customer’s expectations? There is no foolproof answer to this

difficult question, but a solid requirements engineering process is the best solution

we currently have.

Requirements engineering provides the appropriate mechanism for understand-

ing what the customer wants, analyzing need, assessing feasibility, negotiating a rea-

sonable solution, specifying the solution unambiguously, validating the specification,

and managing the requirements as they are transformed into an operational system

[THA97]. The requirements engineering process can be described in five distinct steps

[SOM97]:

• requirements elicitation 

• requirements analysis and negotiation 

• requirements specification

• system modeling 

• requirements validation 

• requirements management 

10.5.1 Requirements Elicitation 

It certainly seems simple enough—ask the customer, the users, and others what the

objectives for the system or product are, what is to be accomplished, how the sys-

tem or product fits into the needs of the business, and finally, how the system or prod-

uct is to be used on a day-to-day basis. But it isn’t simple—it’s very hard.

Christel and Kang [CRI92] identify a number of problems that help us understand

why requirements elicitation is difficult:

“The hardest single
part of building a
software system is
deciding what to
build. . . . No other
part of the work so
cripples the resulting
system if done
wrong. No other part
is more difficult to
rectify later.
Fred Brooks

WebRef
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• Problems of scope. The boundary of the system is ill-defined or the cus-

tomers/users specify unnecessary technical detail that may confuse, rather

than clarify, overall system objectives.

• Problems of understanding. The customers/users are not completely sure of

what is needed, have a poor understanding of the capabilities and limitations

of their computing environment, don’t have a full understanding of the prob-

lem domain, have trouble communicating needs to the system engineer, omit

information that is believed to be “obvious,” specify requirements that con-

flict with the needs of other customers/users, or specify requirements that

are ambiguous or untestable.

• Problems of volatility. The requirements change over time.

To help overcome these problems, system engineers must approach the requirements

gathering activity in an organized manner. 

Sommerville and Sawyer [SOM97] suggest a set of detailed guidelines for require-

ments elicitation, which are summarized in the following steps:

• Assess the business and technical feasibility for the proposed system.

• Identify the people who will help specify requirements and understand their

organizational bias.

• Define the technical environment (e.g., computing architecture, operating

system, telecommunications needs) into which the system or product will be

placed.

• Identify “domain constraints” (i.e., characteristics of the business environ-

ment specific to the application domain) that limit the functionality or perfor-

mance of the system or product to be built.

• Define one or more requirements elicitation methods (e.g., interviews, focus

groups, team meetings).

• Solicit participation from many people so that requirements are defined from

different points of view; be sure to identify the rationale for each requirement

that is recorded.

• Identify ambiguous requirements as candidates for prototyping.

• Create usage scenarios (see Chapter 11) to help customers/users better iden-

tify key requirements.

The work products produced as a consequence of the requirements elicitation activ-

ity will vary depending on the size of the system or product to be built. For most sys-

tems, the work products include

• A statement of need and feasibility.

• A bounded statement of scope for the system or product.
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• A list of customers, users, and other stakeholders who participated in the

requirements elicitation activity.

• A description of the system’s technical environment.

• A list of requirements (preferably organized by function) and the domain

constraints that apply to each.

• A set of usage scenarios that provide insight into the use of the system or

product under different operating conditions.

• Any prototypes developed to better define requirements.

Each of these work products is reviewed by all people who have participated in the

requirements elicitation.

10.5.2 Requirements Analysis and Negotiation

Once requirements have been gathered, the work products noted earlier form the

basis for requirements analysis. Analysis categorizes requirements and organizes them

into related subsets; explores each requirement in relationship to others; examines

requirements for consistency, omissions, and ambiguity; and ranks requirements

based on the needs of customers/users. 

As the requirements analysis activity commences, the following questions are

asked and answered:

• Is each requirement consistent with the overall objective for the

system/product?

• Have all requirements been specified at the proper level of abstraction? That

is, do some requirements provide a level of technical detail that is inappropri-

ate at this stage?

• Is the requirement really necessary or does it represent an add-on feature

that may not be essential to the objective of the system?

• Is each requirement bounded and unambiguous?

• Does each requirement have attribution? That is, is a source (generally, a

specific individual) noted for each requirement? 

• Do any requirements conflict with other requirements?

• Is each requirement achievable in the technical environment that will house

the system or product?

• Is each requirement testable, once implemented?

It isn’t unusual for customers and users to ask for more than can be achieved,

given limited business resources. It also is relatively common for different customers

or users to propose conflicting requirements, arguing that their version is “essential

for our special needs.”

Requirements Analysis
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The system engineer must reconcile these conflicts through a process of negotia-

tion. Customers, users and stakeholders are asked to rank requirements and then

discuss conflicts in priority. Risks associated with each requirement are identified and

analyzed (see Chapter 6 for details). Rough guestimates of development effort are

made and used to assess the impact of each requirement on project cost and deliv-

ery time. Using an iterative approach, requirements are eliminated, combined, and/or

modified so that each party achieves some measure of satisfaction.

10.5.3 Requirements Specification

In the context of computer-based systems (and software), the term specification means

different things to different people. A specification can be a written document, a graph-

ical model, a formal mathematical model, a collection of usage scenarios, a proto-

type, or any combination of these.

Some suggest that a “standard template” [SOM97] should be developed and used

for a system specification, arguing that this leads to requirements that are presented

in a consistent and therefore more understandable manner. However, it is sometimes

necessary to remain flexible when a specification is to be developed. For large sys-

tems, a written document, combining natural language descriptions and graphical

models may be the best approach. However, usage scenarios may be all that are

required for smaller products or systems that reside within well-understood techni-

cal environments.

The System Specification is the final work product produced by the system and

requirements engineer. It serves as the foundation for hardware engineering, soft-

ware engineering, database engineering, and human engineering. It describes the

function and performance of a computer-based system and the constraints that will

govern its development. The specification bounds each allocated system element.

The System Specification also describes the information (data and control) that is input

to and output from the system.

10.5.4 System Modeling

Assume for a moment that you have been asked to specify all requirements for the

construction of a gourmet kitchen. You know the dimensions of the room, the loca-

tion of doors and windows, and the available wall space. You could specify all cabi-

nets and appliances and even indicate where they are to reside in the kitchen. Would

this be a useful specification? 

The answer is obvious. In order to fully specify what is to be built, you would need

a meaningful model of the kitchen, that is, a blueprint or three-dimensional render-

ing that shows the position of the cabinets and appliances and their relationship to

one another. From the model, it would be relatively easy to assess the efficiency of

work flow (a requirement for all kitchens), the aesthetic “look” of the room (a per-

sonal, but very important requirement).
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We build system models for much the same reason that we would develop a blue-

print or 3D rendering for the kitchen. It is important to evaluate the system’s com-

ponents in relationship to one another, to determine how requirements fit into this

picture, and to assess the “aesthetics” of the system as it has been conceived. Fur-

ther discussion of system modeling is presented in Section 10.6.

10.5.5 Requirements Validation

The work products produced as a consequence of requirements engineering (a sys-

tem specification and related information) are assessed for quality during a valida-

tion step. Requirements validation examines the specification to ensure that all system

requirements have been stated unambiguously; that inconsistencies, omissions, and

errors have been detected and corrected; and that the work products conform to the

standards established for the process, the project, and the product.

The primary requirements validation mechanism is the formal technical review

(Chapter 8). The review team includes system engineers, customers, users, and other

stakeholders who examine the system specification5 looking for errors in content or

interpretation, areas where clarification may be required, missing information, incon-

sistencies (a major problem when large products or systems are engineered), con-

flicting requirements, or unrealistic (unachievable) requirements. 

Although the requirements validation review can be conducted in any manner that

results in the discovery of requirements errors, it is useful to examine each require-

ment against a set of checklist questions. The following questions represent a small

subset of those that might be asked:

• Are requirements stated clearly? Can they be misinterpreted?

• Is the source (e.g., a person, a regulation, a document) of the requirement

identified? Has the final statement of the requirement been examined by or

against the original source?

• Is the requirement bounded in quantitative terms?

• What other requirements relate to this requirement? Are they clearly noted

via a cross-reference matrix or other mechanism?

• Does the requirement violate any domain constraints?

• Is the requirement testable? If so, can we specify tests (sometimes called vali-

dation criteria) to exercise the requirement?

• Is the requirement traceable to any system model that has been created?

• Is the requirement traceable to overall system/product objectives?

5 In reality, many FTRs are conducted as the system specification is developed. It is best for the
review team to examine small portions of the specification, so that attention can be focused on a
specific aspect of the requirements.
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• Is the system specification structured in a way that leads to easy understand-

ing, easy reference, and easy translation into more technical work products?

• Has an index for the specification been created?

• Have requirements associated with system performance, behavior, and oper-

ational characteristics been clearly stated? What requirements appear to be

implicit?

Checklist questions like these help ensure that the validation team has done every-

thing possible to conduct a thorough review of each requirement. 

10.5.6 Requirements Management

In the preceding chapter, we noted that requirements for computer-based systems

change and that the desire to change requirements persists throughout the life of the

system. Requirements management is a set of activities that help the project team to

identify, control, and track requirements and changes to requirements at any time as

the project proceeds. Many of these activities are identical to the software configu-

ration management techniques discussed in Chapter 9.

Like SCM, requirements management begins with identification. Each requirement

is assigned a unique identifier that might take the form

<requirement type><requirement #>

where requirement type takes on values such as F = functional requirement, D = data

requirement, B = behavioral requirement, I = interface requirement, and P = output

requirement. Hence, a requirement identified as F09 indicates a functional require-

ment assigned requirement number 9.

Once requirements have been identified, traceability tables are developed. Shown

schematically in Figure 10.4, each traceability table relates identified requirements to

one or more aspects of the system or its environment. Among many possible trace-

ability tables are the following:

Features traceability table. Shows how requirements relate to important cus-

tomer observable system/product features.

Source traceability table. Identifies the source of each requirement.

Dependency traceability table. Indicates how requirements are related to one

another.

Subsystem traceability table. Categorizes requirements by the subsystem(s)

that they govern.

Interface traceability table. Shows how requirements relate to both internal

and external system interfaces.

In many cases, these traceability tables are maintained as part of a requirements data-

base so that they may be quickly searched to understand how a change in one require-

ment will affect different aspects of the system to be built.
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10.6 SYSTEM MODELING

Every computer-based system can be modeled as an information transform using an

input-processing-output template. Hatley and Pirbhai [HAT87] have extended this

view to include two additional system features—user interface processing and main-

tenance and self-test processing. Although these additional features are not present

for every computer-based system, they are very common, and their specification

makes any system model more robust.

Using a representation of input, processing, output, user interface processing, and

self-test processing, a system engineer can create a model of system components

that sets a foundation for later steps in each of the engineering disciplines.

To develop the system model, a system model template [HAT87] is used. The sys-

tem engineer allocates system elements to each of five processing regions within the

template: (1) user interface, (2) input, (3) system function and control, (4) output, and

(5) maintenance and self-test. The format of the architecture template is shown in

Figure 10.5.

Like nearly all modeling techniques used in system and software engineering, the

system model template enables the analyst to create a hierarchy of detail. A system

context diagram (SCD) resides at the top level of the hierarchy. The context diagram

"establishes the information boundary between the system being implemented and

the environment in which the system is to operate" [HAT87]. That is, the SCD defines

all external producers of information used by the system, all external consumers of

information created by the system, and all entities that communicate through the

interface or perform maintenance and self-test. 
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To illustrate the use of the SCD, consider the conveyor line sorting system that was

introduced in Chapter 5. The system engineer is presented with the following (some-

what nebulous) statement of objectives for CLSS:

CLSS must be developed such that boxes moving along a conveyor line will be identi-

fied and sorted into one of six bins at the end of the line. The boxes will pass by a sort-

ing station where they will be identified. Based on an identification number printed on

the side of the box (an equivalent bar code is provided), the boxes will be shunted into

the appropriate bins. Boxes pass in random order and are evenly spaced. The line is

moving slowly. 

For this example, CLSS is extended and makes use of a personal computer at the sort-

ing station site. The PC executes all CLSS software, interacts with the bar code reader

to read part numbers on each box, interacts with the conveyor line monitoring equip-

ment to acquire conveyor line speed, stores all part numbers sorted, interacts with a

sorting station operator to produce a variety of reports and diagnostics, sends con-

trol signals to the shunting hardware to sort the boxes, and communicates with a

central factory automation mainframe. The SCD for CLSS (extended) is shown in Fig-

ure 10.6.

Each box shown in Figure 10.6 represents an external entity—that is, a producer or

consumer of system information. For example, the bar code reader produces infor-

mation that is input to the CLSS system. The symbol for the entire system (or, at lower

levels, major subsystems) is a rectangle with rounded corners. Hence, CLSS is rep-

resented in the processing and control region at the center of the SCD. The labeled
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arrows shown in the SCD represent information (data and control) as it moves from

the external environment into the CLSS system. The external entity bar code reader

produces input information that is labeled bar code. In essence, the SCD places any

system into the context of its external environment.

The system engineer refines the system context diagram by considering the

shaded rectangle in Figure 10.6 in more detail. The major subsystems that enable

the conveyor line sorting system to function within the context defined by the SCD

are identified. Referring to Figure 10.7, the major subsystems are defined in a sys-

tem flow diagram (SFD) that is derived from the SCD. Information flow across the

regions of the SCD is used to guide the system engineer in developing the SFD—

a more detailed "schematic" for CLSS. The system flow diagram shows major sub-

systems and important lines of information (data and control) flow. In addition,

the system template partitions the subsystem processing into each of the five

regions discussed earlier. At this stage, each of the subsystems can contain one

or more system elements (e.g., hardware, software, people) as allocated by the

system engineer. 

The initial system flow diagram becomes the top node of a hierarchy of SFDs. Each

rounded rectangle in the original SFD can be expanded into another architecture tem-

plate dedicated solely to it. This process is illustrated schematically in Figure 10.8.

Each of the SFDs for the system can be used as a starting point for subsequent engi-

neering steps for the subsystem that has been described.

Sorting
station

operator

Request Queries

Bar code
reader

Conveyor
line

Sorting
mechanism

Mainframe

Sorting
station

operator

Bar
code

Line speed
indicator

Diagnostic data

Shunt
commands

Formatted reporting data

Conveyor
Line

Sorting
System

FIGURE 10.6
System context
diagram for
CLSS
(extended)

XRef
The SFD is a precursor
to the data flow
diagram, discussed in
Chapter 12. 

WebRef
A useful white paper on
Hatley-Pirbhai method can
be found at
www.hasys.com/
papers/
hp_description.html
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Subsystems and the information that flows between them can be specified

(bounded) for subsequent engineering work. A narrative description of each subsys-

tem and a definition of all data that flow between subsystems become important ele-

ments of the System Specification.

10.7 SUMMARY

A high-technology system encompasses a number of elements: software, hardware,

people, database, documentation, and procedures. System engineering helps to trans-

late a customer’s needs into a model of a system that makes use of one or more of

these elements.

System engineering begins by taking a “world view.” A business domain or prod-

uct is analyzed to establish all basic business requirements. Focus is then narrowed

to a “domain view,” where each of the system elements is analyzed individually. Each

element is allocated to one or more engineering components, which are then

addressed by the relevant engineering discipline.
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Business process engineering is a system engineering approach that is used to

define architectures that enable a business to use information effectively. The intent

of business process engineering is to derive comprehensive data architecture, appli-

cation architecture, and technology infrastructure that will meet the needs of the busi-

ness strategy and the objectives and goals of each business area. Business process

engineering encompasses information strategy planning (ISP), business area analysis

(BAA), and application specific analysis that is actually part of software engineering. 

Product engineering is a system engineering approach that begins with system

analysis. The system engineer identifies the customer's needs, determines economic

and technical feasibility, and allocates function and performance to software, hard-

ware, people, and databases—the key engineering components. 

System engineering demands intense communication between the customer and

the system engineer. This is achieved through a set of activities that are called require-

ments engineering—elicitation, analysis and negotiation, specification, modeling, val-

idation, and management. 

After requirements have been isolated, a system model is produced and repre-

sentations of each major subsystem can be developed. The system engineering task

culminates with the creation of a System Specification—a document that forms the

foundation for all engineering work that follows.

Top-level archectecture flow diagram (AFD)

AFD for A

AFD for C

AFD for B

A B

C

FIGURE 10.8
Building an
SFD hierarchy
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PROBLEMS AND POINTS TO PONDER

10.1. Find as many single-word synonyms for the word system as you can. Good

luck! 

10.2. Build a hierarchical "system of systems" for a system, product, or service with

which you are familiar. Your hierarchy should extend down to simple system ele-

ments (hardware, software, etc.) along at least one branch of the "tree."

10.3. Select any large system or product with which you are familiar. Define the set

of domains that describe the world view of the system or product. Describe the set

of elements that make up one or two domains. For one element, identify the techni-

cal components that must be engineered. 

10.4. Select any large system or product with which you are familiar. State the

assumptions, simplifications, limitations, constraints, and preferences that would

have to be made to build an effective (and realizable) system model.

10.5. Business process engineering strives to define data and application architec-

ture as well as technology infrastructure. Describe what each of these terms means

and provide an example.

10.6. Information strategy planning begins with the definitions of objectives and

goals. Provide examples of each from the business domain.
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10.7. A system engineer can come from one of three sources: the system developer,

the customer, or some outside organization. Discuss the pros and cons that apply to

each source. Describe an "ideal" system engineer. 

10.8. Your instructor will distribute a high-level description of a computer-based

system or product:

a.  Develop a set of questions that you should ask as a system engineer.

b.  Propose at least two different allocations for the system based on answers to

your questions.

c.  In class, compare your allocation to those of fellow students.

10.9. Develop a checklist for attributes to be considered when the "feasibility" of a

system or product is to be evaluated. Discuss the interplay among attributes and

attempt to provide a method for grading each so that a quantitative "feasibility num-

ber" may be developed. 

10.10. Research the accounting techniques that are used for a detailed cost/bene-

fit analysis of a computer-based system that will require some hardware manufac-

turing and assembly. Attempt to write a "cookbook" set of guidelines that a technical

manager could apply. 

10.11. Develop a system context diagram and system flow diagrams for the computer-

based system of your choice (or one assigned by your instructor).

10.12. Write a system module narrative that would be contained in system diagram

specifications for one or more of the subsystems defined in the SFDs developed for

Problem 10.11.

10.13. Research the literature on CASE tools and write a brief paper describing how

modeling and simulation tools work. Alternate: Collect literature from two or more

CASE vendors that sell modeling and simulation tools and assess the similarities and

differences.

10.14. Based on documents provided by your instructor, develop an abbreviated

System Specification for one of the following computer-based systems: 

a.  a nonlinear, digital video-editing system 

b.  a digital scanner for a personal computer

c.  an electronic mail system

d.  a university registration system

e.  an Internet access provider

f.  an interactive hotel reservation system 

g.  a system of local interest

Be sure to create the system models described in Section 10.6.
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10.15. Are there characteristics of a system that cannot be established during sys-

tem engineering activities? Describe the characteristics, if any, and explain why a

consideration of them must be delayed until later engineering steps. 

10.16. Are there situations in which formal system specification can be abbreviated

or eliminated entirely? Explain.

FURTHER READINGS AND INFORMATION SOURCES

Relatively few books have been published on system engineering in recent years.

Among those that have appeared are

Blanchard, B.S., System Engineering Management, 2nd ed., Wiley, 1997. 

Rechtin, E. and  M.W. Maier, The Art of Systems Architecting, CRC Press, 1996.

Weiss, D., et al., Software Product-Line Engineering, Addison-Wesley, 1999.

Books by Armstrong  and Sage (Introduction to Systems Engineering, Wiley, 1997),

Martin (Systems Engineering Guidebook, CRC Press, 1996), Wymore (Model-Based Sys-

tems Engineering, CRC Press, 1993), Lacy (System Engineering Management, McGraw-

Hill, 1992), Aslaksen and Belcher (Systems Engineering, Prentice-Hall, 1992), Athey

(Systematic Systems Approach, Prentice-Hall, 1982), and Blanchard and Fabrycky (Sys-

tems Engineering and Analysis, Prentice-Hall, 1981) present the system engineering

process (with a distinct engineering emphasis) and provide worthwhile guidance.

In recent years, information engineering texts have been replaced by books that

focus on business process engineering. Scheer (Business Process Engineering: Refer-

ence Models for Industrial Enterprises, Springer-Verlag, 1998) describes business process

modeling methods for enterprise-wide information systems. Lozinsky (Enterprise-

wide Software Solutions: Integration Strategies and Practices, Addison-Wesley, 1998)

addresses the use of software packages as a solution that allows a company to migrate

from legacy systems to modern business processes. Martin (Information Engineering,

3 volumes, Prentice-Hall, 1989, 1990, 1991) presents a comprehensive discussion of

information engineering topics. Books by  Hares [HAR93], Spewak [SPE93], and Flynn

and Fragoso-Diaz (Information Modeling: An International Perspective, Prentice-Hall,

1996) also treat the subject in detail. 

Davis and Yen (The Information System Consultant's Handbook: Systems Analysis

and Design, CRC Press, 1998) present encyclopedic coverage of system analysis and

design issues in the information systems domain. An excellent IEEE tutorial by Thayer

and Dorfman [THA97] discusses the interrelationship between system and software-

level requirements analysis issues. A earlier volume by the same authors (Standards,

Guidelines and Examples: System and Software Requirements Engineering, IEEE Com-

puter Society Press, 1990) presents a comprehensive discussion of standards and

guidelines for analysis work.

For those readers actively involved in systems work or interested in a more sophis-

ticated treatment of the topic, Gerald Weinberg's books (An Introduction to General
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System Thinking, Wiley-Interscience, 1976 and On the Design of Stable Systems, Wiley-

Interscience, 1979) have become classics and provide an excellent discussion of "gen-

eral systems thinking" that implicitly leads to a general approach to system analysis

and design. More recent books by Weinberg (General Principles of Systems Design,

Dorset House, 1988 and Rethinking Systems Analysis and Design, Dorset House, 1988)

continue in the tradition of his earlier work.

A wide variety of information sources on system engineering and related subjects

is available on the Internet. An up-to-date list of World Wide Web references that are

relevant to system engineering, information engineering, business process engi-

neering, and product engineering can be found at the SEPA Web site:

http://www.mhhe.com/engcs/compsci/pressman/resources/syseng.mhtml
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Software requirements engineering is a process of discovery, refinement,
modeling, and specification. The system requirements and role allocated
to software—initially established by the system engineer—are refined in

detail. Models of the required data, information and control flow, and opera-
tional behavior are created. Alternative solutions are analyzed and a complete
analysis model is created. Donald Reifer [REI94] describes the software require-
ment engineering process in the following way: 

Requirements engineering is the systematic use of proven principles, techniques, lan-

guages, and tools for the cost effective analysis, documentation, and on-going evo-

lution of user needs and the specification of the external behavior of a system to

satisfy those user needs. Notice that like all engineering disciplines, requirements

engineering is not conducted in a sporadic, random or otherwise haphazard fash-

ion, but instead is the systematic use of proven approaches. 

Both the software engineer and customer take an active role in software
requirements engineering—a set of activities that is often referred to as analy-
sis. The customer attempts to reformulate a sometimes nebulous system-level
description of data, function, and behavior into concrete detail. The developer
acts as interrogator, consultant, problem solver, and negotiator.

11 ANALYSIS CONCEPTS AND
PRINCIPLES

What is it? The overall role of soft-

ware in a larger system is identi-

fied during system engineering

(Chapter 10). However, it’s necessary to take a

harder look at software’s role—to understand the

specific requirements that must be achieved to

build high-quality software. That’s the job of soft-

ware requirements analysis. To perform the job

properly, you should follow a set of underlying

concepts and principles.

Who does it? Generally, a software engineer per-

forms requirements analysis. However, for com-

plex business applications, a “system analyst”—

trained in the business aspects of the application

domain—may perform the task.

Why is it important? If you don’t analyze, it’s highly

likely that you’ll build a very elegant software

solution that solves the wrong problem. The result

is: wasted time and money, personal frustration,

and unhappy customers.  

What are the steps? Data, functional, and behav-

ioral requirements are identified by eliciting infor-

mation from the customer. Requirements are

refined and analyzed to assess their clarity, com-

pleteness, and consistency. A specification incor-

porating a model of the software is created and

then validated by both software engineers and

customers/users.  

What is the work product? An effective representa-

tion of the software must be produced as a

Q U I C K
L O O K
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Requirements analysis and specification may appear to be a relatively simple task,
but appearances are deceiving. Communication content is very high. Chances for
misinterpretation or misinformation abound. Ambiguity is probable. The dilemma
that confronts a software engineer may best be understood by repeating the state-
ment of an anonymous (infamous?) customer:  "I know you believe you understood
what you think I said, but I  am not sure you realize that what you heard is not what
I meant."

11.1 REQUIREMENTS ANALYSIS

Requirements analysis is a software engineering task that bridges the gap between

system level requirements engineering and software design (Figure 11.1). Require-

ments engineering activities result in the specification of software’s operational char-

acteristics (function, data, and behavior), indicate software's interface with other

system elements, and establish constraints that software must meet. Requirements

analysis allows the software engineer (sometimes called analyst in this role) to refine

the software allocation and build models of the data, functional, and behavioral

domains that will be treated by software. Requirements analysis provides the soft-

ware designer with a representation of information, function, and behavior that can

be translated to data, architectural, interface, and component-level designs. Finally,

the requirements specification provides the developer and the customer with the

means to assess quality once software is built. 

Software requirements analysis may be divided into five areas of effort: (1) prob-

lem recognition, (2) evaluation and synthesis, (3) modeling, (4) specification, and (5)

review. Initially, the analyst studies the System Specification (if one exists) and the Soft-

ware Project Plan. It is important to understand software in a system context and to

review the software scope that was used to generate planning estimates. Next, com-

munication for analysis must be established so that problem recognition is

ensured. The goal is recognition of the basic problem elements as perceived by the

customer/users.

Problem evaluation and solution synthesis is the next major area of effort for analy-

sis. The analyst must define all externally observable data objects, evaluate the flow

and content of information, define and elaborate all software functions, understand

software behavior in the context of events that affect the system, establish system

consequence of requirements

analysis. Like system require-

ments, software requirements

can be represented using a prototype, a specifi-

cation or even a symbolic model.

How do I ensure that I’ve done it right? Software

requirements analysis work products must be

reviewed for clarity, completeness, and consis-

tency. 

Q U I C K
L O O K

“We spend a lot of
time—the majority
of total project
time—not
implementing or
testing, but trying to
decide what to
build.”
Brian Lawrence 

“This sentence
contradicts itself—
no actually it
doesn't.”
Douglas Hofstadter 
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interface characteristics, and uncover additional design constraints.  Each of these

tasks serves to describe the problem so that an overall approach or solution may be

synthesized.

For example, an inventory control system is required for a major supplier of

auto parts. The analyst finds that problems with the current manual system include

(1) inability to obtain the status of a component rapidly, (2) two- or three-day turn-

around to update a card file, (3) multiple reorders to the same vendor because

there is no way to associate vendors with components, and so forth. Once prob-

lems have been identified, the analyst determines what information is to be pro-

duced by the new system and what data will be provided to the system. For instance,

the customer desires a daily report that indicates what parts have been taken from

inventory and how many similar parts remain. The customer indicates that inven-

tory clerks will log the identification number of each part as it leaves the inven-

tory area. 

Upon evaluating current problems and desired information (input and output), the

analyst begins to synthesize one or more solutions. To begin, the data objects, pro-

cessing functions, and behavior of the system are defined in detail. Once this infor-

mation has been established, basic architectures for implementation are considered.

A client/server approach would seem to be appropriate, but does the software to

support this architecture fall within the scope outlined in the Software Plan?  A data-

base management system would seem to be required, but is the user/customer's

need for associativity justified? The process of evaluation and synthesis continues

until both analyst and customer feel confident that software can be adequately spec-

ified for subsequent development steps.
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PART THREE CONVENTIONAL METHODS FOR SOFTWARE ENGINEERING274

Throughout evaluation and solution synthesis, the analyst's primary  focus is on

"what," not "how." What data does the system produce and consume, what functions

must the system perform, what behaviors does the system exhibit, what interfaces

are defined and what constraints apply?1

During the evaluation and solution synthesis activity, the analyst creates models

of the system in an effort to better understand data and control flow, functional pro-

cessing, operational behavior, and information content. The model serves as a foun-

dation for software design and as the basis for the creation of specifications for the

software. 

In Chapter 2, we noted that detailed specifications may not be possible at this

stage. The customer may be unsure of precisely what is required. The developer may

be unsure that a specific approach will properly accomplish function and perfor-

mance. For these, and many other reasons, an alternative approach to requirements

analysis, called prototyping, may be conducted. We discuss prototyping later in this

chapter.

11.2 REQUIREMENTS ELICITATION FOR SOFTWARE

Before requirements can be analyzed, modeled, or specified they must be gathered

through an elicitation process. A customer has a problem that may be amenable to

a computer-based solution. A developer responds to the customer's request for help.

Communication has begun. But, as we have already noted, the road from communi-

cation to understanding is often full of potholes.

11.2.1  Initiating the Process

The most commonly used requirements elicitation technique is to conduct a meet-

ing or interview. The first meeting between a software engineer (the analyst) and the

customer can be likened to the awkwardness of a first date between two adolescents.

Neither person knows what to say or ask; both are worried that what they do say will

be misinterpreted; both are thinking about where it might lead (both likely have rad-

ically different expectations here); both want to get the thing over with, but at the

same time, both want it to be a success.

Yet, communication must be initiated. Gause and Weinberg [GAU89] suggest that

the analyst start by asking context-free questions. That is, a set of questions that will

lead to a basic understanding of the problem, the people who want a solution, the

nature of the solution that is desired, and the effectiveness of the first encounter itself.

The first set of context-free questions focuses on the customer, the overall goals, and

the benefits. For example, the analyst might ask:

1 Davis [DAV93] argues that the terms what and how are too vague. For an interesting discussion of
this issue, the reader should refer to his book.

"He who asks a
question is a fool for
five minutes; he
who does not ask a
question remains a
fool forever."
Chinese Proverb 

What should
be my

primary focus at
this stage?

?
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• Who is behind the request for this work?

• Who will use the solution?

• What will be the economic benefit of a successful solution?

• Is there another source for the solution that you need?

These questions help to identify all stakeholders who will have interest in the soft-

ware to be built. In addition, the questions identify the measurable benefit of a suc-

cessful implementation and possible alternatives to custom software development.

The next set of questions enables the analyst to gain a better understanding of the

problem and the customer to voice his or her perceptions about a solution:

• How would you characterize "good" output that would be generated by a

successful solution?

• What problem(s) will this solution address?

• Can you show me (or describe) the environment in which the solution will be

used?

• Will special performance issues or constraints affect the way the solution is

approached?

The final set of questions focuses on the effectiveness of the meeting. Gause and

Weinberg [GAU89] call these meta-questions and propose the following (abbreviated)

list:

• Are you the right person to answer these questions? Are your answers "offi-

cial"? 

• Are my questions relevant to the problem that you have?

• Am I asking too many questions?

• Can anyone else provide additional information?

• Should I be asking you anything else?

These questions (and others) will help to "break the ice" and initiate the communi-

cation that is essential to successful analysis. But a question and answer meeting for-

mat is not an approach that has been overwhelmingly successful. In fact, the Q&A

session should be used for the first encounter only and then replaced by a meeting

format that combines elements of problem solving, negotiation, and specification.

An approach to meetings of this type is presented in the next section.

11.2.2  Facilitated Application Specification Techniques

Too often, customers and software engineers have an unconscious "us and them"

mind-set. Rather than working as a team to identify and refine requirements, each

constituency defines its own "territory" and communicates through a series of memos,
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“Plain question and
plain answer make
the shortest road out
of most
perplexities.”
Mark Twain 

If a system or product
will serve many users,
be absolutely certain
that requirements are
elicited from a
representative 
cross-section of users.
If only one user
defines all
requirements,
acceptance risk is high.
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formal position papers, documents, and question and answer sessions. History has

shown that this approach doesn't work very well. Misunderstandings abound, impor-

tant information is omitted, and a successful working relationship is never estab-

lished.

It is with these problems in mind that a number of independent investigators have

developed a team-oriented approach to requirements gathering that is applied dur-

ing early stages of analysis and specification. Called facilitated application specifica-

tion techniques (FAST), this approach encourages the creation of a joint team of

customers and developers who work together to identify the problem, propose ele-

ments of the solution, negotiate different approaches and specify a preliminary set

of solution requirements [ZAH90]. FAST has been used predominantly by the infor-

mation systems community, but the technique offers potential for improved com-

munication in applications of all kinds.

Many different approaches to FAST have been proposed.2 Each makes use of a

slightly different scenario, but all apply some variation on the following basic guide-

lines:

• A meeting is conducted at a neutral site and attended by both software engi-

neers and customers.

• Rules for preparation and participation are established.

• An agenda is suggested that is formal enough to cover all important points

but informal enough to encourage the free flow of ideas.

• A "facilitator" (can be a customer, a developer, or an outsider) controls the

meeting.

• A "definition mechanism" (can be work sheets, flip charts, or wall stickers or

an electronic bulletin board, chat room or virtual forum) is used.

• The goal is to identify the problem, propose elements of the solution, negoti-

ate different approaches, and specify a preliminary set of solution require-

ments in an atmosphere that is conducive to the accomplishment of the goal.

To better understand the flow of events as they occur in a typical FAST meeting, we

present a brief scenario that outlines the sequence of events that lead up to the meet-

ing, occur during the meeting, and follow the meeting.

Initial meetings between the developer and customer (Section 11.2.1) occur and

basic questions and answers help to establish the scope of the problem and the over-

all perception of a solution. Out of these initial meetings, the developer and customer

write a one- or two-page "product request." A meeting place, time, and date for FAST

are selected and a facilitator is chosen. Attendees from both the development and

customer/user organizations are invited to attend. The product request is distributed

to all attendees before the meeting date. 

2 Two of the more popular approaches to FAST are joint application development (JAD), developed
by IBM and the METHOD, developed by  Performance Resources, Inc., Falls Church, VA.

“Facts do not cease
to exist because
they are ignored.”
Aldous Huxley 

WebRef
One approach to FAST is
called “joint application
design” (JAD). A detailed
discussion of JAD can be
found at
www.bee.net/
bluebird/jaddoc.htm

What makes
a FAST

meeting different
from an ordinary
meeting?

?
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While reviewing the request in the days before the meeting, each FAST attendee

is asked to make a list of objects that are part of the environment that surrounds the

system, other objects that are to be produced by the system, and objects that are used

by the system to perform its functions. In addition, each attendee is asked to make

another list of services (processes or functions) that manipulate or interact with the

objects. Finally, lists of constraints (e.g., cost, size, business rules) and performance

criteria (e.g., speed, accuracy) are also developed. The attendees are informed that

the lists are not expected to be exhaustive but are expected to reflect each person’s

perception of the system.

As an example,3 assume that a FAST team working for a consumer products com-

pany has been provided with the following product description:

Our research indicates that the market for home security systems is growing at a rate of 40

percent per year. We would like to enter this market by building a microprocessor-based

home security system that would protect against and/or recognize a variety of undesirable

"situations" such as illegal entry, fire, flooding, and others. The product, tentatively called

SafeHome, will use appropriate sensors to detect each situation, can be programmed by the

homeowner, and will automatically telephone a monitoring agency when a situation is

detected.

In reality, considerably more information would be provided at this stage. But even

with additional information, ambiguity would be present, omissions would likely exist,

and errors might occur. For now, the preceding "product description" will suffice.

The FAST team is composed of representatives from marketing, software and hard-

ware engineering, and manufacturing. An outside facilitator is to be used.

Each person on the FAST team develops the lists described previously. Objects

described for SafeHome might include smoke detectors, window and door sensors,

motion detectors, an alarm, an event (a sensor has been activated), a control panel,

a display, telephone numbers, a telephone call, and so on. The list of services might

include setting the alarm, monitoring the sensors, dialing the phone, programming

the control panel, reading the display (note that services act on objects). In a similar

fashion, each FAST attendee will develop lists of constraints (e.g., the system must

have a manufactured cost of less than $80, must be user-friendly, must interface

directly to a standard phone line) and performance criteria (e.g., a sensor event should

be recognized within one second, an event priority scheme should be implemented). 

As the FAST meeting begins, the first topic of discussion is the need and justifica-

tion for the new product—everyone should agree that the product is justified. Once

agreement has been established, each participant presents his or her lists for dis-

cussion. The lists can be pinned to the walls of the room using large sheets of paper,

stuck to the walls using adhesive backed sheets, or written on a wall board. Alter-

natively, the lists may have been posted on an electronic bulletin board or posed in
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meeting, make a list
of objects, services,
constraints, and
performance criteria.

3 This example (with extensions and variations) will be used to illustrate important software engi-
neering methods in many of the chapters that follow. As an exercise, it would be worthwhile to
conduct your own FAST meeting and develop a set of lists for it.

Objects are
manipulated by
services and must
“live” within the
constraints and
performance defined
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a chat room environment for review prior to the meeting. Ideally, each list entry should

be capable of being manipulated separately so that lists can be combined, entries can

be deleted and additions can be made. At this stage, critique and debate are strictly

prohibited. 

After individual lists are presented in one topic area, a combined list is created by

the group. The combined list eliminates redundant entries, adds any new ideas that

come up during the discussion, but does not delete anything. After combined lists for

all topic areas have been created, discussion—coordinated by the facilitator—ensues.

The combined list is shortened, lengthened, or reworded to properly reflect the prod-

uct/system to be developed. The objective is to develop a consensus list in each topic

area (objects, services, constraints, and performance). The lists are then set aside for

later action.

Once the consensus lists have been completed, the team is divided into smaller

subteams; each works to develop mini-specifications for one or more entries on each

of the lists.4 Each mini-specification is an elaboration of the word or phrase con-

tained on a list. For example, the mini-specification for the SafeHome object control

panel might be

• mounted on wall

• size approximately 9 � 5 inches

• contains standard 12-key pad and special keys

• contains LCD display of the form shown in sketch [not presented here]

• all customer interaction occurs through keys

• used to enable and disable the system

• software provides interaction guidance, echoes, and the like

• connected to all sensors

Each subteam then presents each of its mini-specs to all FAST attendees for discus-

sion. Additions, deletions, and further elaboration are made. In some cases, the devel-

opment of mini-specs will uncover new objects, services, constraints, or performance

requirements that will be added to the original lists. During all discussions, the team

may raise an issue that cannot be resolved during the meeting. An issues list is main-

tained so that these ideas will be acted on later.  

After the mini-specs are completed, each FAST attendee makes a list of validation

criteria for the product/system and presents his or her list to the team. A consensus

list of validation criteria is then created. Finally, one or more participants (or out-

siders) is assigned the task of writing the complete draft specification using all inputs

from the FAST meeting.

4 An alternative approach results in the creation of use-cases. See Section 11.2.4 for details.

Avoid the impulse to
shoot down a
customer’s idea as
“too costly” or
“impractical.” The idea
here is to negotiate a
list that is acceptable
to all. To do this, you
must keep an open
mind.

“The beginning is the
most important part
of the work.”
Plato 
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FAST is not a panacea for the problems encountered in early requirements elici-

tation. But the team approach provides the benefits of many points of view, instan-

taneous discussion and refinement, and is a concrete step toward the development

of a specification.

11.2.3  Quality Function Deployment

Quality function deployment (QFD) is a quality management technique that translates

the needs of the customer into technical requirements for software. Originally devel-

oped in Japan and first used at the Kobe Shipyard of Mitsubishi Heavy Industries, Ltd.,

in the early 1970s, QFD “concentrates on maximizing customer satisfaction from the

software engineering process [ZUL92].” To accomplish this, QFD emphasizes an

understanding of what is valuable to the customer and then deploys these values

throughout the engineering process. QFD identifies three types of requirements

[ZUL92]:

Normal requirements. The objectives and goals that are stated for a prod-

uct or system during meetings with the customer. If these requirements are

present, the customer is satisfied. Examples of normal requirements might be

requested types of graphical displays, specific system functions, and defined

levels of performance.

Expected requirements. These requirements are implicit to the product or

system and may be so fundamental that the customer does not explicitly

state them. Their absence will be a cause for significant dissatisfaction.

Examples of expected requirements are: ease of human/machine interaction,

overall operational correctness and reliability, and ease of software installa-

tion.

Exciting requirements. These features go beyond the customer’s expecta-

tions and prove to be very satisfying when present. For example, word pro-

cessing software is requested with standard features. The delivered product

contains a number of page layout capabilities that are quite pleasing and

unexpected.

In actuality, QFD spans the entire engineering process [AKA90]. However, many QFD

concepts are applicable to the requirements elicitation activity. We present an overview

of only these concepts (adapted for computer software) in the paragraphs that fol-

low.

In meetings with the customer, function deployment is used to determine the value

of each function that is required for the system. Information deployment identifies both

the data objects and events that the system must consume and produce. These are

tied to the functions. Finally, task deployment examines the behavior of the system or

product within the context of its environment. Value analysis is conducted to deter-

mine the relative priority of requirements determined during each of the three deploy-

ments.
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QFD uses customer interviews and observation, surveys, and examination of his-

torical data (e.g., problem reports) as raw data for the requirements gathering activ-

ity. These data are then translated into a table of requirements—called the customer

voice table—that is reviewed with the customer. A variety of diagrams, matrices, and

evaluation methods are then used to extract expected requirements and to attempt

to derive exciting requirements [BOS91].

11.2.4 Use-Cases

As requirements are gathered as part of informal meetings, FAST, or QFD, the soft-

ware engineer (analyst) can create a set of scenarios that identify a thread of usage

for the system to be constructed. The scenarios, often called use-cases [JAC92], pro-

vide a description of how the system will be used.

To create a use-case, the analyst must first identify the different types of people

(or devices) that use the system or product. These actors actually represent roles that

people (or devices) play as the system operates. Defined somewhat more formally,

an actor is anything that communicates with the system or product and that is exter-

nal to the system itself. 

It is important to note that an actor and a user are not the same thing. A typical

user may play a number of different roles when using a system, whereas an actor

represents a class of external entities (often, but not always, people) that play just

one role. As an example, consider a machine operator (a user) who interacts with

the control computer for a manufacturing cell that contains a number of robots and

numerically controlled machines. After careful review of requirements, the software

for the control computer requires four different modes (roles) for interaction: pro-

gramming mode, test mode, monitoring mode, and troubleshooting mode. There-

fore, four actors can be defined: programmer, tester, monitor, and troubleshooter. In

some cases, the machine operator can play all of these roles. In others, different peo-

ple may play the role of each actor.

Because requirements elicitation is an evolutionary activity, not all actors are iden-

tified during the first iteration. It is possible to identify primary actors [JAC92] during

the first iteration and secondary actors as more is learned about the system. Primary

actors interact to achieve required system function and derive the intended benefit

from the system. They work directly and frequently with the software. Secondary

actors support the system so that primary actors can do their work. 

Once actors have been identified, use-cases can be developed. The use-case

describes the manner in which an actor interacts with the system. Jacobson [JAC92]

suggests a number of questions that should be answered by the use-case:

• What main tasks or functions are performed by the actor?

• What system information will the actor acquire, produce, or change?

• Will the actor have to inform the system about changes in the external envi-

ronment?

A use-case is a
scenario that describes
how software is to be
used in a given
situation.

Use-Cases

Use-cases are defined
from an actor’s point
of view. An actor is a
role that people
(users) or devices play
as they interact with
the software.
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• What information does the actor desire from the system?

• Does the actor wish to be informed about unexpected changes?

In general, a use-case is simply a written narrative that describes the role of an actor

as interaction with the system occurs. 

Recalling basic SafeHome requirements (Section 11.2.2), we can define three actors:

the homeowner (the user), sensors (devices attached to the system), and the moni-

toring and response subsystem (the central station that monitors SafeHome). For the

purposes of this example, we consider only the homeowner actor. The homeowner

interacts with the product in a number of different ways:

• enters a password to allow all other interactions

• inquires about the status of a security zone

• inquires about the status of a sensor

• presses the panic button in an emergency

• activates/deactivates the security system

A use-case for system activation follows:

1. The homeowner observes a prototype of the SafeHome control panel (Figure

11.2) to determine if the system is ready for input. If the system is not ready,

the homeowner must physically close windows/doors so that the ready indi-

cator is present. [A not ready indicator implies that a sensor is open; i.e., that

a door or window is open.]

2. The homeowner uses the keypad to key in a four-digit password. The pass-

word is compared with the valid password stored in the system. If the pass-

word is incorrect, the control panel will beep once and reset itself for
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additional input. If the password is correct, the control panel awaits further

action.

3. The homeowner selects and keys in stay or away (see Figure 11.2) to activate

the system. Stay activates only perimeter sensors (inside motion detecting

sensors are deactivated). Away activates all sensors. 

4. When activation occurs, a red alarm light can be observed by the homeowner.

Use-cases for other homeowner interactions would be developed in a similar man-

ner. It is important to note that each use-case must be reviewed with care. If some

element of the interaction is ambiguous, it is likely that a review of the use-case will

indicate a problem.

Each use-case provides an unambiguous scenario of interaction between an actor

and the software. It can also be used to specify timing requirements or other con-

straints for the scenario. For example, in the use-case just noted, requirements indi-

cate that activation occurs 30 seconds after the stay or away key is hit. This information

can be appended to the use-case.

Use-cases describe scenarios that will be perceived differently by different actors.

Wyder [WYD96] suggests that quality function deployment can be used to develop a

weighted priority value for each use-case. To accomplish this, use-cases are evalu-

ated from the point of view of all actors defined for the system. A priority value is

assigned to each use-case (e.g., a value from 1 to 10) by each of the actors.5 An aver-

age priority is then computed, indicating the perceived importance of each of the use-

cases. When an iterative process model is used for software engineering, the priorities

can influence which system functionality is delivered first. 

11.3 ANALYSIS PRINCIPLES

Over the past two decades, a large number of analysis modeling methods have been

developed. Investigators have identified analysis problems and their causes and have

developed a variety of modeling notations and corresponding sets of heuristics to

overcome them. Each analysis method has a unique point of view.  However, all analy-

sis methods are related by a set of operational principles:

1. The information domain of a problem must be represented and understood.

2. The functions that the software is to perform must be defined.

3. The behavior of the software (as a consequence of external events) must be

represented.

4. The models that depict information, function, and behavior must be parti-

tioned in a manner that uncovers detail in a layered (or hierarchical) fashion. 

5 Ideally, this evaluation should be performed by individuals from the organization or business
function represented by an actor.

What are the
underlying

principles that
guide analysis
work?

?
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5. The analysis process should move from essential information toward imple-

mentation detail.

By applying these principles, the analyst approaches a problem systematically. The

information domain is examined so that function may be understood more com-

pletely. Models are used so that the characteristics of function and behavior can be

communicated in a compact fashion. Partitioning is applied to reduce complexity.

Essential and implementation views of the software are necessary to accommodate

the logical constraints imposed by processing requirements and the physical con-

straints imposed by other system elements.

In addition to these operational analysis principles, Davis [DAV95a] suggests a set6

of guiding principles for requirements engineering:

• Understand the problem before you begin to create the analysis model. There is

a tendency to rush to a solution, even before the problem is understood. This

often leads to elegant software that solves the wrong problem!

• Develop prototypes that enable a user to understand how human/machine inter-

action will occur. Since the perception of the quality of software is often

based on the perception of the “friendliness” of the interface, prototyping

(and the iteration that results) are highly recommended.

• Record the origin of and the reason for every requirement. This is the first step

in establishing traceability back to the customer.

• Use multiple views of requirements. Building data, functional, and behavioral

models provide the software engineer with three different views. This

reduces the likelihood that something will be missed and increases the likeli-

hood that inconsistency will be recognized.

• Rank requirements. Tight deadlines may preclude the implementation of every

software requirement. If an incremental process model (Chapter 2) is applied,

those requirements to be delivered in the first increment must be identified.

• Work to eliminate ambiguity. Because most requirements are described in a

natural language, the opportunity for ambiguity abounds. The use of formal

technical reviews is one way to uncover and eliminate ambiguity.

A software engineer who takes these principles to heart is more likely to develop a

software specification that will provide an excellent foundation for design.

11.3.1  The Information Domain

All software applications can be collectively called data processing. Interestingly, this

term contains a key to our understanding of software requirements. Software is built
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information, see [DAV95a].
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to process data, to transform data from one form to another; that is, to accept input,

manipulate it in some way, and produce output. This fundamental statement of objec-

tive is true whether we build batch software for a payroll system or real-time embed-

ded software to control fuel flow to an automobile engine. 

It is important to note, however, that software also processes events. An event

represents some aspect of system control and is really nothing more than Boolean

data—it is either on or off, true or false, there or not there. For example, a pressure

sensor detects that pressure exceeds a safe value and sends an alarm signal to mon-

itoring software. The alarm signal is an event that controls the behavior of the sys-

tem. Therefore, data (numbers, text, images, sounds, video, etc.) and control (events)

both reside within the information domain of a problem.

The first operational analysis principle requires an examination of the information

domain and the creation of a data model. The information domain contains three dif-

ferent views of the data and control as each is processed by a computer program: (1)

information content and relationships (the data model), (2) information flow, and (3)

information structure. To fully understand the information domain, each of these

views should be considered. 

Information content represents the individual data and control objects that consti-

tute some larger collection of information transformed by the software. For exam-

ple, the data object, paycheck, is a composite of a number of important pieces of

data: the payee's name, the net amount to be paid, the gross pay, deductions, and so

forth. Therefore, the content of paycheck is defined by the attributes that are needed

to create it. Similarly, the content of a control object called system status might be

defined by a string of bits. Each bit represents a separate item of information that

indicates whether or not a particular device is on- or off-line.

Data and control objects can be related to other data and control objects. For exam-

ple, the data object paycheck has one or more relationships with the objects time-

card, employee, bank, and others. During the analysis of the information domain,

these relationships should be defined.

Information flow represents the manner in which data and control change as each

moves through a system. Referring to Figure 11.3, input objects are transformed to

intermediate information (data and/or control), which is further transformed to out-

put. Along this transformation path (or paths), additional information may be intro-

duced from an existing data store (e.g., a disk file or memory buffer). The

transformations applied to the data are functions or subfunctions that a program must

perform. Data and control that move between two transformations (functions) define

the interface for each function.

Information structure represents the internal organization of various data and con-

trol items. Are data or control items to be organized as an n-dimensional table or as

a hierarchical tree structure? Within the context of the structure, what information is

related to other information? Is all information contained within a single structure or

The information
domain of a problem
encompasses data
items or objects that
contain numbers, text,
images, audio, video,
or any combination of
these.

To begin your
understanding of the
information domain,
the first question to be
asked is: “What
information does this
system produce as
output?”
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are distinct structures to be used? How does information in one information struc-

ture relate to information in another structure? These questions and others are

answered by an assessment of information structure. It should be noted that data

structure, a related concept discussed later in this book, refers to the design and imple-

mentation of information structure within the software.

11.3.2  Modeling

We create functional models to gain a better understanding of the actual entity to be

built. When the entity is a physical thing (a building, a plane, a machine), we can build

a model that is identical in form and shape but smaller in scale. However, when the

entity to be built is software, our model must take a different form. It must be capa-

ble of representing the information that software transforms, the functions (and sub-

functions) that enable the transformation to occur, and the behavior of the system as

the transformation is taking place.

The second and third operational analysis principles require that we build mod-

els of function and behavior.

Functional models. Software transforms information, and in order to

accomplish this, it must perform at least three generic functions: input, pro-

cessing, and output. When functional models of an application are created,

the software engineer focuses on problem specific functions. The functional

model begins with a single context level model (i.e., the name of the software

to be built). Over a series of iterations, more and more functional detail is

provided, until a thorough delineation of all system functionality is repre-

sented.

Behavioral models. Most software responds to events from the outside

world. This stimulus/response characteristic forms the basis of the behav-

ioral model. A computer program always exists in some state—an externally

observable mode of behavior (e.g., waiting, computing, printing, polling) that

is changed only when some event occurs. For example, software will remain
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in the wait state until (1) an internal clock indicates that some time interval

has passed, (2) an external event (e.g., a mouse movement) causes an inter-

rupt, or (3) an external system signals the software to act in some manner. A

behavioral model creates a representation of the states of the software and

the events that cause a software to change state.

Models created during requirements analysis serve a number of important 

roles: 

• The model aids the analyst in understanding the information, function, and

behavior of a system, thereby making the requirements analysis task easier

and more systematic.

• The model becomes the focal point for review and, therefore, the key to a

determination of completeness, consistency, and accuracy of the specifica-

tions.

• The model becomes the foundation for design, providing the designer with

an essential representation of software that can be "mapped" into an imple-

mentation context.

The analysis methods that are discussed in Chapters 12 and 21 are actually mod-

eling methods. Although the modeling method that is used is often a matter of per-

sonal (or organizational) preference, the modeling activity is fundamental to good

analysis work.

11.3.3  Partitioning

Problems are often too large and complex to be understood as a whole. For this rea-

son, we tend to partition (divide) such problems into parts that can be easily under-

stood and establish interfaces between the parts so that overall function can be

accomplished. The fourth operational analysis principle suggests that the informa-

tion, functional, and behavioral domains of software can be partitioned.

In essence, partitioning decomposes a problem into its constituent parts. Concep-

tually, we establish a hierarchical representation of function or information and then

partition the uppermost element by (1) exposing increasing detail by moving verti-

cally in the hierarchy or (2) functionally decomposing the problem by moving hori-

zontally in the hierarchy. To illustrate these partitioning approaches, let us reconsider

the SafeHome security system described in Section 11.2.2. The software allocation

for SafeHome (derived as a consequence of system engineering and FAST activities)

can be stated in the following paragraphs:

SafeHome software enables the homeowner to configure the security system when it is

installed, monitors all sensors connected to the security system, and interacts with the

homeowner through a keypad and function keys contained in the SafeHome control panel

shown in Figure 11.2.

Partitioning is a
process that results in
the elaboration of
data, function, or
behavior. It may be
performed horizontally
or vertically.
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During installation, the SafeHome control panel is used to "program" and configure the

system. Each sensor is assigned a number and type, a master password is programmed for

arming and disarming the system, and telephone number(s) are input for dialing when a

sensor event occurs.

When a sensor event is recognized, the software invokes an audible alarm attached to

the system. After a delay time that is specified by the homeowner during system configu-

ration activities, the software dials a telephone number of a monitoring service, provides

information about the location, reporting the nature of the event that has been detected.

The telephone number will be redialed every 20 seconds until telephone connection is

obtained.

All interaction with SafeHome is managed by a user-interaction subsystem that reads

input provided through the keypad and function keys, displays prompting messages on the

LCD display, displays system status information on the LCD display. Keyboard interaction

takes the following form . . . 

The requirements for SafeHome software may be analyzed by partitioning the infor-

mation, functional, and behavioral domains of the product. To illustrate, the func-

tional domain of the problem will be partitioned. Figure 11.4 illustrates a horizontal

decomposition of SafeHome software. The problem is partitioned by representing con-

stituent SafeHome software functions, moving horizontally in the functional hierar-

chy. Three major functions are noted on the first level of the hierarchy.

The subfunctions associated with a major SafeHome function may be examined

by exposing detail vertically in the hierarchy, as illustrated in Figure 11.5. Moving

downward along a single path below the function monitor sensors, partitioning occurs

vertically to show increasing levels of functional detail.

The partitioning approach that we have applied to SafeHome functions can also

be applied to the information domain and behavioral domain as well. In fact, parti-

tioning of information flow and system behavior (discussed in Chapter 12) will pro-

vide additional insight into software requirements. As the problem is partitioned,

interfaces between functions are derived. Data and control items that move across

an interface should be restricted to inputs required to perform the stated function and

outputs that are required by other functions or system elements.
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11.3.4  Essential and Implementation Views7

An essential view of software requirements presents the functions to be accomplished

and information to be processed without regard to implementation details. For exam-

ple, the essential view of the SafeHome function read sensor status does not concern

itself with the physical form of the data or the type of sensor that is used. In fact, it

could be argued that read status would be a more appropriate name for this func-

tion, since it disregards details about the input mechanism altogether. Similarly, an

essential data model of the data item phone number (implied by the function dial

phone number) can be represented at this stage without regard to the underlying data

structure (if any) used to implement the data item. By focusing attention on the essence

of the problem at early stages of requirements engineering, we leave our options

open to specify implementation details during later stages of requirements specifi-

cation and software design.

The implementation view of software requirements presents the real world mani-

festation of processing functions and information structures. In some cases, a phys-

ical representation is developed as the first step in software design. However, most

computer-based systems are specified in a manner that dictates accommodation of

certain implementation details. A SafeHome input device is a perimeter sensor (not

a watch dog, a human guard, or a booby trap). The sensor detects illegal entry by

sensing a break in an electronic circuit. The general characteristics of the sensor

should be noted as part of a software requirements specification. The analyst must

recognize the constraints imposed by predefined system elements (the sensor) and

consider the implementation view of function and information when such a view is

appropriate. 

Configure system Monitor sensors Interact with user
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7 Many people use the terms logical and physical views to connote the same concept.
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We have already noted that software requirements engineering should focus on

what the software is to accomplish, rather than on how processing will be imple-

mented. However, the implementation view should not necessarily be interpreted as

a representation of how. Rather, an implementation model represents the current

mode of operation; that is, the existing or proposed allocation for all system elements.

The essential model (of function or data) is generic in the sense that realization of

function is not explicitly indicated.

11.4 SOFTWARE PROTOTYPING

Analysis should be conducted regardless of the software engineering paradigm that

is applied. However, the form that analysis takes will vary. In some cases it is possi-

ble to apply operational analysis principles and derive a model of software from which

a design can be developed. In other situations, requirements elicitation (via FAST,

QFD, use-cases, or other "brainstorming" techniques [JOR89]) is conducted, analysis

principles are applied, and a model of the software to be built, called a prototype, is

constructed for customer and developer assessment. Finally, some circumstances

require the construction of a prototype at the beginning of analysis, since the model

is the only means through which requirements can be effectively derived. The model

then evolves into production software.

11.4.1 Selecting the Prototyping Approach

The prototyping paradigm can be either close-ended or open-ended. The close-ended

approach is often called throwaway prototyping. Using this approach, a prototype

serves solely as a rough demonstration of requirements. It is then discarded, and the

software is engineered using a different paradigm. An open-ended approach, called

evolutionary prototyping, uses the prototype as the first part of an analysis activity that

will be continued into design and construction. The prototype of the software is the

first evolution of the finished system.

Before a close-ended or open-ended approach can be chosen, it is necessary to

determine whether the system to be built is amenable to prototyping. A number of

prototyping candidacy factors [BOA84] can be defined: application area, application

complexity, customer characteristics, and project characteristics.8

In general, any application that creates dynamic visual displays, interacts heavily

with a user, or demands algorithms or combinatorial processing that must be devel-

oped in an evolutionary fashion is a candidate for prototyping. However, these appli-

cation areas must be weighed against application complexity. If a candidate application

(one that has the characteristics noted) will require the development of tens of thou-

sands of lines of code before any demonstrable function can be performed, it is likely

289

“Developers may
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against
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against current and
actual operational
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Bernard Boar 

8 A useful discussion of other candidacy factors—”when to prototype”— can be found in [DAV95b].
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to be too complex for prototyping.9 If, however, the complexity can be partitioned, it

may still be possible to prototype portions of the software.

Because the customer must interact with the prototype in later steps, it is essen-

tial that (1) customer resources be committed to the evaluation and refinement of the

prototype and (2) the customer is capable of making requirements decisions in a

timely fashion. Finally, the nature of the development project will have a strong bear-

ing on the efficacy of prototyping. Is project management willing and able to work

with the prototyping method? Are prototyping tools available? Do developers have

experience with prototyping methods? Andriole [AND92] suggests six questions (Fig-

ure 11.6) and indicates typical sets of answers and the corresponding suggested pro-

totyping approach.

11.4.2  Prototyping Methods and Tools

For software prototyping to be effective, a prototype must be developed rapidly so

that the customer may assess results and recommend changes. To conduct rapid pro-

totyping, three generic classes of methods and tools (e.g., [AND92], [TAN89]) are

available: 

Fourth generation techniques. Fourth generation techniques (4GT)

encompass a broad array of database query and reporting languages, pro-

gram and application generators, and other very high-level nonprocedural

languages. Because 4GT enable the software engineer to generate exe-

cutable code quickly, they are ideal for rapid prototyping.

Reusable software components. Another approach to rapid prototyping

is to assemble, rather than build, the prototype by using a set of existing soft-

ware components. Melding prototyping and program component reuse will

9 In some cases, extremely complex prototypes can be constructed rapidly by using fourth genera-
tion techniques or reusable software components.

Question

Is the application domain understood?
Can the problem be modeled?
Is the customer certain of basic system
requirements?
Are requirements established and stable?
Are any requirements ambiguous?
Are there contradictions in the requirements?

Additional
preliminary

work required

No
No
No

Yes
Yes
Yes

Throwaway
prototype

Yes
Yes

Yes/No

No
Yes
Yes

Evolutionary
prototype

Yes
Yes

Yes/No

Yes
No
No

FIGURE 11.6
Selecting the
appropriate
prototyping
approach
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work only if a library system is developed so that components that do exist

can be cataloged and then retrieved. It should be noted that an existing soft-

ware product can be used as a prototype for a "new, improved" competitive

product. In a way, this is a form of reusability for software prototyping. 

Formal specification and prototyping environments. Over the past two

decades, a number of formal specification languages and tools have been

developed as a replacement for natural language specification techniques.

Today, developers of these formal languages are in the process of developing

interactive environments that (1) enable an analyst to interactively create

language-based specifications of a system or software, (2) invoke automated

tools that translate the language-based specifications into executable code,

and (3) enable the customer to use the prototype executable code to refine

formal requirements.

11.5 SPECIFICATION

There is no doubt that the mode of specification has much to do with the quality of

solution. Software engineers who have been forced to work with incomplete, incon-

sistent, or misleading specifications have experienced the frustration and confusion

that invariably results. The quality, timeliness, and completeness of the software suf-

fers as a consequence. 

11.5.1 Specification Principles

Specification, regardless of the mode through which we accomplish it, may be viewed

as a representation process. Requirements are represented in a manner that ulti-

mately leads to successful software implementation. A number of specification prin-

ciples, adapted from the work of Balzer and Goodman [BAL86], can be proposed: 

1. Separate functionality from implementation. 

2. Develop a model of the desired behavior of a system that encompasses data

and the functional responses of a system to various stimuli from the environ-

ment.

3. Establish the context in which software operates by specifying the manner in

which other system components interact with software.

4. Define the environment in which the system operates and indicate how  “a

highly intertwined collection of agents react to stimuli in the environment

(changes to objects) produced by those agents” [BAL86].  

5. Create a cognitive model rather than a design or implementation model. The

cognitive model describes a system as perceived by its user community. 

6. Recognize that “the specifications must be tolerant of  incompleteness and

augmentable.”  A specification is always a model—an abstraction—of some
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real (or envisioned) situation that is normally quite complex. Hence, it will be

incomplete and will exist at many levels of detail. 

7. Establish the content and structure of a specification in a way that will enable

it to be amenable to change.

This list of basic specification principles provides a basis for representing software

requirements. However, principles must be translated into realization. In the next

section we examine a set of guidelines for creating a specification of requirements.

11.5.2  Representation

We have already seen that software requirements may be specified in a variety of

ways. However, if requirements are committed to paper or an electronic presenta-

tion medium (and they almost always should be!) a simple set of guidelines is well

worth following:

Representation format and content should be relevant to the prob-

lem. A general outline for the contents of a Software Requirements Specifica-

tion can be developed. However, the representation forms contained within

the specification are likely to vary with the application area. For example, a

specification for a manufacturing automation system might use different

symbology, diagrams and language than the specification for a programming

language compiler.

Information contained within the specification should be nested. Rep-

resentations should reveal layers of information so that a reader can move to

the level of detail required. Paragraph and diagram numbering schemes

should indicate the level of detail that is being presented. It is sometimes

worthwhile to present the same information at different levels of abstraction

to aid in understanding.

Diagrams and other notational forms should be restricted in number

and consistent in use. Confusing or inconsistent notation, whether graphi-

cal or symbolic, degrades understanding and fosters errors.

Representations should be revisable. The content of a specification will

change. Ideally, CASE tools should be available to update all representations

that are affected by each change. 

Investigators have conducted numerous studies (e.g., [HOL95], [CUR85]) on human

factors associated with specification. There appears to be little doubt that symbology

and arrangement affect understanding. However, software engineers appear to have

individual preferences for specific symbolic and diagrammatic forms. Familiarity often

lies at the root of a person's preference, but other more tangible factors such as spa-

tial arrangement, easily recognizable patterns, and degree of formality often dictate

an individual's choice.

What are a
few basic

guidelines for
representing
requirements?

?
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11.5.3  The Software Requirements Specification

The Software Requirements Specification is produced at the culmination of the analy-

sis task. The function and performance allocated to software as part of system engi-

neering are refined by establishing a complete information description, a detailed

functional description, a representation of system behavior, an indication of perfor-

mance requirements and design constraints, appropriate validation criteria, and other

information pertinent to requirements.  The National Bureau of Standards, IEEE (Stan-

dard No. 830-1984), and the U.S. Department of Defense have all proposed candidate

formats for software requirements specifications (as well as other software engi-

neering documentation). 

The Introduction of the software requirements specification states the goals and

objectives of the software, describing it in the context of the computer-based system.

Actually, the Introduction may be nothing more than the software scope of the plan-

ning document.

The Information Description provides a detailed description of the problem that the

software must solve.  Information content, flow, and structure are documented.  Hard-

ware, software, and human interfaces are described for external system elements

and internal software functions.

A description of each function required to solve the problem is presented in the

Functional Description. A processing narrative is provided for each function, design

constraints are stated and justified, performance characteristics are stated, and one

or more diagrams are included to graphically represent the overall structure of the

software and interplay among software functions and other system elements. The

Behavioral Description section of the specification examines the operation of the soft-

ware as a consequence of external events and internally generated control charac-

teristics. 

Validation Criteria is probably the most important and, ironically, the most often

neglected section of the Software Requirements Specification. How do we recognize a

successful implementation? What classes of tests must be conducted to validate func-

tion, performance, and constraints? We neglect this section because completing it

demands a thorough understanding of software requirements—something that we

often do not have at this stage. Yet, specification of validation criteria acts as an

implicit review of all other requirements. It is essential that time and attention be

given to this section.

Finally, the specification includes a Bibliography and Appendix. The bibliography

contains references to all documents that relate to the software.  These include other

software engineering documentation, technical references, vendor literature, and

standards. The appendix contains information that supplements the specifications.

Tabular data, detailed description of algorithms, charts, graphs, and other material

are presented as appendixes. 
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In many cases the Software Requirements Specification may be accompanied by an

executable prototype (which in some cases may replace the specification), a paper

prototype or a Preliminary User's Manual. The Preliminary User's Manual presents the

software as a black box.  That is, heavy emphasis is placed on user input and the

resultant output. The manual can serve as a valuable tool for uncovering problems

at the human/machine interface.

11.6 SPECIFICATION REVIEW

A review of the Software Requirements Specification (and/or prototype) is conducted

by both the software developer and the customer. Because the specification forms

the foundation of the development phase, extreme care should be taken in conduct-

ing the review.

The review is first conducted at a macroscopic level; that is, reviewers attempt to

ensure that the specification is complete, consistent, and accurate when the overall

information, functional, and behavioral domains are considered. However, to fully

explore each of these domains, the review becomes more detailed, examining not

only broad descriptions but the way in which requirements are worded. For exam-

ple, when specifications contain “vague terms” (e.g., some, sometimes, often, usually,

ordinarily, most, or mostly), the reviewer should flag the statements for further clari-

fication. 

Once the review is complete, the Software Requirements Specification is "signed-

off" by both the customer and the developer. The specification becomes a "contract"

for software development. Requests for changes in requirements after the specifica-

tion is finalized will not be eliminated. But the customer should note that each after-

the-fact change is an extension of software scope and therefore can increase cost

and/or protract the schedule.

Even with the best review procedures in place, a number of common specification

problems persist. The specification is difficult to "test" in any meaningful way, and

therefore inconsistency or omissions may pass unnoticed. During the review, changes

to the specification may be recommended. It can be extremely difficult to assess the

global impact of a change; that is, how a change in one function affects requirements

for other functions. Modern software engineering environments (Chapter 31) incor-

porate CASE tools that have been developed to help solve these problems.

11.7 SUMMARY

Requirements analysis is the first technical step in the software process. It is at this

point that a general statement of software scope is refined into a concrete specifica-

tion that becomes the foundation for all software engineering activities that follow.

Analysis must focus on the information, functional, and behavioral domains of a

problem. To better understand what is required, models are created, the problem is

Software Requirements
Specification Review
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partitioned, and representations that depict the essence of requirements and, later,

implementation detail, are developed.

In many cases, it is not possible to completely specify a problem at an early stage.

Prototyping offers an alternative approach that results in an executable model of the

software from which requirements can be refined. To properly conduct prototyping

special tools and techniques are required. 

The Software Requirements Specification is developed as a consequence of analy-

sis. Review is essential to ensure that the developer and the customer have the same

perception of the system. Unfortunately, even with the best of methods, the problem

is that the problem keeps changing.

REFERENCES

[AKA90] Akao, Y., ed., Quality Function Deployment: Integrating Customer Require-

ments in Product Design (translated by G. Mazur), Productivity Press, 1990.

[AND92] Andriole, S., Rapid Application Prototyping, QED, 1992.

[BAL86] Balzer, R. and N. Goodman, "Principles of Good Specification and Their

Implications for Specification Languages," in Software Specification Techniques (Gehani,

N. and A. McGetrick, eds.), Addison-Wesley, 1986, pp. 25–39. 

[BOA84] Boar, B., Application Prototyping, Wiley-Interscience,1984.

[BOS91] Bossert, J.L., Quality Function Deployment: A Practitioner’s Approach, ASQC

Press, 1991.

[CUR85] Curtis, B., Human Factors in Software Development, IEEE Computer Society

Press, 1985.

[DAV93] Davis, A., Software Requirements: Objects, Functions and States, Prentice-

Hall, 1993.

[DAV95a] Davis, A., 201 Principles of Software Development, McGraw-Hill, 1995.

[DAV95b] Davis, A., “Software Prototyping,” in Advances in Computers, volume 40,

Academic Press, 1995.

[GAU89] Gause, D.C. and G.M. Weinberg, Exploring Requirements: Quality Before

Design, Dorset House, 1989.

[HOL95] Holtzblatt, K. and E. Carmel (eds.), “Requirements Gathering: The Human

Factor,” special issue of CACM, vol. 38, no. 5, May 1995.

[JAC92] Jacobson, I., Object-Oriented Software Engineering, Addison-Wesley, 1992.

[JOR89] Jordan, P.W., et al., "Software Storming: Combining Rapid Prototyping and

Knowledge Engineering,” IEEE Computer, vol. 22, no. 5, May 1989, pp. 39–50.

[REI94] Reifer, D.J., “Requirements Engineering,” in Encyclopedia of Software Engi-

neering (J.J. Marciniak, ed.), Wiley, 1994, pp. 1043–1054. 

[TAN89] Tanik, M.M. and R.T. Yeh (eds.), "Rapid Prototyping in Software Develop-

ment," special issue of IEEE Computer, vol. 22, no. 5, May 1989.

[WYD96] Wyder, T., “Capturing Requirements with Use-Cases,” Software Development,

February 1996, pp. 37–40. 

295



PART THREE CONVENTIONAL METHODS FOR SOFTWARE ENGINEERING296

[ZAH90] Zahniser, R.A., "Building Software in Groups," American Programmer, vol.

3, nos. 7–8, July-August 1990.

[ZUL92] Zultner, R., “Quality Function Deployment for Software: Satisfying Cus-

tomers,” American Programmer, February 1992, pp. 28–41.

PROBLEMS AND POINTS TO PONDER

11.1. Software requirements analysis is unquestionably the most communication-

intensive step in the software process. Why does the communication path frequently

break down? 

11.2. There are frequently severe political repercussions when software require-

ments analysis (and/or system analysis) begins. For example, workers may feel that

job security is threatened by a new automated system. What causes such problems?

Can the analysis task be conducted so that politics is minimized? 

11.3. Discuss your perceptions of the ideal training and background for a systems

analyst. 

11.4. Throughout this chapter we refer to the "customer." Describe the "customer"

for information systems developers, for builders of computer-based products, for sys-

tems builders. Be careful here, there may be more to this problem than you first imag-

ine! 

11.5. Develop a facilitated application specification techniques "kit." The kit should

include a set of guidelines for conducting a FAST meeting and materials that can be

used to facilitate the creation of lists and any other items that might help in defining

requirements.

11.6. Your instructor will divide the class into groups of four or six students. Half of

the group will play the role of the marketing department and half will take on the role

of software engineering. Your job is to define requirements for the SafeHome secu-

rity system described in this chapter. Conduct a FAST meeting using the guidelines

presented in this chapter.

11.7. Is it fair to say that a Preliminary User's Manual is a form of prototype? Explain

your answer. 

11.8. Analyze the information domain for SafeHome. Represent (using any notation

that seems appropriate) information flow in the system, information content, and any

information structure that is relevant. 

11.9. Partition the functional domain for SafeHome. First perform horizontal parti-

tioning; then perform vertical partitioning. 

11.10. Create essential and implementation representations of the SafeHome

system. 
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11.11. Build a paper prototype (or a real prototype) for SafeHome. Be sure to depict

owner interaction and overall system function. 

11.12. Try to identify software components of SafeHome that might be "reusable" in

other products or systems. Attempt to categorize these components. 

11.13. Develop a written specification for SafeHome using the outline provided at

the SEPA Web site. (Note: Your instructor will suggest which sections to complete at

this time.) Be sure to apply the questions that are described for the specification review. 

11.14. How did your requirements differ from others who attempted a solution for

SafeHome? Who built a "Chevy"—who built a "Cadillac"? 

FURTHER READINGS AND INFORMATION SOURCES

Books that address requirements engineering provide a good foundation for the study

of basic analysis concepts and principles. Thayer and Dorfman (Software Require-

ments Engineering, 2nd ed., IEEE Computer Society Press, 1997) present a worthwhile

anthology on the subject. Graham and Graham (Requirements Engineering and Rapid

Development, Addison-Wesley, 1998) emphasize rapid development and the use of

object-oriented methods in their discussion of requirements engineering, while Mac-

Cauley (Requirements Engineering, Springer-Verlag, 1996) presents a brief academic

treatment of the subject.

In years past, the literature emphasized requirements modeling and specification

methods, but today, equal emphasis has been given to effective methods for software

requirements elicitation. Wood and Silver (Joint Application Development, 2nd ed.,

Wiley, 1995) have written the definitive treatment of joint application development.

Cohen and Cohen (Quality Function Deployment, Addison-Wesley, 1995), Terninko

(Step-by-Step QFD: Customer-Driven Product Design, Saint Lucie Press, 1997), Gause

and Weinberg [GAU89], and Zahniser [ZAH90] discuss the mechanics of effective

meetings, methods for brainstorming, and elicitation approaches that can be used to

clarify results and a variety of other useful issues. Use-cases have become an impor-

tant part of object-oriented requirements analysis, but they can be used regardless

of the implementation technology selected. Rosenburg and Scott (Use-Case Driven

Object Modeling with UML: A Practical Approach, Addison-Wesley, 1999), Schneider et

al. (Applying Use-Cases: A Practical Guide, Addison-Wesley, 1998), and Texel and

Williams (Use-Cases Combined With Booch/OMT/UML, Prentice-Hall, 1997) provide

detailed guidance and many useful examples. 

Information domain analysis is a fundamental principle of requirements analysis.

Books by Mattison (The Object-Oriented Enterprise, McGraw-Hill, 1994), Tillman (A

Practical Guide to Logical Data Modeling, McGraw-Hill, 1993), and Modell (Data Analy-

sis, Data Modeling and Classification, McGraw-Hill, 1992) cover various aspects of this

important subject.
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A recent book by Harrison (Prototyping and Software Development, Springer-

Verlag, 1999) provides a modern perspective on software prototyping. Two books by

Connell and Shafer (Structured Rapid Prototyping, Prentice-Hall, 1989) and (Object-

Oriented Rapid Prototyping, Yourdon Press, 1994) show how this important analysis

technique can be used in both conventional and object-oriented environments. Other

books by Pomberger et al. (Object Orientation and Prototyping in Software Engineer-

ing, Prentice-Hall, 1996) and Krief et al. (Prototyping with Objects, Prentice-Hall, 1996)

examine prototyping from the object-oriented perspective. The IEEE Proceedings of

the International Workshop on Rapid System Prototyping (published yearly) presents

current research in the area.

A wide variety of information sources on requirements analysis and related sub-

jects is available on the Internet. An up-to-date list of World Wide Web references

that are relevant to analysis concepts and methods can be found at the SEPA Web

site: 

http://www.mhhe.com/engcs/compsci/pressman/resources/reqm.mhtml 
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At a technical level, software engineering begins with a series of mod-
eling tasks that lead to a complete specification of requirements and a
comprehensive design representation for the software to be built. The

analysis model, actually a set of models, is the first technical representation of
a system. Over the years many methods have been proposed for analysis mod-
eling. However, two now dominate. The first, structured analysis, is a classical
modeling method and is described in this chapter. The other approach, object-
oriented analysis, is considered in detail in Chapter 21. Other commonly used
analysis methods are noted in Section 12.8.

Structured analysis is a model building activity. Applying the operational
analysis principles discussed in Chapter 11, we create and partition data, func-
tional, and behavioral models that depict the essence of what must built. Struc-
tured analysis is not a single method applied consistently by all who use it.
Rather, it is an amalgam that evolved over more than 30 years. 

In his seminal book on the subject, Tom DeMarco [DEM79] describes struc-
tured analysis in this way:

Looking back over the recognized problems and failings of the analysis phase, I 

suggest that we need to make the following additions to our set of analysis phase

goals:

12 ANALYSIS MODELING

What is it? The written word is a

wonderful vehicle for communi-

cation, but it is not necessarily the

best way to represent the requirements for com-

puter software. Analysis modeling uses a combi-

nation of text and diagrammatic forms to depict

requirements for data, function, and behavior in

a way that is relatively easy to understand, and

more important, straightforward to review for cor-

rectness, completeness, and consistency.

Who does it? A software engineer (sometimes called

an analyst) builds the model using requirements

elicited from the customer.

Why is it important? To validate software require-

ments, you need to examine them from a num-

ber of different points of view. Analysis modeling

represents requirements in three “dimensions”

thereby increasing the probability that errors will

be found, that inconsistency will surface, and that

omissions will be uncovered.

What are the steps? Data, functional, and behav-

ioral requirements are modeled using a number

of different diagrammatic formats. Data model-

ing defines data objects, attributes, and relation-

ships. Functional modeling indicates how data

are transformed within a system. Behavioral mod-

eling depicts the impact of events. Once prelimi-

nary models are created, they are refined and

analyzed to assess their clarity, completeness, and

consistency. A specification incorporating the

Q U I C K
L O O K
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• The products of analysis must be highly maintainable. This applies particularly to the

Target Document [software requirements specifications].

• Problems of size must be dealt with using an effective method of partitioning. The Vic-

torian novel specification is out.

• Graphics have to be used whenever possible.

• We have to differentiate between logical [essential] and physical [implementation] con-

siderations . . .

At the very least, we need . . .

• Something to help us partition our requirements and document that partitioning before

specification . . .

• Some means of keeping track of and evaluating interfaces . . .

• New tools to describe logic and policy, something better than narrative text . . .

There is probably no other software engineering method that has generated as much

interest, been tried (and often rejected and then tried again) by as many people, pro-

voked as much criticism, and sparked as much controversy. But the method has pros-

pered and has gained a substantial following in the software engineering community. 

12.1 A BRIEF HISTORY

Like many important contributions to software engineering, structured analysis was

not introduced with a single landmark paper or book. Early work in analysis model-

ing was begun in the late 1960s and early 1970s, but the first appearance of the struc-

tured analysis approach was as an adjunct to another important topic—"structured

design." Researchers (e.g., [STE74], [YOU78]) needed a graphical notation for repre-

senting data and the processes that transformed it. These processes would ultimately

be mapped into a design architecture.

The term structured analysis, originally coined by Douglas Ross, was popularized

by DeMarco [DEM79]. In his book on the subject, DeMarco introduced and named the

key graphical symbols and the models that incorporated them. In the years that fol-

lowed, variations of the structured analysis approach were suggested by  Page-Jones

[PAG80], Gane and Sarson [GAN82], and many others. In every instance, the method

focused on information systems applications and did not provide an adequate nota-

tion to address the control and behavioral aspects of real-time engineering problems.

model is created and then vali-

dated by both software engineers

and customers/users.

What is the work product? Data object descriptions,

entity relationship diagrams, data flow diagrams,

state transition diagrams, process specifications,

and control specifications are created as part of

the analysis modeling activity.

How do I ensure that I’ve done it right? Analysis mod-

eling work products must be reviewed for cor-

rectness, completeness, and consistency.

Q U I C K
L O O K

“The problem is not
that there are
problems. The
problem is expecting
otherwise and
thinking that having
problems is a
problem.”
Theodore Rubin 
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By the mid-1980s, real-time "extensions" were introduced by Ward and Mellor

[WAR85] and later by Hatley and Pirbhai [HAT87]. These extensions resulted in a more

robust analysis method that could be applied effectively to engineering problems.

Attempts to develop one consistent notation have been suggested [BRU88], and mod-

ernized treatments have been published to accommodate the use of CASE tools

[YOU89].

12.2 THE ELEMENTS OF THE ANALYSIS MODEL

The analysis model must achieve three primary objectives: (1) to describe what the

customer requires, (2) to establish a basis for the creation of a software design, and

(3) to define a set of requirements that can be validated once the software is built. To

accomplish these objectives, the analysis model derived during structured analysis

takes the form illustrated in Figure 12.1.

At the core of the model lies the data dictionary—a repository that contains descrip-

tions of all data objects consumed or produced by the software. Three different dia-

grams surround the the core. The entity relation diagram (ERD) depicts relationships

between data objects. The ERD is the notation that is used to conduct the data 

301

State-transition
diagram

Entity
relationship

diagram

Data flow
diagram

Data dictionary

Control specification

Process specification
(PSPEC

)

D
at

a
ob

je
ct

de
sc

rip
tio

n

FIGURE 12.1
The structure of
the analysis
model



PART THREE CONVENTIONAL METHODS FOR SOFTWARE ENGINEERING302

modeling activity. The attributes of each data object noted in the ERD can be described

using a data object description.

The data flow diagram (DFD) serves two purposes: (1) to provide an indication of

how data are transformed as they move through the system and (2) to depict the func-

tions (and subfunctions) that transform the data flow. The DFD provides additional

information that is used during the analysis of the information domain and serves as

a basis for the modeling of function. A description of each function presented in the

DFD is contained in a process specification (PSPEC).

The state transition diagram (STD) indicates how the system behaves as a conse-

quence of external events. To accomplish this, the STD represents the various modes

of behavior (called states) of the system and the manner in which transitions are made

from state to state. The STD serves as the basis for behavioral modeling. Additional

information about the control aspects of the software is contained in the control spec-

ification (CSPEC).

The analysis model encompasses each of the diagrams, specifications, descrip-

tions, and the dictionary noted in Figure 12.1. A more detailed discussion of these

elements of the analysis model is presented in the sections that follow.  

12.3 DATA MODELING

Data modeling answers a set of specific questions that are relevant to any data pro-

cessing application. What are the primary data objects to be processed by the sys-

tem? What is the composition of each data object and what attributes describe the

object? Where do the the objects currently reside? What are the relationships between

each object and other objects? What are the relationships between the objects and

the processes that transform them?

To answer these questions, data modeling methods make use of the entity rela-

tionship diagram. The ERD, described in detail later in this section, enables a soft-

ware engineer to identify data objects and their relationships using a graphical notation.

In the context of structured analysis, the ERD defines all data that are entered, stored,

transformed, and produced within an application.

The entity relationship diagram focuses solely on data (and therefore satisfies the

first operational analysis principles), representing a "data network" that exists for a

given system. The ERD is especially useful for applications in which data and the rela-

tionships that govern data are complex. Unlike the data flow diagram (discussed in

Section 12.4 and used to represent how data are transformed), data modeling con-

siders data independent of the processing that transforms the data.

12.3.1 Data Objects, Attributes, and Relationships

The data model consists of three interrelated pieces of information: the data object,

the attributes that describe the data object, and the relationships that connect data

objects to one another.

“The power of the ER
approach is its ability
to describe entities
in the real world of
the business and the
relationships
between them.”
Martin Modell 

What
questions

does data
modeling answer?

?
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Data objects. A data object is a representation of almost any composite informa-

tion that must be understood by software. By composite information, we mean some-

thing that has a number of different properties or attributes. Therefore, width (a single

value) would not be a valid data object, but dimensions (incorporating height, width,

and depth) could be defined as an object. 

A data object can be an external entity (e.g., anything that produces or consumes

information), a thing (e.g., a report or a display), an occurrence (e.g., a telephone call)

or event (e.g., an alarm), a role (e.g., salesperson), an organizational unit (e.g., account-

ing department), a place (e.g., a warehouse), or a structure (e.g., a file). For example,

a person or a car (Figure 12.2) can be viewed as a data object in the sense that either

can be defined in terms of a set of attributes. The data object description incorporates

the data object and all of its attributes.

Data objects (represented in bold) are related to one another. For example, per-

son can own car, where the relationship own connotes a specific "connection” between

person and car. The relationships are always defined by the context of the problem

that is being analyzed.

A data object encapsulates data only—there is no reference within a data object

to operations that act on the data.1 Therefore, the data object can be represented as

a table as shown in Figure 12.3. The headings in the table reflect attributes of the

object. In this case, a car is defined in terms of make, model, ID number, body type,

color and owner. The body of the table represents specific instances of the data object.

For example, a Chevy Corvette is an instance of the data object car.
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Attributes. Attributes define the properties of a data object and take on one of three

different characteristics. They can be used to (1) name an instance of the data object,

(2) describe the instance, or (3) make reference to another instance in another table.

In addition, one or more of the attributes must be defined as an identifier—that is, the

identifier attribute becomes a "key" when we want to find an instance of the data

object. In some cases, values for the identifier(s) are unique, although this is not a

requirement. Referring to the data object car, a reasonable identifier might be the ID

number. 

The set of attributes that is appropriate for a given data object is determined through

an understanding of the problem context. The attributes for car might serve well for

an application that would be used by a Department of Motor Vehicles, but these attri-

butes would be useless for an automobile company that needs manufacturing con-

trol software. In the latter case, the attributes for car might also include ID number,

body type and color, but many additional attributes (e.g., interior code, drive train

type, trim package designator, transmission type) would have to be added to make

car a meaningful object in the manufacturing control context.

Relationships. Data objects are connected to one another in different ways. Con-

sider two data objects, book and bookstore.  These objects can be represented using

the simple notation illustrated in Figure 12.4a. A connection is established between

book and bookstore because the two objects are related. But what are the rela-

tionships? To determine the answer, we must understand the role of books and book-

stores within the context of the software to be built. We can define a set of

object/relationship pairs that define the relevant relationships. For example, 

• A bookstore orders books.

• A bookstore displays books.

• A bookstore stocks books.

• A bookstore sells books.

• A bookstore returns books.

Make Model ID# Body type Color Owner

Identifier

Instance
Lexus
Chevy
BMW
Ford

LS400
Corvette
750iL
Taurus

AB123. . .
X456. . .
XZ765. . .
Q12A45. . .

Sedan
Sports
Coupe
Sedan

White
Red
White
Blue

RSP
CCD
LJL
BLF

Ties one data object to another,
in this case, owner

Naming
attributes

Descriptive
attributes

Referential
attributes

FIGURE 12.3
Tabular
representation
of data objects

Attributes name a data
object, describe its
characteristics, and in
some cases, make
reference to another
object.

Relationships indicate
the manner in which
data objects are
“connected” to one
another.
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The relationships orders, displays, stocks, sells, and returns define the relevant con-

nections between book and bookstore. Figure 12.4b illustrates these object/rela-

tionship pairs graphically.

It is important to note that object/relationship pairs are bidirectional. That is, they

can be read in either direction. A bookstore orders books or books are ordered by a

bookstore.2

12.3.2 Cardinality and Modality

The elements of data modeling—data objects, attributes, and relationships— provide

the basis for understanding the information domain of a problem. However, addi-

tional information related to these basic elements must also be understood. 

We have defined a set of objects and represented the object/relationship pairs that

bind them. But a simple pair that states: object X relates to object Y does not pro-

vide enough information for software engineering purposes. We must understand

how many occurrences of object X are related to how many occurrences of object

Y. This leads to a data modeling concept called cardinality.

Cardinality. The data model must be capable of representing the number of occur-

rences objects in a given relationship. Tillmann [TIL93] defines the cardinality of an

object/relationship pair in the following manner:
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FIGURE 12.4
Relationships

2 To avoid ambiguity, the manner in which a relationship is labeled must be considered. For exam-
ple, if context is not considered for a bidirectional relation, Figure 12.4b could be misinterpreted
to mean that books order bookstores. In such cases, rephrasing is necessary.
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Cardinality is the specification of the number of occurrences of one [object] that can be

related to the number of occurrences of another [object]. Cardinality is usually expressed

as simply 'one' or 'many.' For example, a husband can have only one wife (in most cul-

tures), while a parent can have many children. Taking into consideration all combinations

of 'one' and 'many,' two [objects] can be related as

• One-to-one (l:l)—An occurrence of [object] 'A' can relate to one and only one occur-

rence of [object] 'B,' and an occurrence of 'B' can relate to only one occurrence of 'A.' 

• One-to-many (l:N)—One occurrence of [object] 'A' can relate to one or many occur-

rences of [object] 'B,' but an occurrence of 'B' can relate to only one occurrence of 'A.'

For example, a mother can have many children, but a child can have only one mother.

• Many-to-many (M:N)—An occurrence of [object] 'A' can relate to one or more occur-

rences of 'B,' while an occurrence of 'B' can relate to one or more occurrences of 'A.'

For example, an uncle can have many nephews, while a nephew can have many uncles.

Cardinality defines “the maximum number of objects that can participate in a rela-

tionship” [TIL93]. It does not, however, provide an indication of whether or not a par-

ticular data object must participate in the relationship. To specify this information,

the data model adds modality to the object/relationship pair.

Modality. The modality of a relationship is 0 if there is no explicit need for the rela-

tionship to occur or the relationship is optional. The modality is 1 if an occurrence of

the relationship is mandatory. To illustrate, consider software that is used by a local

telephone company to process requests for field service. A customer indicates that

there is a problem. If the problem is diagnosed as relatively simple, a single repair

action occurs. However, if the problem is complex, multiple repair actions may be

required. Figure 12.5 illustrates the relationship, cardinality, and modality between

the data objects customer and repair action.

Customer Repair action
is provided with

Cardinality:
Implies that a single

customer awaits repair action(s)

Cardinality:
Implies that there may be

many repair action(s)

Modality: Mandatory
Implies that in order to
have a repair action(s),

we must have a customer

Modality: Optional
Implies that there may

be a situation in which a
repair action is not necessary

FIGURE 12.5
Cardinality
and modality
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Referring to the figure, a one to many cardinality relationship is established. That

is, a single customer can be provided with zero or many repair actions. The symbols

on the relationship connection closest to the data object rectangles indicate cardi-

nality. The vertical bar indicates one and the three-pronged fork indicates many.

Modality is indicated by the symbols that are further away from the data object rec-

tangles. The second vertical bar on the left indicates that there must be a customer

for a repair action to occur. The circle on the right indicates that there may be no

repair action required for the type of problem reported by the customer.

12.3.3 Entity/Relationship Diagrams

The object/relationship pair (discussed in Section 12.3.1) is the cornerstone of the

data model. These pairs can be represented graphically using the entity/relationship

diagram. The ERD was originally proposed by Peter Chen [CHE77] for the design of

relational database systems and has been extended by others. A set of primary com-

ponents are identified for the ERD: data objects, attributes, relationships, and vari-

ous type indicators. The primary purpose of the ERD is to represent data objects and

their relationships.

Rudimentary ERD notation has already been introduced in Section 12.3. Data

objects are represented by a labeled rectangle. Relationships are indicated with a

labeled line connecting objects. In some variations of the ERD, the connecting line

contains a diamond that is labeled with the relationship. Connections between data

objects and relationships are established using a variety of special symbols that indi-

cate cardinality and modality (Section 12.3.2).

The relationship between the data objects car and manufacturer would be rep-

resented as shown in Figure 12.6. One manufacturer builds one or many cars. Given
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the context implied by the ERD, the specification of the data object car (data object

table in Figure 12.6) would be radically different from the earlier specification (Figure

12.3). By examining the symbols at the end of the connection line between objects,

it can be seen that the modality of both occurrences is mandatory (the vertical lines). 

Expanding the model, we represent a grossly oversimplified ERD (Figure 12.7) of

the distribution element of the automobile business. New data objects, shipper and

dealership, are introduced. In addition, new relationships—transports, contracts,

licenses, and stocks—indicate how the data objects shown in the figure associate with

one another. Tables for each of the data objects contained in the ERD would have to

be developed according to the rules introduced earlier in this chapter.

In addition to the basic ERD notation introduced in Figures 12.6 and 12.7, the ana-

lyst can represent data object type hierarchies. In many instances, a data object may

actually represent a class or category of information. For example, the data object

car can be categorized as domestic, European, or Asian. The ERD notation shown

in Figure 12.8 represents this categorization in the form of a hierarchy [ROS85].

ERD notation also provides a mechanism that represents the associativity between

objects. An associative data object is represented as shown in Figure 12.9. In the fig-

ure, each of the data objects that model the individual subsystems is associated with

the data object car.

Manufacturer CarBuilds

Licenses StocksDealership

Contracts Transports

Shipper

FIGURE 12.7
An expanded
ERD

Develop the ERD
iteratively by refining
both data objects and
the relationships that
connect them.
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Data modeling and the entity relationship diagram provide the analyst with a con-

cise notation for examining data within the context of a software application. In most

cases, the data modeling approach is used to create one piece of the analysis model,

but it can also be used for database design and to support any other requirements

analysis methods.

12.4 FUNCTIONAL MODELING AND INFORMATION FLOW

Information is transformed as it flows through a computer-based system. The system

accepts input in a variety of forms; applies hardware, software, and human elements

to transform it; and produces output in a variety of forms. Input may be a control 
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signal transmitted by a transducer, a series of numbers typed by a human operator,

a packet of information transmitted on a network link, or a voluminous data file

retrieved from secondary storage. The transform(s) may comprise a single logical

comparison, a complex numerical algorithm, or a rule-inference approach of an expert

system. Output may light a single LED or produce a 200-page report. In effect, we can

create a flow model for any computer-based system, regardless of size and complexity.

Structured analysis began as an information flow modeling technique. A com-

puter-based system is represented as an information transform as shown in Figure

12.10. A rectangle is used to represent an external entity; that is, a system element

(e.g., hardware, a person, another program) or another system that produces infor-

mation for transformation by the software or receives information produced by the

software. A circle (sometimes called a bubble) represents a process or transform that

is applied to data (or control) and changes it in some way. An arrow represents one

or more data items (data objects). All arrows on a data flow diagram should be labeled.

The double line represents a data store—stored information that is used by the soft-

ware. The simplicity of DFD notation is one reason why structured analysis tech-

niques are widely used.

It is important to note that no explicit indication of the sequence of processing or

conditional logic is supplied by the diagram. Procedure or sequence may be implicit

in the diagram, but explicit logical details are generally delayed until software design.

It is important not to confuse a DFD with the flowchart.  

External
entity

External
entity

External
entity

External
entity

Data store

Transform
#1

Transform
#2

Transform
#3

Transform
#4

Input data

Input data

Intermediate
data

Intermediate
data

Intermediate
data

Data store
input

Data store
output

Output data

Output data

FIGURE 12.10 Information flow model

The DFD is not
procedural. That is, do
not try to represent
conditional processing
or loops with this
diagrammatic form.
Simply show the flow
of data.
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12.4.1 Data Flow Diagrams

As information moves through software, it is modified by a series of transformations.

A data flow diagram is a graphical representation that depicts information flow and

the transforms that are applied as data move from input to output.  The basic form

of a data flow diagram, also known as a data flow graph or a bubble chart, is illus-

trated in Figure 12.10.

The data flow diagram may be used to represent a system or software at any level

of abstraction. In fact, DFDs may be partitioned into levels that represent increasing

information flow and functional detail. Therefore, the DFD provides a mechanism for

functional modeling as well as information flow modeling. In so doing, it satisfies the

second operational analysis principle (i.e., creating a functional model) discussed in

Chapter 11.

A level 0 DFD, also called a fundamental system model or a context model, repre-

sents the entire software element as a single bubble with input and output data indi-

cated by incoming and outgoing arrows, respectively.  Additional processes (bubbles)

and information flow paths are represented as the level 0 DFD is partitioned to reveal

more detail. For example, a level 1 DFD might contain five or six bubbles with inter-

connecting arrows. Each of the processes represented at level 1 is a subfunction of

the overall system depicted in the context model.

As we noted earlier, each of the bubbles may be refined or layered to depict more

detail.  Figure 12.11 illustrates this concept.  A fundamental model for system F indi-

cates the primary input is A and ultimate output is B.  We refine the F model into trans-

forms f1 to f7.  Note that information flow continuity must be maintained; that is, input
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and output to each refinement must remain the same. This concept, sometimes called

balancing, is essential for the development of consistent models. Further refinement

of f4 depicts detail in the form of transforms f41 to f45. Again, the input (X, Y) and out-

put (Z) remain unchanged.

The basic notation used to develop a DFD is not in itself sufficient to describe

requirements for software. For example, an arrow shown in a DFD represents a data

object that is input to or output from a process. A data store represents some orga-

nized collection of data. But what is the content of the data implied by the arrow or

depicted by the store? If the arrow (or the store) represents a collection of objects,

what are they? These questions are answered by applying another component of the

basic notation for structured analysis—the data dictionary. The use of the data dic-

tionary is discussed later in this chapter.

DFD graphical notation must be augmented with descriptive text. A process spec-

ification (PSPEC) can be used to specify the processing details implied by a bubble

within a DFD. The process specification describes the input to a function, the algo-

rithm that is applied to transform the input, and the output that is produced. In addi-

tion, the PSPEC indicates restrictions and limitations imposed on the process (function),

performance characteristics that are relevant to the process, and design constraints

that may influence the way in which the process will be implemented.

12.4.2  Extensions for Real-Time Systems

Many software applications are time dependent and process as much or more con-

trol-oriented information as data. A real-time system must interact with the real world

in a time frame dictated by the real world. Aircraft avionics, manufacturing process

control, consumer products, and industrial instrumentation are but a few of hundreds

of real-time software applications.

To accommodate the analysis of real-time software, a number of extensions to the

basic notation for structured analysis have been defined. These extensions, devel-

oped by Ward and Mellor [WAR85] and Hatley and Pirbhai [HAT87] and illustrated in

the sections that follow, enable the analyst to represent control flow and control pro-

cessing as well as data flow and processing.

12.4.3 Ward and Mellor Extensions

Ward and Mellor [WAR85] extend basic structured analysis notation to accommodate

the following demands imposed by a real-time system: 

• Information flow is gathered or produced on a time-continuous basis.

• Control information is passed throughout the system and associated control

processing.

Although information
flow continuity must
be maintained,
recognize that a data
item represented at
one level may be
refined into its
constituent parts at the
next level.
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• Multiple instances of the same transformation are sometimes encountered in

multitasking situations.

• Systems have states and a mechanism causes transition between states.

In a significant percentage of real-time applications, the system must monitor time-

continuous information generated by some real-world process.  For example, a real-

time test monitoring system for gas turbine engines might be required to monitor

turbine speed, combustor temperature, and a variety of pressure probes on a con-

tinuous basis. Conventional data flow notation does not make a distinction between

discrete data and time-continuous data. One extension to basic structured analysis

notation, shown in Figure 12.12, provides a mechanism for representing time-con-

tinuous data flow. The double headed arrow is used to represent time-continuous flow

while a single headed arrow is used to indicate discrete data flow. In the figure, mon-

itored temperature is measured continuously while a single value for tempera-

ture set point is also provided. The process shown in the figure produces a

time-continuous output, corrected value.

The distinction between discrete and time-continuous data flow has important

implications for both the system engineer and the software designer. During the cre-

ation of the system model, a system engineer will be better able to isolate those

processes that may be performance critical (it is often likely that the input and out-

put of time-continuous data will be performance sensitive). As the physical or imple-

mentation model is created, the designer must establish a mechanism for collection

of time-continuous data. Obviously, the digital system collects data in a quasi-con-

tinuous fashion using techniques such as high-speed polling. The notation indicates

where analog-to-digital hardware will be required and which transforms are likely

to demand high-performance software.

In conventional data flow diagrams, control or event flows are not represented

explicitly. In fact, the software engineer is cautioned to specifically exclude the 
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representation of control flow from the data flow diagram. This exclusion is overly

restrictive when real-time applications are considered, and for this reason, a spe-

cialized notation for representing event flows and control processing has been devel-

oped.  Continuing the convention established for data flow diagrams, data flow is

represented using a solid arrow. Control flow, however, is represented using a dashed

or shaded arrow. A process that handles only control flows, called a control process,

is similarly represented using a dashed bubble.

Control flow can be input directly to a conventional process or into a control process.

Figure 12.13 illustrates control flow and processing as it would be represented using

Ward and Mellor notation. The figure illustrates a top-level view of a data and con-

trol flow for a manufacturing cell. As components to be assembled by a robot are

placed on fixtures, a status bit is set within a parts status buffer (a control store)

that indicates the presence or absence of each component.  Event information con-

tained within the parts status buffer is passed as a bit string to a process, monitor

fixture and operator interface. The process will read operator commands only when

the control information, bit string, indicates that all fixtures contain components. An

event flag, start/stop flag, is sent to robot initiation control, a control process that

enables further command processing. Other data flows occur as a consequence of

the process activate event that is sent to process robot commands.

In some situations multiple instances of the same control or data transformation

process may occur in a real-time system. This can occur in a multitasking environ-

ment when tasks are spawned as a result of internal processing or external events.

For example, a number of part status buffers may be monitored so that different robots

can be signaled at the appropriate time.  In addition, each robot may have its own

Monitor
fixture &
operator
interface

Operator
commands

Bit string

Parts status buffer

Status of each
fixture

Operator
settings

Robot
initiation
control

Process
robot

commands

Movement
alarm

Start/stop
flag

Process
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Position
commands

Robot movement
record

Robot command file

FIGURE 12.13
Data and 
control flows
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notation
[WAR85]
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a real-time system
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system.”
Paul Ward and
Stephen Mellor 
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robot control system. The Ward and Mellor notation used to represent multiple equiv-

alent instances simply overlays process (or control process) bubbles to indicate 

multiplicity.

12.4.4 Hatley and Pirbhai Extensions

The Hatley and Pirbhai [HAT87] extensions to basic structured analysis notation focus

less on the creation of additional graphical symbols and more on the representation

and specification of the control-oriented aspects of the software. The dashed arrow

is once again used to represent control or event flow. Unlike Ward and Mellor, Hat-

ley and Pirbhai suggest that dashed and solid notation be represented separately.

Therefore, a control flow diagram is defined. The CFD contains the same processes as

the DFD, but shows control flow, rather than data flow. Instead of representing con-

trol processes directly within the flow model, a notational reference (a solid bar) to

a control specification (CSPEC) is used. In essence, the solid bar can be viewed as a

"window" into an "executive" (the CSPEC) that controls the processes (functions) rep-

resented in the DFD based on the event that is passed through the window. The CSPEC,

described in detail in Section 12.6.4, is used to indicate (1) how the software behaves

when an event or control signal is sensed and (2) which processes are invoked as a

consequence of the occurrence of the event. A process specification is used to describe

the inner workings of a process represented in a flow diagram.

Using the notation described in Figures 12.12 and 12.13, along with additional

information contained in PSPECs and CSPECs, Hatley and Pirbhai create a model of

a real-time system. Data flow diagrams are used to represent data and the processes

that manipulate it. Control flow diagrams show how events flow among processes

and illustrate those external events that cause various processes to be activated. The

interrelationship between the process and control models is shown schematically in

Figure 12.14. The process model is "connected" to the control model through data

conditions. The control model is "connected" to the process model through process

activation information contained in the CSPEC. 

A data condition occurs whenever data input to a process result in control output.

This situation is illustrated in Figure 12.15, part of a flow model for an automated

monitoring and control system for pressure vessels in an oil refinery. The process

check and convert pressure implements the algorithm described in the PSPEC

pseudocode shown. When the absolute tank pressure is greater than an allowable

maximum, an above pressure event is generated. Note that when Hatley and Pirb-

hai notation is used, the data flow is shown as part of a DFD, while the control flow

is noted separately as part of a control flow diagram. As we noted earlier, the verti-

cal solid bar into which the above pressure event flows is a pointer to the CSPEC.

Therefore, to determine what happens when this event occurs, we must check the

CSPEC.

The control specification (CSPEC) contains a number of important modeling tools.

A process activation table (described in Section 12.6.4) is used to indicate which
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processes are activated by a given event. For example, a process activation table (PAT)

for Figure 12.15 might indicate that the above pressure event would cause a process

reduce tank pressure (not shown) to be invoked. In addition to the PAT, the CSPEC may

contain a state transition diagram. The STD is a behavioral model that relies on the

definition of a set of system states and is described in the following section.

12.5 BEHAVIORAL MODELING

Behavioral modeling is an operational principle for all requirements analysis meth-

ods. Yet, only extended versions of structured analysis ([WAR85], [HAT87]) provide a

notation for this type of modeling. The state transition diagram represents the behav-

ior of a system by depicting its states and the events that cause the system to change

state. In addition, the STD indicates what actions (e.g., process activation) are taken

as a consequence of a particular event.

A state is any observable mode of behavior. For example, states for a monitoring

and control system for pressure vessels described in Section 12.4.4 might be moni-

toring state, alarm state, pressure release state, and so on. Each of these states repre-

sents a mode of behavior of the system. A state transition diagram indicates how the

system moves from state to state.

To illustrate the use of the Hatley and Pirbhai control and behavioral extensions,

consider software embedded within an office photocopying machine. A simplified

representation of the control flow for the photocopier software is shown in Figure

12.16. Data flow arrows have been lightly shaded for illustrative purposes, but in real-

ity they are not shown as part of a control flow diagram.
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Control flows are shown entering and exiting individual processes and the verti-

cal bar representing the CSPEC "window." For example, the paper feed status and

start/stop events flow into the CSPEC bar. This implies that each of these events

will cause some process represented in the CFD to be activated. If we were to exam-

ine the CSPEC internals, the start/stop event would be shown to activate/deacti-

vate the manage copying process. Similarly, the jammed event (part of paper feed

status) would activate perform problem diagnosis. It should be noted that all vertical

bars within the CFD refer to the same CSPEC. An event flow can be input directly into

a process as shown with repro fault. However, this flow does not activate the process

but rather provides control information for the process algorithm. 

A simplified state transition diagram for the photocopier software is shown in Fig-

ure 12.17. The rectangles represent system states and the arrows represent transi-

tions between states. Each arrow is labeled with a ruled expression. The top value

indicates the event(s) that cause the transition to occur. The bottom value indicates

the action that occurs as a consequence of the event. Therefore, when the paper

tray is full and the start button is pressed, the system moves from the reading com-

mands state to the making copies state. Note that states do not necessarily corre-

spond to processes on a one-to-one basis. For example, the state making copies

would encompass both the manage copying and produce user displays processes

shown in Figure 12.16.
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12.6 THE MECHANICS OF STRUCTURED ANALYSIS

In the previous section, we discussed basic and extended notation for structured

analysis. To be used effectively in software requirements analysis, this notation must

be combined with a set of heuristics that enable a software engineer to derive a good

analysis model. To illustrate the use of these heuristics, an adapted version of the

Hatley and Pirbhai [HAT87] extensions to the basic structured analysis notation will

be used throughout the remainder of this chapter.

In the sections that follow, we examine each of the steps that should be applied

to develop complete and accurate models using structured analysis. Through this dis-

cussion, the notation introduced in Section 12.4 will be used, and other notational

forms, alluded to earlier, will be presented in some detail.

12.6.1 Creating an Entity/Relationship Diagram

The entity/relationship diagram enables a software engineer to fully specify the data

objects that are input and output from a system, the attributes that define the prop-

erties of these objects, and their relationships. Like most elements of the analysis

model, the ERD is constructed in an iterative manner. The following approach is

taken:

1. During requirements elicitation, customers are asked to list the “things” that

the application or business process addresses. These “things” evolve into a

list of input and output data objects as well as external entities that produce

or consume information.

2. Taking the objects one at a time, the analyst and customer define whether or

not a connection (unnamed at this stage) exists between the data object and

other objects.

3. Wherever a connection exists, the analyst and the customer create one or

more object/relationship pairs.

4. For each object/relationship pair, cardinality and modality are explored.

5. Steps 2 through 4 are continued iteratively until all object/relationships have

been defined. It is common to discover omissions as this process continues.

New objects and relationships will invariably be added as the number of iter-

ations grows.

6. The attributes of each entity are defined.

7. An entity relationship diagram is formalized and reviewed.

8. Steps 1 through 7 are repeated until data modeling is complete.

To illustrate the use of these basic guidelines, the SafeHome security system exam-

ple, discussed in Chapter 11, will be used. Referring back to the processing narrative
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for SafeHome (Section 11.3.3), the following (partial) list of “things” are relevant to

the problem:

• homeowner

• control panel

• sensors

• security system

• monitoring service

Taking these “things” one at a time, connections are explored. To accomplish this,

each object is drawn and lines connecting the objects are noted. For example, refer-

ring to Figure 12.18, a direct connection exists between homeowner and control

panel, security system, and monitoring service. A single connection exists

between sensor and security system, and so forth.

Once all connections have been defined, one or more object/relationship pairs are

identified for each connection. For example, the connection between sensor and

security system is determined to have the following object/relationship pairs:

security system monitors sensor

security system enables/disables sensor

security system tests sensor

security system programs sensor

Each of these object/relationship pairs is analyzed to determine cardinality and modal-

ity. For example, considering the object/relationship pair security system monitors

sensor, the cardinality between security system and sensor is one to many. The

modality is one occurrence of security system (mandatory) and at least one occur-

rence of sensor (mandatory). Using the ERD notation introduced in Section 12.3, the

Homeowner

Control panel

Security
system

Monitoring
service

Sensor

FIGURE 12.18
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connections
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connecting line between security system and sensor would be modified as shown

in Figure 12.19. Similar analysis would be applied to all other data objects.

Each object is studied to determine its attributes. Since we are considering the

software that must support SafeHome, the attributes should focus on data that must

be stored to enable the system to operate. For example, the sensor object might have

the following attributes: sensor type, internal identification number, zone location,

and alarm level.

12.6.2 Creating a Data Flow Model

The data flow diagram enables the software engineer to develop models of the infor-

mation domain and functional domain at the same time. As the DFD is refined into

greater levels of detail, the analyst performs an implicit functional decomposition of

the system, thereby accomplishing the fourth operational analysis principle for func-

tion. At the same time, the DFD refinement results in a corresponding refinement of

data as it moves through the processes that embody the application.

A few simple guidelines can aid immeasurably during derivation of a data flow

diagram: (1) the level 0 data flow diagram should depict the software/system as a

single bubble; (2) primary input and output should be carefully noted; (3) refinement

should begin by isolating candidate processes, data objects, and stores to be repre-

sented at the next level; (4) all arrows and bubbles should be labeled with meaning-

ful names; (5) information flow continuity must be maintained from level to level, and

(6) one bubble at a time should be refined. There is a natural tendency to overcom-

plicate the data flow diagram. This occurs when the analyst attempts to show too

much detail too early or represents procedural aspects of the software in lieu of infor-

mation flow.

Again considering the SafeHome product, a level 0 DFD for the system is shown

in Figure 12.20. The primary external entities (boxes) produce information for use by

the system and consume information generated by the system. The labeled arrows

represent data objects or data object type hierarchies. For example, user commands

and data encompasses all configuration commands, all activation/deactivation 
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commands, all miscellaneous interactions, and all data that are entered to qualify or

expand a command.

The level 0 DFD is now expanded into a level 1 model. But how do we proceed?

A simple, yet effective approach is to perform a "grammatical parse" on the processing

narrative that describes the context level bubble. That is, we isolate all nouns (and

noun phrases) and verbs (and verb phrases) in the SafeHome narrative originally pre-

sented in Chapter 11. To illustrate, we again reproduce the processing narrative under-

lining the first occurrence of all nouns  and italicizing the first occurrence of all verbs.3

SafeHome software enables the homeowner to configure the security system when it is

installed, monitors all sensors connected to the security system, and interacts with the home-

owner through a keypad and function keys contained in the SafeHome control panel shown

in Figure 11.2. 

During installation, the SafeHome control panel is used to "program" and configure the

system. Each sensor is assigned a number and type, a master password is programmed for

arming and disarming the system, and telephone number(s) are input for dialing when a

sensor event occurs.

When a sensor event is recognized, the software invokes an audible alarm attached to

the system. After a delay time that is specified by the homeowner during system configura-

tion activities, the software dials a telephone number of a monitoring service, provides infor-

mation about the location, reporting the nature of the event that has been detected. The

telephone number will be redialed every 20 seconds until telephone connection is obtained.

All interaction with SafeHome is managed by a user-interaction subsystem that reads

input provided through the keypad and function keys, displays prompting messages on the

LCD display, displays system status information on the LCD display. Keyboard interaction

takes the following form . . . 

Referring to the "grammatical parse," a pattern begins to emerge. All verbs are

SafeHome processes; that is, they may ultimately be represented as bubbles in a sub-
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sequent DFD. All nouns are either external entities (boxes), data or control objects

(arrows), or data stores (double lines). Note further that nouns and verbs can be

attached to one another (e.g., sensor is assigned number and type). Therefore, by

performing a grammatical parse on the processing narrative for a bubble at any DFD

level, we can generate much useful information about how to proceed with the refine-

ment to the next level. Using this information, a level 1 DFD is shown in Figure 12.21.

The context level process shown in Figure 12.20 has been expanded into six processes

derived from an examination of the grammatical parse. Similarly, the information

flow between processes at level 1 has been derived from the parse.

It should be noted that information flow continuity is maintained between levels

0 and 1. Elaboration of the content of inputs and output at DFD levels 0 and 1 is post-

poned until Section 12.7.

The processes represented at DFD level 1 can be further refined into lower levels.

For example, the process monitor sensors can be refined into a level 2 DFD as shown

in Figure 12.22. Note once again that information flow continuity has been main-

tained between levels.
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The refinement of DFDs continues until each bubble performs a simple function.

That is, until the process represented by the bubble performs a function that would

be easily implemented as a program component. In Chapter 13, we discuss a con-

cept, called cohesion, that can be used to assess the simplicity of a given function.

For now, we strive to refine DFDs until each bubble is "single-minded."

12.6.3 Creating a Control Flow Model

For many types of data processing applications, the data model and the data flow

diagram are all that is necessary to obtain meaningful insight into software require-

ments. As we have already noted, however, a large class of applications are "dri-

ven" by events rather than data; produce control information rather than reports or

displays, and process information with heavy concern for time and performance.

Such applications require the use of control flow modeling in addition to data flow

modeling.

The graphical notation required to create a control flow diagram was presented

in Section 12.4.4. To review the approach for creating a CFD, a data flow model is

"stripped" of all data flow arrows. Events and control items (dashed arrows) are then

added to the diagram and a "window" (a vertical bar) into the control specification is

shown. But how are events selected?
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We have already noted that an event or control item is implemented as a Boolean

value (e.g., true or false, on or off, 1 or 0) or a discrete list of conditions (empty,

jammed, full). To select potential candidate events, the following guidelines are sug-

gested:

• List all sensors that are "read" by the software.

• List all interrupt conditions.

• List all "switches" that are actuated by an operator.

• List all data conditions.

• Recalling the noun/verb parse that was applied to the processing narrative,

review all "control items" as possible CSPEC inputs/outputs.

• Describe the behavior of a system by identifying its states; identify how each

state is reached; and define the transitions between states.

• Focus on possible omissions—a very common error in specifying control; for

example, ask: "Is there any other way I can get to this state or exit from it?"

A level 1 CFD for SafeHome software is illustrated in Figure 12.23. Among the events

and control items noted are sensor event (i.e., a sensor has been tripped), blink

flag (a signal to blink the LCD display), and start/stop switch (a signal to turn the

system on or off). When the event flows into the CSPEC window from the outside

world, it implies that the CSPEC will activate one or more of the processes shown in

the CFD. When a control item emanates from a process and flows into the CSPEC

window, control and activation of some other process or an outside entity is implied.

12.6.4 The Control Specification

The control specification (CSPEC) represents the behavior of the system (at the level

from which it has been referenced) in two different ways. The CSPEC contains a state

transition diagram that is a sequential specification of behavior. It can also contain

a program activation table—a combinatorial specification of behavior. The underly-

ing attributes of the CSPEC were introduced in Section 12.4.4. It is now time to con-

sider an example of this important modeling notation for structured analysis.

Figure 12.24 depicts a state transition diagram for the level 1 control flow model

for SafeHome. The labeled transition arrows indicate how the system responds to

events as it traverses the four states defined at this level. By studying the STD, a soft-

ware engineer can determine the behavior of the system and, more important, can

ascertain whether there are "holes" in the specified behavior. For example, the STD

(Figure 12.24) indicates that the only transition from the reading user input state occurs

when the start/stop switch is encountered and a transition to the monitoring sys-

tem status state occurs. Yet, there appears to be no way, other than the occurrence

of sensor event, that will allow the system to return to reading user input. This is an
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error in specification and would, we hope, be uncovered during review and corrected.

Examine the STD to determine whether there are any other anomalies.

A somewhat different mode of behavioral representation is the process activation

table. The PAT represents information contained in the STD in the context of processes,

not states. That is, the table indicates which processes (bubbles) in the flow model

will be invoked when an event occurs. The PAT can be used as a guide for a designer

who must build an executive that controls the processes represented at this level. A

PAT for the level 1 flow model of SafeHome software is shown in Figure 12.25.

The CSPEC describes the behavior of the system, but it gives us no information

about the inner working of the processes that are activated as a result of this behav-

ior. The modeling notation that provides this information is discussed in the next 

section.

12.6.5 The Process Specification

The process specification (PSPEC) is used to describe all flow model processes that

appear at the final level of refinement. The content of the process specification can

include narrative text, a program design language (PDL) description of the process

algorithm, mathematical equations, tables, diagrams, or charts. By providing a PSPEC

to accompany each bubble in the flow model, the software engineer creates a "mini-

spec" that can serve as a first step in the creation of the Software Requirements Spec-

ification and as a guide for design of the software component that will implement the

process.
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To illustrate the use of the PSPEC, consider the process password transform repre-

sented in the flow model for SafeHome (Figure 12.21). The PSPEC for this function

might take the form:

PSPEC:  process password

The process password transform performs all password validation for the SafeHome system.

Process password receives a four-digit password from the interact with user function. The

password is first compared to the master password stored within the system. If the master

password matches, <valid id message = true> is passed to the message and status display

function. If the master password does not match, the four digits are compared to a table of

secondary passwords (these may be assigned to house guests and/or workers who require

entry to the home when the owner is not present). If the password matches an entry within

the table, <valid id message = true> is passed to the message and status display function. If

there is no match, <valid id message = false> is passed to the message and status display

function.

If additional algorithmic detail is desired at this stage, a program design language

representation may also be included as part of the PSPEC. However, many believe

that the PDL version should be postponed until component design commences.

12.7 THE DATA DICTIONARY

The analysis model encompasses representations of data objects, function, and con-

trol. In each representation data objects and/or control items play a role. Therefore,

it is necessary to provide an organized approach for representing the characteristics

of each data object and control item. This is accomplished with the data dictionary.

The data dictionary  has been proposed as a quasi-formal grammar for describing

the content of objects defined during structured analysis. This important modeling

notation has been defined in the following manner [YOU89]:      

The data dictionary is an organized listing of all data elements that are pertinent to the sys-

tem, with precise, rigorous definitions so that both user and system analyst will have a com-

mon understanding of inputs, outputs, components of stores and [even] intermediate

calculations.

Today, the data dictionary is always implemented as part of a CASE "structured analy-

sis and design tool." Although the format of dictionaries varies from tool to tool, most

contain the following information:

• Name—the primary name of the data or control item, the data store or an

external entity.

• Alias—other names used for the first entry.

• Where-used/how-used—a listing of the processes that use the data or control

item and how it is used (e.g., input to the process, output from the process,

as a store, as an external entity.
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• Content description—a notation for representing content.

• Supplementary information—other information about data types, preset values

(if known), restrictions or limitations, and so forth.

Once a data object or control item name and its aliases are entered into the data

dictionary, consistency in naming can be enforced. That is, if an analysis team mem-

ber decides to name a newly derived data item xyz, but xyz is already in the dictio-

nary, the CASE tool supporting the dictionary posts a warning to indicate duplicate

names. This improves the consistency of the analysis model and helps to reduce

errors. 

“Where-used/how-used” information is recorded automatically from the flow mod-

els. When a dictionary entry is created, the CASE tool scans DFDs and CFDs to deter-

mine which processes use the data or control information and how it is used. Although

this may appear unimportant, it is actually one of the most important benefits of the

dictionary. During analysis there is an almost continuous stream of changes. For large

projects, it is often quite difficult to determine the impact of a change. Many a soft-

ware engineer has asked, "Where is this data object used? What else will have to

change if we modify it? What will the overall impact of the change be?" Because the

data dictionary can be treated as a database, the analyst can ask "where used/how

used" questions, and get answers to these queries.

The notation used to develop a content description is noted in the following table:

Data Construct Notation Meaning

= is composed of

Sequence + and

Selection [ | ] either-or

Repetition {  }n n repetitions of

(   ) optional data

* ... * delimits comments

The notation enables a software engineer to represent composite data in one of the

three fundamental ways that it can be constructed: 

1. As a sequence of data items.

2. As a selection from among a set of data items.

3. As a repeated grouping of data items. Each data item entry that is repre-

sented as part of a sequence, selection, or repetition may itself be another

composite data item that needs further refinement within the dictionary.

To illustrate the use of the data dictionary, we return to the level 2 DFD for the

monitor system process for SafeHome, shown in Figure 12.22. Referring to the figure,

the data item telephone number is specified as input. But what exactly is a tele-

phone number? It could be a 7-digit local number, a 4-digit extension, or a 25-digit
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long distance carrier sequence. The data dictionary provides us with a precise defi-

nition of telephone number for the DFD in question. In addition it indicates where

and how this data item is used and any supplementary information that is relevant

to it. The data dictionary entry begins as follows:

name: telephone number

aliases: none

where used/how used: assess against set-up (output)

dial phone (input)

description:

telephone number = [local number|long distance number] 

local number = prefix + access number 

long distance number = 1 + area code + local number

area code = [800 | 888 | 561]

prefix = *a three digit number that never starts with 0 or 1*

access number = * any four number string *

The content description is expanded until all composite data items have been repre-

sented as elementary items (items that require no further expansion) or until all com-

posite items are represented in terms that would be well-known and unambiguous

to all readers. It is also important to note that a specification of elementary data often

restricts a system. For example, the definition of area code indicates that only three

area codes (two toll-free and one in South Florida) are valid for this system.

The data dictionary defines information items unambiguously. Although we might

assume that the telephone number represented by the DFD in Figure 12.22 could

accommodate a 25-digit long distance carrier access number, the data dictionary

content description tells us that such numbers are not part of the data that may be

used. 

For large computer-based systems, the data dictionary grows rapidly in size and

complexity. In fact, it is extremely difficult to maintain a dictionary manually. For this

reason, CASE tools should be used.

12.8 OTHER CLASSICAL ANALYSIS METHODS

Over the years, many other worthwhile software requirements analysis methods have

been used throughout the industry. While all follow the operational analysis princi-

ples discussed in Chapter 11, each uses a different notation and a unique set of heuris-

tics for deriving the analysis model.  An overview of three important analysis methods:

• Data Structured Systems Development (DSSD) [WAR81], [ORR81]

• Jackson System Development (JSD) [ JAC83]

• Structured Analysis and Design Technique (SADT) [ROS77], [ROS85]

DSSD, JSD, and SADT
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is presented within the SEPA Web site for those readers interested in a broader view

of analysis modeling.

12.9 SUMMARY

Structured analysis, a widely used method of requirements modeling, relies on data

modeling and flow modeling to create the basis for a comprehensive analysis model.

Using entity-relationship diagrams, the software engineer creates a representation

of all data objects that are important for the system. Data and control flow diagrams

are used as a basis for representing the transformation of data and control. At the

same time, these models are used to create a functional model of the software and

to provide a mechanism for partitioning function. A behavioral model is created using

the state transition diagram, and data content is developed with a data dictionary.

Process and control specifications provide additional elaboration of detail.

The original notation for structured analysis was developed for conventional data

processing applications, but extensions have made the method applicable to real-

time systems. Structured analysis is supported by an array of CASE tools that assist

in the creation of each element of the model and also help to ensure consistency and

correctness.
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PROBLEMS AND POINTS TO PONDER

12.1. Acquire at least three of the references discussed in Section 12.1 and write a

brief paper that outlines how the perception of structured analysis has changed over

time. As a concluding section, suggest ways that you think the method will change

in the future.

12.2. You have been asked to build one of the following systems:

a. A network-based course registration system for your university.

b. A Web-based order-processing system for a computer store.

c. A simple invoicing system for a small business.

d. Software that replaces a Rolodex and is built into a wireless phone.

e. An automated cookbook that is built into an electric range or microwave.

Select the system that is of interest to you and develop an entity/relationship dia-

gram that describes data objects, relationships, and attributes.

12.3. What is the difference between cardinality and modality?

12.4. Draw a context-level model (level 0 DFD) for one of the five systems that are

listed in Problem 12.2. Write a context-level processing narrative for the system.

12.5. Using the context-level DFD developed in Problem 12.4, develop level 1 and

level 2 data flow diagrams. Use a "grammatical parse” on the context-level process-

ing narrative to get yourself started. Remember to specify all information flow by

labeling all arrows between bubbles. Use meaningful names for each transform. 

12.6. Develop a CFDs, CSPECs, PSPECs, and a data dictionary for the system you

selected in Problem 12.2. Try to make your model as complete as possible.

12.7. Does the information flow continuity concept mean that, if one flow arrow

appears as input at level 0, then one flow arrow must appear as input at subsequent

levels? Discuss your answer.

12.8. Using the Ward and Mellor extensions, redraw the flow model contained in

Figure 12.16. How will you accommodate the CSPEC that is implied in Figure 12.16?

Ward and Mellor do not use this notation. 
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12.9. Using the Hatley and Pirbhai extensions, redraw the flow model contained in

Figure 12.13. How will you accommodate the control process (dashed bubble) that is

implied in Figure 12.13? Hatley and Pirbhai do not use this notation.

12.10. Describe an event flow in your own words.

12.11. Develop a complete flow model for the photocopier software discussed in

Section 12.5. You may use either the Ward and Mellor or Hatley and Pirbhai method.

Be certain to develop a detailed state transition diagram for the system.

12.12. Complete the processing narratives for the analysis model for SafeHome soft-

ware shown in Figure 12.21. Describe the interaction mechanics between the user

and the system. Will your additional information change the flow models for Safe-

Home presented in this chapter? If so, how?

12.13. The department of public works for a large city has decided to develop a

Web-based pothole tracking and repair system (PHTRS). A description follows:

Citizens can log onto a Web site and report the location and severity of potholes. As pot-

holes are reported they are logged within a “public works department repair system” and

are assigned an identifying number, stored by street address, size (on a scale of 1 to 10),

location (middle, curb, etc.), district (determined from street address), and repair priority

(determined from the size of the pothole). Work order data are associated with each pot-

hole and includes pothole location and size, repair crew identifying number, number of

people on crew, equipment assigned, hours applied to repair, hole status (work in progress,

repaired, temporary repair, not repaired), amount of filler material used and cost of repair

(computed from hours applied, number of people, material and equipment used). Finally, a

damage file is created to hold  information about reported damage due to the pothole and

includes citizen's name, address, phone number, type of damage, dollar amount of dam-

age. PHTRS is an on-line system; all queries are to be made interactively. 

Using structured analysis notation, develop a complete analysis model for PHTRS. 

12.14. Next generation software for a word-processing system is to be developed.

Do a few hours of research on the application area and conduct a FAST meeting

(Chapter 11) with your fellow students to develop requirements (your instructor will

help you coordinate this). Build a requirements model of the system using structured

analysis. 

12.15. Software for a video game is to be developed. Proceed as in Problem 12.14. 

12.16. Contact four or five vendors that sell CASE tools for structured analysis.

Review their literature and write a brief paper that summarizes generic features that

seem to distinguish one tool from another.

333
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FURTHER READINGS AND INFORMATION SOURCES

Dozens of books have been published on structured analysis. All cover the subject

adequately, but only a few do a truly excellent job. DeMarco's book [DEM79] remains

a good introduction to the basic notation. Books by Hoffer et al. (Modern Systems

Analysis and Design, Addison-Wesley, 2nd ed., 1998), Kendall and Kendall (Systems

Analysis and Design, 2nd ed., Prentice-Hall, 1998), Davis and Yen (The Information Sys-

tem Consultant's Handbook: Systems Analysis and Design, CRC Press, 1998), Modell (A

Professional's Guide to Systems Analysis, 2nd ed., McGraw-Hill, 1996), Robertson and

Robertson (Complete Systems Analysis, 2 volumes, Dorset House, 1994), and Page-

Jones (The Practical Guide to Structured Systems Design, 2nd ed., Prentice-Hall, 1988)

are worthwhile references. Yourdon's book on the subject [YOU89] remains among

the most comprehensive coverage published to date. 

For an engineering emphasis [WAR85] and [HAT87] are the books of preference.

However, Edwards (Real-Time Structured Methods: Systems Analysis, Wiley, 1993) also

covers the analysis of real-time systems in considerable detail, presenting a number

of useful examples drawn from actual applications.

Many variations on structured analysis have evolved over the last decade. Cutts

(Structured Systems Analysis and Design Methodology, Van Nostrand-Reinhold, 1990)

and Hares (SSADM for the Advanced Practitioner, Wiley, 1990) describe SSADM, a vari-

ation on structured analysis that is widely used in the United Kingdom and Europe.

Flynn et al. (Information Modeling: An International Perspective, Prentice-Hall, 1996),

Reingruber and Gregory (Data Modeling Handbook, Wiley, 1995) and Tillman [TIL93]

present detailed tutorials for creating industry-quality data models. Kim and Salva-

tore (“Comparing Data Modeling Formalisms,” Communications of the ACM, June 1995)

have written an excellent comparison of data modeling methods. An interesting book

by Hay (Data Modeling Patterns, Dorset House, 1995) presents typical data model “pat-

terns” that are encountered in many different businesses. A detailed treatment of

behavioral modeling can be found in Kowal (Behavior Models: Specifying User’s Expec-

tations, Prentice-Hall, 1992).

A wide variety of information sources on structured analysis and related subjects

is available on the Internet. An up-to-date list of World Wide Web references that are

relevant to analysis concepts and methods can be found at the SEPA Web site:

http://www.mhhe.com/engcs/compsci/pressman/resources/

reqm-analysis.mhtml
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The designer's goal is to produce a model or representation of an entity
that will later be built. The process by which the design model is devel-
oped is described by Belady [BEL81]: 

[T]here are two major phases to any design process: diversification and convergence.

Diversification is the acquisition of a repertoire of alternatives, the raw material of

design: components, component solutions, and knowledge, all contained in cata-

logs, textbooks, and the mind. During convergence, the designer chooses and com-

bines appropriate elements from this repertoire to meet the design objectives, as

stated in the requirements document and as agreed to by the customer. The second

phase is the gradual elimination of all but one particular configuration of components,

and thus the creation of the final product. 

Diversification and convergence combine intuition and judgment based on
experience in building similar entities, a set of principles and/or heuristics that
guide the way in which the model evolves, a set of criteria that enables quality
to be judged, and a process of iteration that ultimately leads to a final design
representation.

Software design, like engineering design approaches in other disciplines,
changes continually as new methods, better analysis, and broader understanding

13 DESIGN CONCEPTS AND
PRINCIPLES

What is it? Design is a mean-

ingful engineering representation

of something that is to be built. It

can be traced to a customer’s requirements and

at the same time assessed for quality against a

set of predefined criteria for “good” design. In the

software engineering context, design focuses on

four major areas of concern: data, architecture,

interfaces, and components. The concepts and

principles discussed in this chapter apply to all

four.

Who does it? Software engineers design computer-

based systems, but the skills required at each level

of design work are different. At the data and archi-

tectural level, design focuses on patterns as they

apply to the application to be built. At the inter-

face level, human ergonomics often dictate our

design approach. At the component level, a “pro-

gramming approach” leads us to effective data

and procedural designs.

Why is it important? You wouldn’t attempt to build

a house without a blueprint, would you? You’d

risk confusion, errors, a floor plan that didn’t make

sense, windows and doors in the wrong place . .

. a mess. Computer software is considerably more

complex than a house; hence, we need a blue-

print—the design.

What are the steps? Design begins with the require-

ments model. We work to transform this model

into four levels of design detail: the data structure,

Q U I C K
L O O K
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evolve. Software design methodologies lack the depth, flexibility, and quantitative
nature that are normally associated with more classical engineering design disci-
plines. However, methods for software design do exist, criteria for design quality are
available, and design notation can be applied. In this chapter, we explore the funda-
mental concepts and principles that are applicable to all software design. Chapters
14, 15, 16, and 22 examine a variety of software design methods as they are applied
to architectural, interface, and component-level design.

13.1 SOFTWARE DESIGN AND SOFTWARE ENGINEERING

Software design sits at the technical kernel of software engineering and is applied

regardless of the software process model that is used. Beginning once software require-

ments have been analyzed and specified, software design is the first of three techni-

cal activities—design, code generation, and test—that are required to build and verify

the software. Each activity transforms information in a manner that ultimately results

in validated computer software.

Each of the elements of the analysis model (Chapter 12) provides information that

is necessary to create the four design models required for a complete specification of

design. The flow of information during software design is illustrated in Figure 13.1.

Software requirements, manifested by the data, functional, and behavioral models,

feed the design task. Using one of a number of design methods (discussed in later

chapters), the design task produces a data design, an architectural design, an inter-

face design, and a component design.

The data design transforms the information domain model created during analysis

into the data structures that will be required to implement the software. The data

objects and relationships defined in the entity relationship diagram and the detailed

data content depicted in the data dictionary provide the basis for the data design activ-

ity. Part of data design may occur in conjunction with the design of software archi-

tecture. More detailed data design occurs as each software component is designed.

The architectural design defines the relationship between major structural elements

of the software, the “design patterns” that can be used to achieve the requirements

the system architecture, the inter-

face representation, and the com-

ponent level detail. During each

design activity, we apply basic concepts and prin-

ciples that lead to high quality.

What is the work product? Ultimately, a Design Spec-

ification is produced. The specification is composed

of the design models that describe data, archi-

tecture, interfaces, and components. Each is a

work product of the design process.

How do I ensure that I’ve done it right? At each 

stage, software design work products are

reviewed for clarity, correctness, completeness,

and consistency with the requirements and with

one another.

Q U I C K
L O O K

“The most common
miracles of software
engineering are the
transitions from
analysis to design
and design to code.”
Richard Dué 
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that have been defined for the system, and the constraints that affect the way in which

architectural design patterns can be applied [SHA96]. The architectural design rep-

resentation—the framework of a computer-based system—can be derived from the

system specification, the analysis model, and the interaction of subsystems defined

within the analysis model. 

The interface design describes how the software communicates within itself, with

systems that interoperate with it, and with humans who use it. An interface implies

a flow of information (e.g., data and/or control) and a specific type of behavior. There-

fore, data and control flow diagrams provide much of the information required for

interface design.

The component-level design transforms structural elements of the software archi-

tecture into a procedural description of software components. Information obtained

from the PSPEC, CSPEC, and STD serve as the basis for component design.

During design we make decisions that will ultimately affect the success of soft-

ware construction and, as important, the ease with which software can be main-

tained. But why is design so important?

The importance of software design can be stated with a single word—quality.

Design is the place where quality is fostered in software engineering. Design pro-

vides us with representations of software that can be assessed for quality. Design is

the only way that we can accurately translate a customer's requirements into a fin-

ished software product or system. Software design serves as the foundation for all
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the software engineering and software support steps that follow. Without design,

we risk building an unstable system—one that will fail when small changes are made;

one that may be difficult to test; one whose quality cannot be assessed until late in

the software process, when time is short and many dollars have already been spent.

13.2 THE DESIGN PROCESS

Software design is an iterative process through which requirements are translated

into a “blueprint” for constructing the software. Initially, the blueprint depicts a holis-

tic view of software. That is, the design is represented at a high level of abstraction—

a level that can be directly traced to the specific system objective and more detailed

data, functional, and behavioral requirements. As design iterations occur, subsequent

refinement leads to design representations at much lower levels of abstraction. These

can still be traced to requirements, but the connection is more subtle.

13.2.1 Design and Software Quality

Throughout the design process, the quality of the evolving design is assessed with a

series of formal technical reviews or design walkthroughs discussed in Chapter 8.

McGlaughlin [MCG91] suggests three characteristics that serve as a guide for the eval-

uation of a good design:

• The design must implement all of the explicit requirements contained in the

analysis model, and it must accommodate all of the implicit requirements

desired by the customer.

• The design must be a readable, understandable guide for those who generate

code and for those who test and subsequently support the software.

• The design should provide a complete picture of the software, addressing

the data, functional, and behavioral domains from an implementation 

perspective.

Each of these characteristics is actually a goal of the design process. But how is each

of these goals achieved?

In order to evaluate the quality of a design representation, we must establish tech-

nical criteria for good design. Later in this chapter, we discuss design quality criteria

in some detail. For the time being, we present the following guidelines:

1. A design should exhibit an architectural structure that (1) has been created

using recognizable design patterns, (2) is composed of components that

exhibit good design characteristics (these are discussed later in this chapter),

and (3) can be implemented in an evolutionary fashion, thereby facilitating

implementation and testing.

“To achieve a good
design, people have
to think the right
way about how to
conduct the design
activity.”
Katharine
Whitehead 

Are there
generic

guidelines that
will lead to a
good design?

?
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2. A design should be modular; that is, the software should be logically parti-

tioned into elements that perform specific functions and subfunctions.

3. A design should contain distinct representations of data, architecture, inter-

faces, and components (modules).

4. A design should lead to data structures that are appropriate for the objects to

be implemented and are drawn from recognizable data patterns.

5. A design should lead to components that exhibit independent functional

characteristics.

6. A design should lead to interfaces that reduce the complexity of connections

between modules and with the external environment.

7. A design should be derived using a repeatable method that is driven by infor-

mation obtained during software requirements analysis.

These criteria are not achieved by chance. The software design process encourages

good design through the application of fundamental design principles, systematic

methodology, and thorough review. 

13.2.2 The Evolution of Software Design

The evolution of software design is a continuing process that has spanned the past

four decades. Early design work concentrated on criteria for the development of mod-

ular programs [DEN73] and methods for refining software structures in a top-down

manner [WIR71]. Procedural aspects of design definition evolved into a philosophy

called structured programming [DAH72], [MIL72]. Later work proposed methods for

the translation of data flow [STE74] or data structure [JAC75], [WAR74] into a design

definition. Newer design approaches (e.g., [JAC92], [GAM95]) proposed an object-ori-

ented approach to design derivation. Today, the emphasis in software design has

been on software architecture [SHA96], [BAS98] and the design patterns that can be

used to implement software architectures [GAM95], [BUS96], [BRO98].

Many design methods, growing out of the work just noted, are being applied

throughout the industry. Like the analysis methods presented in Chapter 12, each

software design method introduces unique heuristics and notation, as well as a some-

what parochial view of what characterizes design quality. Yet, all of these methods

have a number of common characteristics: (1) a mechanism for the translation of

analysis model into a design representation, (2) a notation for representing functional

components and their interfaces, (3) heuristics for refinement and partitioning, and

(4) guidelines for quality assessment. 

Regardless of the design method that is used, a software engineer should apply a

set of fundamental principles and basic concepts to data, architectural, interface, and

component-level design. These principles and concepts are considered in the sec-

tions that follow.
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“There are two ways
of constructing a
software design:
One way is to make
it so simple that
there are obviously
no deficiencies, and
the other way is to
make it so
complicated that
there are no obvious
deficiencies. The first
method is far more
difficult.”
C. A. R. Hoare 

What
characteristics 

are common to all
design methods?

?
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13.3 DESIGN PRINCIPLES

Software design is both a process and a model. The design process is a sequence of

steps that enable the designer to describe all aspects of the software to be built. It is

important to note, however, that the design process is not simply a cookbook. Cre-

ative skill, past experience, a sense of what makes “good” software, and an overall

commitment to quality are critical success factors for a competent design. 

The design model is the equivalent of an architect’s plans for a house. It begins by

representing the totality of the thing to be built (e.g., a three-dimensional rendering

of the house) and slowly refines the thing to provide guidance for constructing each

detail (e.g., the plumbing layout). Similarly, the design model that is created for soft-

ware provides a variety of different views of the computer software.

Basic design principles enable the software engineer to navigate the design process.

Davis [DAV95] suggests a set1 of principles for software design, which have been

adapted and extended in the following list:

• The design process should not suffer from “tunnel vision.” A good

designer should consider alternative approaches, judging each based on the

requirements of the problem, the resources available to do the job, and the

design concepts presented in Section 13.4.

• The design should be traceable to the analysis model. Because a single

element of the design model often traces to multiple requirements, it is nec-

essary to have a means for tracking how requirements have been satisfied by

the design model.

• The design should not reinvent the wheel. Systems are constructed using

a set of design patterns, many of which have likely been encountered before.

These patterns should always be chosen as an alternative to reinvention.

Time is short and resources are limited! Design time should be invested in

representing truly new ideas and integrating those patterns that already exist.

• The design should “minimize the intellectual distance” [DAV95]

between the software and the problem as it exists in the real world.

That is, the structure of the software design should (whenever possible)

mimic the structure of the problem domain.

• The design should exhibit uniformity and integration. A design is uni-

form if it appears that one person developed the entire thing. Rules of style

and format should be defined for a design team before design work begins. A

design is integrated if care is taken in defining interfaces between design

components.

1 Only a small subset of Davis’s design principles are noted here. For more information, see
[DAV95].

Design consistency and
uniformity are crucial
when large systems
are to be built. A set of
design rules should be
established for the
software team before
work begins.
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• The design should be structured to accommodate change. The design

concepts discussed in the next section enable a design to achieve this principle.

• The design should be structured to degrade gently, even when aber-

rant data, events, or operating conditions are encountered. Well-

designed software should never “bomb.” It should be designed to

accommodate unusual circumstances, and if it must terminate processing, do

so in a graceful manner.

• Design is not coding, coding is not design. Even when detailed proce-

dural designs are created for program components, the level of abstraction of

the design model is higher than source code. The only design decisions made

at the coding level address the small implementation details that enable the

procedural design to be coded.

• The design should be assessed for quality as it is being created, not

after the fact. A variety of design concepts (Section 13.4) and design measures

(Chapters 19 and 24) are available to assist the designer in assessing quality.

• The design should be reviewed to minimize conceptual (semantic)

errors. There is sometimes a tendency to focus on minutiae when the design is

reviewed, missing the forest for the trees. A design team should ensure that

major conceptual elements of the design (omissions, ambiguity, inconsistency)

have been addressed before worrying about the syntax of the design model.

When these design principles are properly applied, the software engineer creates a design

that exhibits both external and internal quality factors [MEY88]. External quality factors

are those properties of the software that can be readily observed by users (e.g., speed,

reliability, correctness, usability).2 Internal quality factors are of importance to software

engineers. They lead to a high-quality design from the technical perspective. To achieve

internal quality factors, the designer must understand basic design concepts.

13.4 DESIGN CONCEPTS

A set of fundamental software design concepts has evolved over the past four decades.

Although the degree of interest in each concept has varied over the years, each has

stood the test of time. Each provides the software designer with a foundation from

which more sophisticated design methods can be applied. Each helps the software

engineer to answer the following questions:

• What criteria can be used to partition software into individual components?

• How is function or data structure detail separated from a conceptual repre-

sentation of the software?

• What uniform criteria define the technical quality of a software design?

341

2 A more detailed discussion of quality factors is presented in Chapter 19.

XRef
Guidelines for
conducting effective
design reviews are
presented in Chapter 8.
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M. A. Jackson once said: "The beginning of wisdom for a [software engineer] is to

recognize the difference between getting a program to work, and getting it right"

[JAC75]. Fundamental software design concepts provide the necessary framework

for "getting it right." 

13.4.1 Abstraction

When we consider a modular solution to any problem, many levels of abstraction can

be posed. At the highest level of abstraction, a solution is stated in broad terms using

the language of the problem environment. At lower levels of abstraction, a more pro-

cedural orientation is taken. Problem-oriented terminology is coupled with imple-

mentation-oriented terminology in an effort to state a solution. Finally, at the lowest

level of abstraction, the solution is stated in a manner that can be directly imple-

mented. Wasserman [WAS83] provides a useful definition:

[T]he psychological notion of "abstraction" permits one to concentrate on a problem at

some level of generalization without regard to irrelevant low level details; use of abstrac-

tion also permits one to work with concepts and terms that are familiar in the problem envi-

ronment without having to transform them to an unfamiliar structure . . . 

Each step in the software process is a refinement in the level of abstraction of the

software solution. During system engineering, software is allocated as an element of

a computer-based system. During software requirements analysis, the software solu-

tion is stated in terms "that are familiar in the problem environment." As we move

through the design process, the level of abstraction is reduced. Finally, the lowest

level of abstraction is reached when source code is generated.

As we move through different levels of abstraction, we work to create procedural

and data abstractions. A procedural abstraction is a named sequence of instructions

that has a specific and limited function. An example of a procedural abstraction would

be the word open for a door. Open implies a long sequence of procedural steps (e.g.,

walk to the door, reach out and grasp knob, turn knob and pull door, step away from

moving door, etc.).

A data abstraction is a named collection of data that describes a data object (Chap-

ter 12). In the context of the procedural abstraction open, we can define a data abstrac-

tion called door. Like any data object, the data abstraction for door would encompass

a set of attributes that describe the door (e.g., door type, swing direction, opening

mechanism, weight, dimensions). It follows that the procedural abstraction open would

make use of information contained in the attributes of the data abstraction door.

Many modern programming languages provide mechanisms for creating abstract

data types. For example, the Ada package is a programming language mechanism

that provides support for both data and procedural abstraction. The original abstract

data type is used as a template or generic data structure from which other data struc-

tures can be instantiated.

As a designer, work
hard to derive both
procedural and data
abstractions that serve
the problem at hand,
but that also can be
reused in other
situations.

“Abstraction is one of
the fundamental
ways that we as
humans cope with
complexity.”
Grady Booch 
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Control abstraction is the third form of abstraction used in software design. Like

procedural and data abstraction, control abstraction implies a program control mech-

anism without specifying internal details. An example of a control abstraction is the

synchronization semaphore [KAI83] used to coordinate activities in an operating sys-

tem. The concept of the control abstraction is discussed briefly in Chapter 14.

13.4.2 Refinement

Stepwise refinement is a top-down design strategy originally proposed by Niklaus Wirth

[WIR71]. A program is developed by successively refining levels of procedural detail.

A hierarchy is developed by decomposing a macroscopic statement of function (a

procedural abstraction) in a stepwise fashion until programming language statements

are reached. An overview of the concept is provided by Wirth [WIR71]:

In each step (of the refinement), one or several instructions of the given program are decom-

posed into more detailed instructions. This successive decomposition or refinement of spec-

ifications terminates when all instructions are expressed in terms of any underlying computer

or programming language . . .  As tasks are refined, so the data may have to be refined,

decomposed, or structured, and it is natural to refine the program and the data specifica-

tions in parallel. 

Every refinement step implies some design decisions. It is important that . . . the pro-

grammer be aware of the underlying criteria (for design decisions) and of the existence of

alternative solutions . . . 

The process of program refinement proposed by Wirth is analogous to the process of

refinement and partitioning that is used during requirements analysis. The difference

is in the level of implementation detail that is considered, not the approach. 

Refinement is actually a process of elaboration. We begin with a statement of func-

tion (or description of information) that is defined at a high level of abstraction. That

is, the statement describes function or information conceptually but provides no infor-

mation about the internal workings of the function or the internal structure of the

information. Refinement causes the designer to elaborate on the original statement,

providing more and more detail as each successive refinement (elaboration) occurs.

Abstraction and refinement are complementary concepts. Abstraction enables a

designer to specify procedure and data and yet suppress low-level details. Refine-

ment helps the designer to reveal low-level details as design progresses. Both con-

cepts aid the designer in creating a complete design model as the design evolves.

13.4.3 Modularity

The concept of modularity in computer software has been espoused for almost five

decades. Software architecture (described in Section 13.4.4) embodies modularity;

that is, software is divided into separately named and addressable components, often

called modules, that are integrated to satisfy problem requirements.
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There is a tendency to
move immediately to
full detail, skipping the
refinement steps. This
leads to errors and
omissions and makes
the design much more
difficult to review.
Perform stepwise
refinement.
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It has been stated that "modularity is the single attribute of software that allows

a program to be intellectually manageable" [MYE78]. Monolithic software (i.e., a

large program composed of a single module) cannot be easily grasped by a reader.

The number of control paths, span of reference, number of variables, and over-

all complexity would make understanding close to impossible. To illustrate this

point, consider the following argument based on observations of human prob-

lem solving.

Let C(x) be a function that defines the perceived complexity of a problem x, and

E(x) be a function that defines the effort (in time) required to solve a problem x. For

two problems, p1 and p2, if 

C(p1) > C(p2) (13-1a) 

it follows that

E(p1) > E(p2) (13-1b) 

As a general case, this result is intuitively obvious.  It does take more time to solve a

difficult problem.

Another interesting characteristic has been uncovered through experimentation

in human problem solving. That is, 

C(p1 + p2) > C(p1) + C(p2) (13-2) 

Expression (13-2) implies that the perceived complexity of a problem that combines

p1 and p2 is greater than the perceived complexity when each problem is considered

separately. Considering Expression (13-2) and the condition implied by Expressions

(13-1), it follows that 

E(p1 + p2) > E(p1) + E(p2) (13-3) 

This leads to a "divide and conquer" conclusion—it's easier to solve a complex prob-

lem when you break it into manageable pieces. The result expressed in Expression

(13-3) has important implications with regard to modularity and software. It is, in

fact, an argument for modularity.

It is possible to conclude from Expression (13-3) that, if we subdivide software

indefinitely, the effort required to develop it will become negligibly small! Unfortu-

nately, other forces come into play, causing this conclusion to be (sadly) invalid. Refer-

ring to Figure 13.2, the effort (cost) to develop an individual software module does

decrease as the total number of modules increases. Given the same set of require-

ments, more modules means smaller individual size. However, as the number of mod-

ules grows, the effort (cost) associated with integrating the modules also grows.

These characteristics lead to a total cost or effort curve shown in the figure. There is

a number, M, of modules that would result in minimum development cost, but we do

not have the necessary sophistication to predict M with assurance.

“There's always an
easy solution to
every human
problem—neat,
plausible, and
wrong.”
H. L. Mencken 

Don’t overmodularize.
The simplicity of each
module will be
overshadowed by the
complexity of
integration.
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The curves shown in Figure 13.2 do provide useful guidance when modularity is

considered. We should modularize, but care should be taken to stay in the vicinity

of M. Undermodularity or overmodularity should be avoided. But how do we know

"the vicinity of M"? How modular should we make software? The answers to these

questions require an understanding of other design concepts considered later in this

chapter.

Another important question arises when modularity is considered. How do we

define an appropriate module of a given size? The answer lies in the method(s) used

to define modules within a system. Meyer [MEY88] defines five criteria that enable us

to evaluate a design method with respect to its ability to define an effective modular

system:

Modular decomposability. If a design method provides a systematic

mechanism for decomposing the problem into subproblems, it will reduce

the complexity of the overall problem, thereby achieving an effective modular

solution.

Modular composability. If a design method enables existing (reusable)

design components to be assembled into a new system, it will yield a modu-

lar solution that does not reinvent the wheel.

Modular understandability. If a module can be understood as a stand-

alone unit (without reference to other modules), it will be easier to build and

easier to change.

Modular continuity. If small changes to the system requirements result in

changes to individual modules, rather than systemwide changes, the impact

of change-induced side effects will be minimized. 

Modular protection.  If an aberrant condition occurs within a module and

its effects are constrained within that module, the impact of error-induced

side effects will be minimized.

Finally, it is important to note that a system may be designed modularly, even if

its implementation must be "monolithic." There are situations (e.g., real-time software,
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embedded software) in which relatively minimal speed and memory overhead intro-

duced by subprograms (i.e., subroutines, procedures) is unacceptable. In such situa-

tions, software can and should be designed with modularity as an overriding

philosophy. Code may be developed "in-line." Although the program source code may

not look modular at first glance, the philosophy has been maintained and the pro-

gram will provide the benefits of a modular system. 

13.4.4  Software Architecture

Software architecture alludes to “the overall structure of the software and the ways in

which that structure provides conceptual integrity for a system” [SHA95a]. In its sim-

plest form, architecture is the hierarchical structure of program components (mod-

ules), the manner in which these components interact and the structure of data that

are used by the components. In a broader sense, however, components can be gen-

eralized to represent major system elements and their interactions.3

One goal of software design is to derive an architectural rendering of a system.

This rendering serves as a framework from which more detailed design activities are

conducted. A set of architectural patterns enable a software engineer to reuse design-

level concepts.

Shaw and Garlan [SHA95a] describe a set of properties that should be specified as

part of an architectural design:

Structural properties. This aspect of the architectural design representation defines the

components of a system (e.g., modules, objects, filters) and the manner in which those com-

ponents are packaged and interact with one another. For example, objects are packaged to

encapsulate both data and the processing that manipulates the data and interact via the

invocation of methods.

Extra-functional properties. The architectural design description should address how

the design architecture achieves requirements for performance, capacity, reliability, secu-

rity, adaptability, and other system characteristics.

Families of related systems. The architectural design should draw upon repeatable pat-

terns that are commonly encountered in the design of families of similar systems. In essence,

the design should have the ability to reuse architectural building blocks. 

Given the specification of these properties, the architectural design can be repre-

sented using one or more of a number of different models [GAR95]. Structural mod-

els represent architecture as an organized collection of program components.

Framework models increase the level of design abstraction by attempting to identify

repeatable architectural design frameworks (patterns) that are encountered in simi-

lar types of applications. Dynamic models address the behavioral aspects of the pro-

gram architecture, indicating how the structure or system configuration may change

as a function of external events. Process models focus on the design of the business

3 For example, the architectural components of a client/server system are represented at a differ-
ent level of abstraction. See Chapter 28 for details.

Five different types of
models are used to
represent the
architectural design.

“A software
architecture is the
development work
product that gives
the highest return on
investment with
respect to quality,
schedule and cost.”
Len Bass et al.

WebRef
The STARS Software
Architecture Technology
Guide provides in-depth
information and resources
at
www-ast.tds-gn.
lmco.com/arch/
guide.html
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or technical process that the system must accommodate. Finally, functional models

can be used to represent the functional hierarchy of a system.

A number of different architectural description languages (ADLs) have been devel-

oped to represent these models [SHA95b]. Although many different ADLs have been

proposed, the majority provide mechanisms for describing system components and

the manner in which they are connected to one another.

13.4.5 Control Hierarchy

Control hierarchy, also called program structure, represents the organization of pro-

gram components (modules) and implies a hierarchy of control. It does not represent

procedural aspects of software such as sequence of processes, occurrence or order

of decisions, or repetition of operations; nor is it necessarily applicable to all archi-

tectural styles.

Different notations are used to represent control hierarchy for those architectural

styles that are amenable to this representation. The most common is the treelike dia-

gram (Figure 13.3) that represents hierarchical control for call and return architec-

tures.4 However, other notations, such as Warnier-Orr [ORR77] and Jackson diagrams

[JAC83] may also be used with equal effectiveness. In order to facilitate later discus-

sions of structure, we define a few simple measures and terms. Referring to Figure

13.3, depth and width provide an indication of the number of levels of control and

overall span of control, respectively. Fan-out is a measure of the number of modules

that are directly controlled by another module. Fan-in indicates how many modules

directly control a given module.
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patterns is presented in
Chapter 14.

4 A call and return architecture (Chapter 14) is a classic program structure that decomposes func-
tion into a control hierarchy where a “main” program invokes a number of program components,
which in turn may invoke still other components.

If you develop object-
oriented software, the
structural measures
noted here do not
apply. However, others
(considered in Part
Four) are applicable.
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The control relationship among modules is expressed in the following way: A mod-

ule that controls another module is said to be superordinate to it, and conversely, a

module controlled by another is said to be subordinate to the controller [YOU79]. For

example, referring to Figure 13.3, module M is superordinate to modules a, b, and c.

Module h is subordinate to module e and is ultimately subordinate to module M.

Width-oriented relationships (e.g., between modules d and e) although possible to

express in practice, need not be defined with explicit terminology.

The control hierarchy also represents two subtly different characteristics of the

software architecture: visibility and connectivity. Visibility indicates the set of program

components that may be invoked or used as data by a given component, even when

this is accomplished indirectly. For example, a module in an object-oriented system

may have access to a wide array of data objects that it has inherited, but makes use

of only a small number of these data objects. All of the objects are visible to the mod-

ule. Connectivity indicates the set of components that are directly invoked or used as

data by a given component. For example, a module that directly causes another mod-

ule to begin execution is connected to it.5

13.4.6 Structural Partitioning

If the architectural style of a system is hierarchical, the program structure can be par-

titioned both horizontally and vertically. Referring to Figure 13.4a, horizontal parti-

tioning defines separate branches of the modular hierarchy for each major program

function. Control modules, represented in a darker shade are used to coordinate com-

munication between and execution of the functions. The simplest approach to hori-

zontal partitioning defines three partitions—input, data transformation (often called

processing) and output. Partitioning the architecture horizontally provides a number

of distinct benefits:

• software that is easier to test

• software that is easier to maintain

• propagation of fewer side effects

• software that is easier to extend

Because major functions are decoupled from one another, change tends to be less

complex and extensions to the system (a common occurrence) tend to be easier to

accomplish without side effects. On the negative side, horizontal partitioning often

causes more data to be passed across module interfaces and can complicate the over-

all control of program flow (if processing requires rapid movement from one func-

tion to another).

5 In Chapter 20, we explore the concept of inheritance for object-oriented software. A program
component can inherit control logic and/or data from another component without explicit refer-
ence in the source code. Components of this sort would be visible but not directly connected. A
structure chart (Chapter 14) indicates connectivity.

What are the
benefits of

horizontal
partitioning?

?
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Vertical partitioning (Figure 13.4b), often called factoring, suggests that control (deci-

sion making) and work should be distributed top-down in the program structure. Top-

level modules should perform control functions and do little actual processing work.

Modules that reside low in the structure should be the workers, performing all input,

computation, and output tasks.

The nature of change in program structures justifies the need for vertical parti-

tioning. Referring to Figure 13.4b, it can be seen that a change in a control module

(high in the structure) will have a higher probability of propagating side effects to

modules that are subordinate to it. A change to a worker module, given its low level

in the structure, is less likely to cause the propagation of side effects. In general,

changes to computer programs revolve around changes to input, computation or

transformation, and output. The overall control structure of the program (i.e., its basic

behavior is far less likely to change). For this reason vertically partitioned structures

are less likely to be susceptible to side effects when changes are made and will there-

fore be more maintainable—a key quality factor.

13.4.7 Data Structure

Data structure is a representation of the logical relationship among individual ele-

ments of data. Because the structure of information will invariably affect the final pro-

cedural design, data structure is as important as program structure to the

representation of software architecture. 
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Data structure dictates the organization, methods of access, degree of associativ-

ity, and processing alternatives for information. Entire texts (e.g., [AHO83], [KRU84],

[GAN89]) have been dedicated to these topics, and a complete discussion is beyond

the scope of this book. However, it is important to understand the classic methods

available for organizing information and the concepts that underlie information hier-

archies.

The organization and complexity of a data structure are limited only by the inge-

nuity of the designer. There are, however, a limited number of classic data structures

that form the building blocks for more sophisticated structures.

A scalar item is the simplest of all data structures. As its name implies, a scalar

item represents a single element of information that may be addressed by an identi-

fier; that is, access may be achieved by specifying a single address in memory. The

size and format of a scalar item may vary within bounds that are dictated by a pro-

gramming language. For example, a scalar item may be a logical entity one bit long,

an integer or floating point number that is 8 to 64 bits long, or a character string that

is hundreds or thousands of bytes long.

When scalar items are organized as a list or contiguous group, a sequential vector

is formed. Vectors are the most common of all data structures and open the door to

variable indexing of information.

When the sequential vector is extended to two, three, and ultimately, an arbitrary

number of dimensions, an n-dimensional space is created. The most common n-dimen-

sional space is the two-dimensional matrix. In many programming languages, an n-

dimensional space is called an array.

Items, vectors, and spaces may be organized in a variety of formats. A linked list

is a data structure that organizes noncontiguous scalar items, vectors, or spaces in

a manner (called nodes) that enables them to be processed as a list. Each node con-

tains the appropriate data organization (e.g., a vector) and one or more pointers that

indicate the address in storage of the next node in the list. Nodes may be added at

any point in the list by redefining pointers to accommodate the new list entry.

Other data structures incorporate or are constructed using the fundamental data

structures just described. For example, a hierarchical data structure is implemented

using multilinked lists that contain scalar items, vectors, and possibly, n-dimensional

spaces. A hierarchical structure is commonly encountered in applications that require

information categorization and associativity.

It is important to note that data structures, like program structure, can be rep-

resented at different levels of abstraction. For example, a stack is a conceptual

model of a data structure that can be implemented as a vector or a linked list.

Depending on the level of design detail, the internal workings of a stack may or

may not be specified. 

“The order and
connection of ideas
is the same as the
order and connection
of things.”
Baruch Spinoza 

Spend at least as
much time designing
data structures as you
intend to spend
designing the
algorithms to
manipulate them. If
you do, you’ll save
time in the long run.
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13.4.8 Software Procedure

Program structure defines control hierarchy without regard to the sequence of pro-

cessing and decisions. Software procedure focuses on the processing details of each

module individually. Procedure must provide a precise specification of processing,

including sequence of events, exact decision points, repetitive operations, and even

data organization and structure.

There is, of course, a relationship between structure and procedure. The process-

ing indicated for each module must include a reference to all modules subordinate

to the module being described. That is, a procedural representation of software is

layered as illustrated in Figure 13.5.6

13.4.9 Information Hiding

The concept of modularity leads every software designer to a fundamental ques-

tion: "How do we decompose a software solution to obtain the best set of mod-

ules?" The principle of information hiding [PAR72] suggests that modules be
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6 This is not true for all architectural styles. For example, hierarchical layering of procedure is not
encountered in object-oriented architectures.
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"characterized by design decisions that (each) hides from all others." In other words,

modules should be specified and designed so that information (procedure and data)

contained within a module is inaccessible to other modules that have no need for

such information. 

Hiding implies that effective modularity can be achieved by defining a set of inde-

pendent modules that communicate with one another only that information neces-

sary to achieve software function. Abstraction helps to define the procedural (or

informational) entities that make up the software. Hiding defines and enforces access

constraints to both procedural detail within a module and any local data structure

used by the module [ROS75].

The use of information hiding as a design criterion for modular systems provides

the greatest benefits when modifications are required during testing and later, dur-

ing software maintenance. Because most data and procedure are hidden from other

parts of the software, inadvertent errors introduced during modification are less likely

to propagate to other locations within the software.

13.5 EFFECTIVE MODULAR DESIGN

All the fundamental design concepts described in the preceding section serve to pre-

cipitate modular designs. In fact, modularity has become an accepted approach in all

engineering disciplines. A modular design reduces complexity (see Section 13.4.3),

facilitates change (a critical aspect of software maintainability), and results in easier

implementation by encouraging parallel development of different parts of a system. 

13.5.1 Functional Independence

The concept of functional independence is a direct outgrowth of modularity and the

concepts of abstraction and information hiding. In landmark papers on software

design Parnas [PAR72] and Wirth [WIR71] allude to refinement techniques that enhance

module independence. Later work by Stevens, Myers, and Constantine [STE74] solid-

ified the concept.

Functional independence is achieved by developing modules with "single-minded"

function and an "aversion" to excessive interaction with other modules. Stated another

way, we want to design software so that each module addresses a specific subfunc-

tion of requirements and has a simple interface when viewed from other parts of the

program structure. It is fair to ask why independence is important. Software with

effective modularity, that is, independent modules, is easier to develop because func-

tion may be compartmentalized and interfaces are simplified (consider the ramifica-

tions when development is conducted by a team). Independent modules are easier

to maintain (and test) because secondary effects caused by design or code modifica-

tion are limited, error propagation is reduced, and reusable modules are possible. To

summarize, functional independence is a key to good design, and design is the key

to software quality.

A module is “single
minded” if you can
describe it with a
simple sentence—
subject, predicate,
object.
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Independence is measured using two qualitative criteria: cohesion and coupling.

Cohesion is a measure of the relative functional strength of a module. Coupling is a

measure of the relative interdependence among modules.

13.5.2 Cohesion

Cohesion is a natural extension of the information hiding concept described in Sec-

tion 13.4.9. A cohesive module performs a single task within a software procedure,

requiring little interaction with procedures being performed in other parts of a pro-

gram. Stated simply, a cohesive module should (ideally) do just one thing.

Cohesion may be represented as a "spectrum." We always strive for high cohe-

sion, although the mid-range of the spectrum is often acceptable. The scale for cohe-

sion is nonlinear. That is, low-end cohesiveness is much "worse" than middle range,

which is nearly as "good" as high-end cohesion. In practice, a designer need not be

concerned with categorizing cohesion in a specific module. Rather, the overall con-

cept should be understood and low levels of cohesion should be avoided when mod-

ules are designed.

At the low (undesirable) end of the spectrum, we encounter a module that per-

forms a set of tasks that relate to each other loosely, if at all. Such modules are termed

coincidentally cohesive. A module that performs tasks that are related logically (e.g.,

a module that produces all output regardless of type) is logically cohesive. When a

module contains tasks that are related by the fact that all must be executed with the

same span of time, the module exhibits temporal cohesion.

As an example of low cohesion, consider a module that performs error pro-

cessing for an engineering analysis package. The module is called when computed

data exceed prespecified bounds. It performs the following tasks: (1) computes sup-

plementary data based on original computed data, (2) produces an error report

(with graphical content) on the user's workstation, (3) performs follow-up calcu-

lations requested by the user, (4) updates a database, and (5) enables menu selec-

tion for subsequent processing. Although the preceding tasks are loosely related,

each is an independent functional entity that might best be performed as a sepa-

rate module. Combining the functions into a single module can serve only to increase

the likelihood of error propagation when a modification is made to one of its pro-

cessing tasks.

Moderate levels of cohesion are relatively close to one another in the degree of

module independence. When processing elements of a module are related and must

be executed in a specific order, procedural cohesion exists. When all processing ele-

ments concentrate on one area of a data structure, communicational cohesion is pre-

sent. High cohesion is characterized by a module that performs one distinct procedural

task.

As we have already noted, it is unnecessary to determine the precise level of cohe-

sion. Rather it is important to strive for high cohesion and recognize low cohesion

so that software design can be modified to achieve greater functional independence.
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Cohesion is a
qualitative indication of
the degree to which a
module focuses on just
one thing.

If you concentrate on
only one thing during
component-level
design, make it
cohesion.
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13.5.3 Coupling

Coupling is a measure of interconnection among modules in a software structure.

Coupling depends on the interface complexity between modules, the point at which

entry or reference is made to a module, and what data pass across the interface.

In software design, we strive for lowest possible coupling. Simple connectivity

among modules results in software that is easier to understand and less prone to a

"ripple effect" [STE74], caused when errors occur at one location and propagate

through a system. 

Figure 13.6 provides examples of different types of module coupling. Modules a

and d are subordinate to different modules. Each is unrelated and therefore no direct

coupling occurs. Module c is subordinate to module a and is accessed via a conven-

tional argument list, through which data are passed. As long as a simple argument

list is present (i.e., simple data are passed; a one-to-one correspondence of items

exists), low coupling (called data coupling) is exhibited in this portion of structure. A

variation of data coupling, called stamp coupling, is found when a portion of a data

structure (rather than simple arguments) is passed via a module interface. This occurs

between modules b and a.

At moderate levels, coupling is characterized by passage of control between mod-

ules. Control coupling is very common in most software designs and is shown in Fig-

ure 13.6 where a “control flag” (a variable that controls decisions in a subordinate or

superordinate module) is passed between modules d and e.

Relatively high levels of coupling occur when modules are tied to an environment

external to software. For example, I/O couples a module to specific devices, formats,

and communication protocols. External coupling is essential, but should be limited to
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structure

Data
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e

Control
flag

i

j k
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f hg
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FIGURE 13.6
Types of 
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Coupling is a
qualitative indication of
the degree to which a
module is connected to
other modules and to
the outside world.

Highly coupled
systems lead to
debugging nightmares.
Avoid them.
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a small number of modules with a structure. High coupling also occurs when a num-

ber of modules reference a global data area. Common coupling, as this mode is called,

is shown in Figure 13.6. Modules c, g, and k each access a data item in a global data

area (e.g., a disk file or a globally accessible memory area). Module c initializes the

item. Later module g recomputes and updates the item. Let's assume that an error

occurs and g updates the item incorrectly. Much later in processing module, k reads

the item, attempts to process it, and fails, causing the software to abort. The appar-

ent cause of abort is module k; the actual cause, module g. Diagnosing problems in

structures with considerable common coupling is time consuming and difficult. How-

ever, this does not mean that the use of global data is necessarily "bad." It does mean

that a software designer must be aware of potential consequences of common cou-

pling and take special care to guard against them.

The highest degree of coupling, content coupling, occurs when one module makes

use of data or control information maintained within the boundary of another mod-

ule. Secondarily, content coupling occurs when branches are made into the middle

of a module. This mode of coupling can and should be avoided.

The coupling modes just discussed occur because of design decisions made when

structure was developed. Variants of external coupling, however, may be introduced dur-

ing coding. For example, compiler coupling ties source code to specific (and often non-

standard) attributes of a compiler; operating system (OS) coupling ties design and resultant

code to operating system "hooks" that can create havoc when OS changes occur.

13.6 DESIGN HEURISTICS FOR EFFECTIVE MODULARITY

Once program structure has been developed, effective modularity can be achieved

by applying the design concepts introduced earlier in this chapter. The program struc-

ture can be manipulated according to the following set of heuristics:

1. Evaluate the "first iteration" of the program structure to reduce coupling and

improve cohesion. Once the program structure has been developed, modules

may be exploded or imploded with an eye toward improving module inde-

pendence. An exploded module becomes two or more modules in the final

program structure. An imploded module is the result of combining the pro-

cessing implied by two or more modules. 

An exploded module often results when common processing exists in two

or more modules and can be redefined as a separate cohesive module. When

high coupling is expected, modules can sometimes be imploded to reduce

passage of control, reference to global data, and interface complexity. 

2. Attempt to minimize structures with high fan-out; strive for fan-in as depth

increases. The structure shown inside the cloud in Figure 13.7 does not make

effective use of factoring. All modules are “pancaked” below a single control
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module. In general, a more reasonable distribution of control is shown in the

upper structure. The structure takes an oval shape, indicating a number of

layers of control and highly utilitarian modules at lower levels.

3. Keep the scope of effect of a module within the scope of control of that module.

The scope of effect of module e is defined as all other modules that are

affected by a decision made in module e. The scope of control of module e is

all modules that are subordinate and ultimately subordinate to module e.

Referring to Figure 13.7, if module e makes a decision that affects module r,

we have a violation of this heuristic, because module r lies outside the scope

of control of module e.

4. Evaluate module interfaces to reduce complexity and redundancy and improve

consistency. Module interface complexity is a prime cause of software errors.

Interfaces should be designed to pass information simply and should be con-

sistent with the function of a module. Interface inconsistency (i.e., seemingly
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unrelated data passed via an argument list or other technique) is an indica-

tion of low cohesion. The module in question should be reevaluated. 

5. Define modules whose function is predictable, but avoid modules that are overly

restrictive. A module is predictable when it can be treated as a black box; that

is, the same external data will be produced regardless of internal processing

details.7 Modules that have internal "memory" can be unpredictable unless

care is taken in their use.

A module that restricts processing to a single subfunction exhibits high

cohesion and is viewed with favor by a designer. However, a module that

arbitrarily restricts the size of a local data structure, options within control

flow, or modes of external interface will invariably require maintenance to

remove such restrictions.

6. Strive for “controlled entry” modules by avoiding "pathological connections." This

design heuristic warns against content coupling. Software is easier to under-

stand and therefore easier to maintain when module interfaces are con-

strained and controlled. Pathological connection refers to branches or

references into the middle of a module. 

13.7 THE DESIGN MODEL

The design principles and concepts discussed in this chapter establish a foundation

for the creation of the design model that encompasses representations of data, archi-

tecture, interfaces, and components. Like the analysis model before it, each of these

design representations is tied to the others, and all can be traced back to software

requirements.

In Figure 13.1, the design model was represented as a pyramid. The symbolism of

this shape is important. A pyramid is an extremely stable object with a wide base and

a low center of gravity. Like the pyramid, we want to create a software design that is

stable. By establishing a broad foundation using data design, a stable mid-region with

architectural and interface design, and a sharp point by applying component-level

design, we create a design model that is not easily “tipped over” by the winds of

change.

It is interesting to note that some programmers continue to design implicitly, con-

ducting component-level design as they code. This is akin to taking the design pyra-

mid and standing it on its point—an extremely unstable design results. The smallest

change may cause the pyramid (and the program) to topple.

The methods that lead to the creation of the design model are presented in Chap-

ters 14, 15, 16, and 22 (for object-oriented systems). Each method enables the designer
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to create a stable design that conforms to fundamental concepts that lead to high-

quality software. 

13.8 DESIGN DOCUMENTATION

The Design Specification addresses different aspects of the design model and is com-

pleted as the designer refines his representation of the software. First, the overall

scope of the design effort is described. Much of the information presented here is

derived from the System Specification and the analysis model (Software Requirements

Specification).

Next, the data design is specified. Database structure, any external file structures,

internal data structures, and a cross reference that connects data objects to specific

files are all defined. 

The architectural design indicates how the program architecture has been derived

from the analysis model. In addition, structure charts are used to represent the mod-

ule hierarchy (if applicable).

The design of external and internal program interfaces is represented and a detailed

design of the human/machine interface is described. In some cases, a detailed pro-

totype of a GUI may be represented.

Components—separately addressable elements of software such as subroutines,

functions, or procedures—are initially described with an English-language process-

ing narrative. The processing narrative explains the procedural function of a com-

ponent (module). Later, a procedural design tool is used to translate the narrative

into a structured description.

The Design Specification contains a requirements cross reference. The purpose of

this cross reference (usually represented as a simple matrix) is (1) to establish that

all requirements are satisfied by the software design and (2) to indicate which com-

ponents are critical to the implementation of specific requirements.

The first stage in the development of test documentation is also contained in the

design document. Once program structure and interfaces have been established, we

can develop guidelines for testing of individual modules and integration of the entire

package. In some cases, a detailed specification of test procedures occurs in parallel

with design. In such cases, this section may be deleted from the Design Specification.

Design constraints, such as physical memory limitations or the necessity for a

specialized external interface, may dictate special requirements for assembling or

packaging of software. Special considerations caused by the necessity for program

overlay, virtual memory management, high-speed processing, or other factors may

cause modification in design derived from information flow or structure. In addition,

this section describes the approach that will be used to transfer software to a cus-

tomer site.

The final section of the Design Specification contains supplementary data. Algo-

rithm descriptions, alternative procedures, tabular data, excerpts from other docu-

Software Design
Specification
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ments, and other relevant information are presented as a special note or as a sepa-

rate appendix. It may be advisable to develop a Preliminary Operations/Installation

Manual and include it as an appendix to the design document.

13.8 SUMMARY

Design is the technical kernel of software engineering. During design, progressive

refinements of data structure, architecture, interfaces, and procedural detail of soft-

ware components are developed, reviewed, and documented. Design results in rep-

resentations of software that can be assessed for quality.

A number of fundamental software design principles and concepts have been pro-

posed over the past four decades. Design principles guide the software engineer as the

design process proceeds. Design concepts provide basic criteria for design quality.

Modularity (in both program and data) and the concept of abstraction enable the

designer to simplify and reuse software components. Refinement provides a mech-

anism for representing successive layers of functional detail. Program and data struc-

ture contribute to an overall view of software architecture, while procedure provides

the detail necessary for algorithm implementation. Information hiding and functional

independence provide heuristics for achieving effective modularity. 

We conclude our discussion of design fundamentals with the words of Glenford

Myers [MYE78]:

We try to solve the problem by rushing through the design process so that enough time will

be left at the end of the project to uncover errors that were made because we rushed through

the design process . . . 

The moral is this: Don't rush through it! Design is worth the effort.

We have not concluded our discussion of design. In the chapters that follow, design

methods are discussed. These methods, combined with the fundamentals in this chap-

ter, form the basis for a complete view of software design. 
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PROBLEMS AND POINTS TO PONDER

13.1. Do you design software when you "write" a program? What makes software

design different from coding?

13.2. Develop three additional design principles to add to those noted in Section 13.3.

13.3. Provide examples of three data abstractions and the procedural abstractions

that can be used to manipulate them.

13.4. Apply a "stepwise refinement approach" to develop three different levels of

procedural abstraction for one or more of the following programs:

a. Develop a check writer that, given a numeric dollar amount, will print the amount

in words normally required on a check.

b. Iteratively solve for the roots of a transcendental equation.

c. Develop a simple round-robin scheduling algorithm for an operating system. 

13.5. Is there a case when Expression (13-2) may not be true? How might such a

case affect the argument for modularity?

13.6. When should a modular design be implemented as monolithic software? How

can this be accomplished? Is performance the only justification for implementation

of monolithic software? 

13.7. Develop at least five levels of abstraction for one of the following software

problems:

a. A video game of your choosing.

b. A 3D transformation package for computer graphics applications.

c. A programming language interpreter.

d. A two degree of freedom robot controller.

e. Any problem mutually agreeable to you and your instructor.

As the level of abstraction decreases, your focus may narrow so that at the last

level (source code) only a single task need be described. 

13.8. Obtain the original Parnas paper [PAR72] and summarize the software exam-

ple that he uses to illustrate decomposition of a system into modules. How is infor-

mation hiding used to achieve the decomposition? 

13.9. Discuss the relationship between the concept of information hiding as an

attribute of effective modularity and the concept of module independence. 

13.10. Review some of your recent software development efforts and grade each mod-

ule (on a scale of 1—low to 7—high). Bring in samples of your best and worst work.

13.11. A number of high-level programming languages support the internal proce-

dure as a modular construct. How does this construct affect coupling? information

hiding?
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13.12. How are the concepts of coupling and software portability related? Provide

examples to support your discussion.

13.13. Discuss how structural partitioning can help to make software more main-

tainable.

13.14. What is the purpose of developing a program structure that is factored?

13.15. Describe the concept of information hiding in your own words.

13.16. Why is it a good idea to keep the scope of effect of a module within its scope

of control?

FURTHER READINGS AND INFORMATION SOURCES

Donald Norman has written two books (The Design of Everyday Things, Doubleday,

1990, and The Psychology of Everyday Things, HarperCollins, 1988) that have become

classics in the design literature and “must” reading for anyone who designs anything

that humans use. Adams (Conceptual Blockbusting, 3rd ed., Addison-Wesley, 1986)

has written a book that is essential reading for designers who want to broaden their

way of thinking. Finally, a classic text by Polya (How to Solve It, 2nd ed., Princeton

University Press, 1988) provides a generic problem-solving process that can help soft-

ware designers when they are faced with complex problems.

Following in the same tradition, Winograd et al. (Bringing Design to Software, Addi-

son-Wesley, 1996) discusses software designs that work, those that don’t, and why.

A fascinating book edited by Wixon and Ramsey (Field Methods Casebook for Software

Design, Wiley, 1996) suggests field research methods (much like those used by anthro-

pologists) to understand how end-users do the work they do and then design soft-

ware that meets their needs. Beyer and Holtzblatt (Contextual Design: A Customer-

Centered Approach to Systems Designs, Academic Press, 1997) offer another view of

software design that integrates the customer/user into every aspect of the software

design process. 

McConnell (Code Complete, Microsoft Press, 1993) presents an excellent discus-

sion of the practical aspects of designing high-quality computer software. Robertson

(Simple Program Design, 3rd ed., Boyd and Fraser Publishing, 1999) presents an intro-

ductory discussion of software design that is useful for those beginning their study

of the subject.

An excellent historical survey of important papers on software design is contained

in an anthology edited by Freeman and Wasserman (Software Design Techniques, 4th

ed., IEEE, 1983). This tutorial reprints many of the classic papers that have formed

the basis for current trends in software design. Good discussions of software design

fundamentals can be found in books by Myers [MYE78], Peters (Software Design: Meth-

ods and Techniques, Yourdon Press, 1981), Macro (Software Engineering: Concepts and
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Management, Prentice-Hall, 1990), and Sommerville (Software Engineering, Addison-

Wesley, 5th ed., 1996).

Mathematically rigorous treatments of computer software and design fundamen-

tals may be found in books by Jones (Software Development: A Rigorous Approach,

Prentice-Hall, 1980), Wulf (Fundamental Structures of Computer Science, Addison-Wes-

ley, 1981), and Brassard and Bratley (Fundamental of Algorithmics, Prentice-Hall, 1995).

Each of these texts helps to supply a necessary theoretical foundation for our under-

standing of computer software. 

Kruse (Data Structures and Program Design, Prentice-Hall, 1994) and Tucker et al.

(Fundamentals of Computing II: Abstraction, Data Structures, and Large Software Sys-

tems, McGraw-Hill, 1995) present worthwhile information on data structures. Mea-

sures of design quality, presented from both the technical and management

perspectives, are considered by Card and Glass (Measuring Software Design Quality,

Prentice-Hall, 1990).

A wide variety of information sources on software design and related subjects is

available on the Internet. An up-to-date list of World Wide Web references that are

relevant to design concepts and methods can be found at the SEPA Web site:

http://www.mhhe.com/engcs/compsci/pressman/resources/

design-principles.mhtml
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Design has been described as a multistep process in which representa-
tions of data and program structure, interface characteristics, and pro-
cedural detail are synthesized from information requirements. This

description is extended by Freeman [FRE80]: 

[D]esign is an activity concerned with making major decisions, often of a structural

nature. It shares with programming a concern for abstracting information represen-

tation and processing sequences, but the level of detail is quite different at the

extremes. Design builds coherent, well planned representations of programs that

concentrate on the interrelationships of parts at the higher level and the logical oper-

ations involved at the lower levels . . .  

As we have noted in the preceding chapter, design is information driven.
Software design methods are derived from consideration of each of the three
domains of the analysis model. The data, functional, and behavioral domains
serve as a guide for the creation of the software design.

Methods required to create “coherent, well planned representations” of the
data and architectural layers of the design model are presented in this chapter.
The objective is to provide a systematic approach for the derivation of the archi-
tectural design—the preliminary blueprint from which software is constructed.

14 ARCHITECTURAL DESIGN 

What is it? Architectural design

represents the structure of data

and program components that

are required to build a computer-based system. It

considers the architectural style that the system

will take, the structure and properties of the com-

ponents that constitute the system, and the inter-

relationships that occur among all architectural

components of a system.

Who does it? Although a software engineer can

design both data and architecture, the job is often

allocated to specialists when large, complex sys-

tems are to be built. A database or data ware-

house designer creates the data architecture for

a system. The “system architect” selects an appro-

priate architectural style for the requirements

derived during system engineering and software

requirements analysis.

Why is it important? In the Quick Look for the last

chapter, we asked: “You wouldn’t attempt to build

a house without a blueprint, would you?” You also

wouldn’t begin drawing blueprints by sketching

the plumbing layout for the house. You’d need to

look at the big picture—the house itself—before

you worry about details. That’s what architectural

design does—it provides you with the big picture

and ensures that you’ve got it right.

What are the steps? Architectural design begins

with data design and then proceeds to the deri-

vation of one or more representations of the 

Q U I C K
L O O K
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14.1 SOFTWARE ARCHITECTURE

In their landmark book on the subject, Shaw and Garlan [SHA96] discuss software

architecture in the following manner:

Ever since the first program was divided into modules, software systems have had archi-

tectures, and programmers have been responsible for the interactions among the modules

and the global properties of the assemblage. Historically, architectures have been implicit—

accidents of implementation, or legacy systems of the past. Good software developers have

often adopted one or several architectural patterns as strategies for system organization,

but they use these patterns informally and have no means to make them explicit in the

resulting system.

Today, effective software architecture and its explicit representation and design have

become dominant themes in software engineering.

14.1.1 What Is Architecture?

When we discuss the architecture of a building, many different attributes come to

mind. At the most simplistic level, we consider the overall shape of the physical struc-

ture. But in reality, architecture is much more. It is the manner in which the various

components of the building are integrated to form a cohesive whole. It is the way in

which the building fits into its environment and meshes with other buildings in its

vicinity. It is the degree to which the building meets its stated purpose and satisfies

the needs of its owner. It is the aesthetic feel of the structure—the visual impact of

the building—and the way textures, colors, and materials are combined to create the

external facade and the internal “living environment.” It is small details—the design

of lighting fixtures, the type of flooring, the placement of wall hangings, the list is

almost endless. And finally, it is art.

But what about software architecture? Bass, Clements, and Kazman [BAS98] define

this elusive term in the following way:

architectural structure of the 

system. Alternative architectural

styles or patterns are analyzed to

derive the structure that is best suited to customer

requirements and quality attributes. Once an alter-

native has been selected, the architecture is elab-

orated using an architectural design method.

What is the work product? An architecture model

encompassing data architecture and program

structure is created during architectural design.

In addition, component properties and relation-

ships (interactions) are described.

How do I ensure that I’ve done it right? At each 

stage, software design work products are

reviewed for clarity, correctness, completeness,

and consistency with requirements and with one

another. 

Q U I C K
L O O K
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The software architecture of a program or computing system is the structure or structures

of the system, which comprise software components, the externally visible properties of

those components, and the relationships among them.

The architecture is not the operational software. Rather, it is a representation that

enables a software engineer to (1) analyze the effectiveness of the design in meet-

ing its stated requirements, (2) consider architectural alternatives at a stage when

making design changes is still relatively easy, and (3) reducing the risks associated

with the construction of the software.

This definition emphasizes the role of “software components” in any architectural

representation. In the context of architectural design, a software component can be

something as simple as a program module, but it can also be extended to include

databases and “middleware” that enable the configuration of a network of clients and

servers. The properties of components are those characteristics that are necessary

to an understanding of how the components interact with other components. At the

architectural level, internal properties (e.g., details of an algorithm) are not specified.

The relationships between components can be as simple as a procedure call from

one module to another or as complex as a database access protocol.

In this book the design of software architecture considers two levels of the design

pyramid (Figure 13.1)—data design and architectural design. In the context of the pre-

ceding discussion, data design enables us to represent the data component of the

architecture. Architectural design focuses on the representation of the structure of

software components, their properties, and interactions.

14.1.2 Why Is Architecture Important?

In a book dedicated to software architecture, Bass and his colleagues {BAS98] iden-

tify three key reasons that software architecture is important:

• Representations of software architecture are an enabler for communication

between all parties (stakeholders) interested in the development of a com-

puter-based system.

• The architecture highlights early design decisions that will have a profound

impact on all software engineering work that follows and, as important, on

the ultimate success of the system as an operational entity.

• Architecture “constitutes a relatively small, intellectually graspable model of

how the system is structured and how its components work together”

[BAS98].

The architectural design model and the architectural patterns contained within it are

transferrable. That is, architecture styles and patterns (Section 14.3.1) can be applied

to the design of other systems and represent a set of abstractions that enable soft-

ware engineers to describe architecture in predictable ways.
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14.2 DATA DESIGN

Like other software engineering activities, data design (sometimes referred to as data

architecting) creates a model of data and/or information that is represented at a high

level of abstraction (the customer/user’s view of data). This data model is then refined

into progressively more implementation-specific representations that can be processed

by the computer-based system. In many software applications, the architecture of

the data will have a profound influence on the architecture of the software that must

process it.

The structure of data has always been an important part of software design. At

the program component level, the design of data structures and the associated algo-

rithms required to manipulate them is essential to the creation of high-quality appli-

cations. At the application level, the translation of a data model (derived as part of

requirements engineering) into a database is pivotal to achieving the business objec-

tives of a system. At the business level, the collection of information stored in dis-

parate databases and reorganized into a “data warehouse” enables data mining or

knowledge discovery that can have an impact on the success of the business itself.

In every case, data design plays an important role.

14.2.1 Data Modeling, Data Structures, Databases, 
and the Data Warehouse

The data objects defined during software requirements analysis are modeled using

entity/relationship diagrams and the data dictionary (Chapter 12). The data design

activity translates these elements of the requirements model into data structures at

the software component level and, when necessary, a database architecture at the

application level.

In years past, data architecture was generally limited to data structures at the pro-

gram level and databases at the application level. But today, businesses large and

small are awash in data. It is not unusual for even a moderately sized business to

have dozens of databases serving many applications encompassing hundreds of giga-

bytes of data. The challenge for a business has been to extract useful information

from this data environment, particularly when the information desired is cross-

functional (e.g., information that can be obtained only if specific marketing data are

cross-correlated with product engineering data). 

To solve this challenge, the business IT community has developed data mining

techniques, also called knowledge discovery in databases (KDD), that navigate through

existing databases in an attempt to extract appropriate business-level information.

However, the existence of multiple databases, their different structures, the degree

of detail contained with the databases, and many other factors make data mining dif-

ficult within an existing database environment. An alternative solution, called a data

warehouse, adds an additional layer to the data architecture.

“Data quality is the
difference between a
data warehouse and
a data garbage
dump.”
Jarrett Rosenberg 

WebRef
Up-to-date information on
data warehouse
technologies can be
obtained at 
www.data
warehouse.com
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A data warehouse is a separate data environment that is not directly integrated

with day-to-day applications but encompasses all data used by a business [MAT96].

In a sense, a data warehouse is a large, independent database that encompasses

some, but not all, of the data that are stored in databases that serve the set of appli-

cations required by a business. But many characteristics differentiate a data ware-

house from the typical database [INM95]:

Subject orientation. A data warehouse is organized by major business

subjects, rather than by business process or function. This leads to the exclu-

sion of data that may be necessary for a particular business function but is

generally not necessary for data mining. 

Integration. Regardless of the source, the data exhibit consistent naming

conventions, units and measures, encoding structures, and physical attri-

butes, even when inconsistency exists across different application-oriented

databases.

Time variancy. For a transaction-oriented application environment, data

are accurate at the moment of access and for a relatively short time span

(typically 60 to 90 days) before access. For a data warehouse, however, data

can be accessed at a specific moment in time (e.g., customers contacted on

the date that a new product was announced to the trade press). The typical

time horizon for a data warehouse is five to ten years.

Nonvolatility. Unlike typical business application databases that undergo a

continuing stream of changes (inserts, deletes, updates), data are loaded into

the warehouse, but after the original transfer, the data do not change.

These characteristics present a unique set of design challenges for a data architect.

A detailed discussion of the design of data structures, databases, and the

data warehouse is best left to books dedicated to these subjects (e.g., [PRE98],

[DAT95], [KIM98]). The interested reader should see the Further Readings and

Information Sources section of this chapter for additional references.

14.2.2 Data Design at the Component Level

Data design at the component level focuses on the representation of data structures

that are directly accessed by one or more software components. Wasserman [WAS80]

has proposed a set of principles that may be used to specify and design such data

structures. In actuality, the design of data begins during the creation of the analysis

model. Recalling that requirements analysis and design often overlap, we consider

the following set of principles [WAS80] for data specification: 

1. The systematic analysis principles applied to function and behavior should also

be applied to data. We spend much time and effort deriving, reviewing, and

specifying functional requirements and preliminary design. Representations

of data flow and content should also be developed and reviewed, data
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objects should be identified, alternative data organizations should be consid-

ered, and the impact of data modeling on software design should be evalu-

ated. For example, specification of a multiringed linked list may nicely satisfy

data requirements but lead to an unwieldy software design. An alternative

data organization may lead to better results. 

2. All data structures and the operations to be performed on each should be identi-

fied. The design of an efficient data structure must take the operations to be

performed on the data structure into account (e.g., see [AHO83]). For exam-

ple, consider a data structure made up of  a set of diverse data elements. The

data structure is to be manipulated in a number of major software functions.

Upon evaluation of the operations performed on the data structure, an

abstract data type is defined for use in subsequent software design. Specifica-

tion of the abstract data type may simplify software design considerably. 

3. A data dictionary should be established and used to define both data and pro-

gram design. The concept of a data dictionary has been introduced in Chap-

ter 12. A data dictionary explicitly represents the relationships among data

objects and the constraints on the elements of a data structure. Algorithms

that must take advantage of specific relationships can be more easily defined

if a dictionarylike data specification exists. 

4. Low-level data design decisions should be deferred until late in the design

process. A process of stepwise refinement may be used for the design of data.

That is, overall data organization may be defined during requirements analy-

sis, refined during data design work, and specified in detail during component-

level design. The top-down approach to data design provides benefits that are

analogous to a top-down approach to software design—major structural

attributes are designed and evaluated first so that the architecture of the data

may be established. 

5. The representation of data structure should be known only to those modules that

must make direct use of the data contained within the structure. The concept of

information hiding and the related concept of coupling (Chapter 13) provide

important insight into the quality of a software design. This principle alludes

to the importance of these concepts as well as "the importance of separating

the logical view of a data object from its physical view" [WAS80]. 

6. A library of useful data structures and the operations that may be applied to

them should be developed. Data structures and operations should be viewed

as a resource for software design. Data structures can be designed for

reusability. A library of data structure templates (abstract data types) can

reduce both specification and design effort for data.

7. A software design and programming language should support the specification

and realization of abstract data types. The implementation of a sophisticated
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data structure can be made exceedingly difficult if no means for direct specifi-

cation of the structure exists in the programming language chosen for imple-

mentation.

These principles form a basis for a component-level data design approach that can

be integrated into both the analysis and design activities. 

14.3 ARCHITECTURAL STYLES

When a builder uses the phrase “center hall colonial” to describe a house, most peo-

ple familiar with houses in the United States will be able to conjure a general  image

of what the house will look like and what the floor plan is likely to be. The builder

has used an architectural style as a descriptive mechanism to differentiate the house

from other styles (e.g., A-frame, raised ranch, Cape Cod). But more important, the

architectural style is also a pattern for construction. Further details of the house must

be defined, its final dimensions must be specified, customized features may be added,

building materials are to be be determined, but the pattern—a “center hall colonial”—

guides the builder in his work.

The software that is built for computer-based systems also exhibits one of many

architectural styles.1 Each style describes a system category that encompasses (1) a

set of components (e.g., a database, computational modules) that perform a function

required by a system; (2) a set of connectors that enable “communication, coordina-

tions and cooperation” among components; (3) constraints that define how compo-

nents can be integrated to form the system; and (4) semantic models that enable a

designer to understand the overall properties of a system by analyzing the known

properties of its constituent parts [BAS98]. In the section that follows, we consider

commonly used architectural patterns for software.

14.3.1 A Brief Taxonomy of Styles and Patterns

Although millions of computer-based systems have been created over the past 50

years, the vast majority can be categorized {see [SHA96], {BAS98], BUS96]) into one

of a relatively small number of architectural styles: 

Data-centered architectures. A data store (e.g., a file or database) resides at the

center of this architecture and is accessed frequently by other components that

update, add, delete, or otherwise modify data within the store. Figure 14.1 illus-

trates a typical data-centered style. Client software accesses a central repository. In

some cases the data repository is passive. That is, client software accesses the data

independent of any changes to the data or the actions of other client software. A

variation on this approach transforms the repository into a “blackboard” that sends

notifications to client software when data of interest to the client change.
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1 The terms styles and patterns are used interchangeably in this discussion.
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Data-centered architectures promote integrability [BAS98]. That is, existing com-

ponents can be changed and new client components can be added to the architec-

ture without concern about other clients (because the client components operate

independently). In addition, data can be passed among clients using the black-

board mechanism (i.e., the blackboard component serves to coordinate the trans-

fer of information between clients). Client components independently execute

processes. 

Data-flow architectures. This architecture is applied when input data are to be

transformed through a series of computational or manipulative components into

output data. A pipe and filter pattern (Figure 14.2a) has a set of components, called

filters, connected by pipes that transmit data from one component to the next. Each

filter works independently of those components upstream and downstream, is

designed to expect data input of a certain form, and produces data output (to the

next filter) of a specified form. However, the filter does not require knowledge of

the working of its neighboring filters.

If the data flow degenerates into a single line of transforms, it is termed batch

sequential. This pattern (Figure 14.2b) accepts a batch of data and then applies a

series of sequential components (filters) to transform it. 

Call and return architectures. This architectural style enables a software

designer (system architect) to achieve a program structure that is relatively easy to

modify and scale. A number of substyles [BAS98] exist within this category:

• Main program/subprogram architectures. This classic program structure

decomposes function into a control hierarchy where a “main” program

invokes a number of program components, which in turn may invoke still

other components. Figure 13.3 illustrates an architecture of this type.

Client
software

Client
software

Client
software

Client
software

Client
software

Client
software

Client
software

Client
software

Data store
(repository or
blackboard)

FIGURE 14.1
Data-centered
architecture

“A good architect is
the principal keeper
of the user’s vision
of the end product.”
Norman Simenson 
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• Remote procedure call architectures. The components of a main program/

subprogram architecture are distributed across multiple computers on a net-

work

Object-oriented architectures. The components of a system encapsulate

data and the operations that must be applied to manipulate the data. Communi-

cation and coordination between components is accomplished via message

passing. 

Layered architectures. The basic structure of a layered architecture is illus-

trated in Figure 14.3. A number of different layers are defined, each accomplish-

ing operations that progressively become closer to the machine instruction set.

At the outer layer, components service user interface operations. At the inner

layer, components perform operating system interfacing. Intermediate layers

provide utility services and application software functions.

These architectural styles are only a small subset of those available to the software

designer.2 Once requirements engineering uncovers the characteristics and con-

straints of the system to be built, the architectural pattern (style) or combination of

patterns (styles) that best fits those characteristics and constraints can be chosen. In
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2 See [SHA96], [SHA97], [BAS98], and [BUS96] for a detailed discussion of architectural styles and
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many cases, more than one pattern might be appropriate and alternative architec-

tural styles might be designed and evaluated.

14.3.2 Organization and Refinement

Because the design process often leaves a software engineer with a number of archi-

tectural alternatives, it is important to establish a set of design criteria that can be

used to assess an architectural design that is derived. The following questions [BAS98]

provide insight into the architectural style that has been derived:

Control. How is control managed within the architecture? Does a dis-

tinct control hierarchy exist, and if so, what is the role of components

within this control hierarchy? How do components transfer control

within the system? How is control shared among components? What is

the control topology (i.e., the geometric form3 that the control takes)? Is

control synchronized or do components operate asynchronously? 

Core layer

Components

User interface layer

Application layer

Utility layer

FIGURE 14.3
Layered 
architecture

3 A hierarchy is one geometric form, but others such as a hub and spoke control mechanism in a
client/server system are also encountered.
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Data. How are data communicated between components? Is the flow of data

continuous, or are data objects passed to the system sporadically? What is the

mode of data transfer (i.e., are data passed from one component to another or

are data available globally to be shared among system components)? Do data

components (e.g., a blackboard or repository) exist, and if so, what is their

role? How do functional components interact with data components? Are data

components passive or active (i.e., does the data component actively interact

with other components in the system)? How do data and control interact

within the system?

These questions provide the designer with an early assessment of design quality and

lay the foundation for more-detailed analysis of the architecture.

14.4 ANALYZING ALTERNATIVE ARCHITECTURAL DESIGNS

The questions posed in the preceding section provide a preliminary assessment of

the architectural style chosen for a given system. However, a more complete method

for evaluating the quality of an architecture is essential if design is to be accomplished

effectively. In the sections that follow, we consider two different approaches for the

analysis of alternative architectural designs. The first method uses an iterative method

to assess design trade-offs. The second approach applies a pseudo-quantitative tech-

nique for assessing design quality.

14.4.1 An Architecture Trade-off Analysis Method

The Software Engineering Institute (SEI) has developed an architecture trade-off analy-

sis method (ATAM) [KAZ98] that establishes an iterative evaluation process for soft-

ware architectures. The design analysis activities that follow are performed iteratively:

1. Collect scenarios. A set of use-cases (Chapter 11) is developed to represent

the system from the user’s point of view.

2. Elicit requirements, constraints, and environment description. This information

is required as part of requirements engineering and is used to be certain that

all customer, user, and stakeholder concerns have been addressed.

3. Describe the architectural styles/patterns that have been chosen to address the

scenarios and requirements. The style(s) should be described using architec-

tural views such as

• Module view for analysis of work assignments with components and the

degree to which information hiding has been achieved.

• Process view for analysis of system performance.

• Data flow view for analysis of the degree to which the architecture meets

functional requirements.
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4. Evaluate quality attributes by considering each attribute in isolation. The num-

ber of quality attributes chosen for analysis is a function of the time available

for review and the degree to which quality attributes are relevant to the sys-

tem at hand. Quality attributes  for architectural design assessment include

reliability, performance, security, maintainability, flexibility, testability, porta-

bility, reusability, and interoperability.

5. Identify the sensitivity of quality attributes to various architectural attributes for a

specific architectural style. This can be accomplished by making small changes

in the architecture and determining how sensitive a quality attribute, say per-

formance, is to the change. Any attributes that are significantly affected by

variation in the architecture are termed sensitivity points.

6. Critique candidate architectures (developed in step 3) using the sensitivity analy-

sis conducted in step 5. The SEI describes this approach in the following man-

ner [KAZ98]:

Once the architectural sensitivity points have been determined, finding trade-off

points is simply the identification of architectural elements to which multiple

attributes are sensitive. For example, the performance of a client-server architec-

ture might be highly sensitive to the number of servers (performance increases,

within some range, by increasing the number of servers). The availability of that

architecture might also vary directly with the number of servers. However, the

security of the system might vary inversely with the number of servers (because

the system contains more potential points of attack). The number of servers, then,

is a trade-off point with respect to this architecture. It is an element, potentially

one of many, where architectural trade-offs will be made, consciously or uncon-

sciously.

These six steps represent the first ATAM iteration. Based on the results of steps 5 and

6, some architecture alternatives may be eliminated, one or more of the remaining

architectures may be modified and represented in more detail, and then the ATAM

steps are reapplied.

14.4.2 Quantitative Guidance for Architectural Design

One of the many problems faced by software engineers during the design process is

a general lack of quantitative methods for assessing the quality of proposed designs.

The ATAM approach discussed in Section 14.4.1 is representative of a useful but unde-

niably qualitative approach to design analysis.

Work in the area of quantitative analysis of architectural design is still in its 

formative stages.  Asada and his colleagues [ASA96] suggest a number of pseudo-

quantitative techniques that can be used to complement the ATAM approach as a

method for the analysis of architectural design quality.

Asada proposes a number of simple models that assist a designer in determining

the degree to which a particular architecture meets predefined “goodness” criteria.

XRef
A detailed discussion of
quality attributes is
presented in Chapters
8 and 19.
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These criteria, sometimes called design dimensions, often encompass the quality attri-

butes defined in the last section:  reliability, performance, security, maintainability,

flexibility, testability, portability, reusability, and interoperability, among others. 

The first model, called spectrum analysis, assesses an architectural design on a

“goodness” spectrum from the best to worst possible designs. Once the software

architecture has been proposed, it is assessed by assigning a “score” to each of its

design dimensions. These dimension scores are summed to determine the total score,

S, of the design as a whole. Worst-case scores4 are then assigned to a hypothetical

design, and a total score, Sw, for the worst case architecture is computed. A best-case

score, Sb, is computed for an optimal design.5 We then calculate a spectrum index, Is,

using the equation

Is = [(S � Sw)/(Sb � Sw)] � 100

The spectrum index indicates the degree to which a proposed architecture approaches

an optimal system within the spectrum of reasonable choices for a design.

If modifications are made to the proposed design or if an entirely new design is

proposed, the spectrum indices for both may be compared and an improvement index,

Imp, may be computed:

Imp = Is1 � Is2

This provides a designer with a relative indication of the improvement associated

with architectural changes or a new proposed architecture. If Imp is positive, then we

can conclude that system 1 has been improved relative to system 2.

Design selection analysis is another model that requires a set of design dimensions

to be defined. The proposed architecture is then assessed to determine the number

of design dimensions that it achieves when compared to an ideal (best-case) system.

For example, if a proposed architecture would achieve excellent component reuse,

and this dimension is required for an idea system, the reusability dimension has been

achieved. If the proposed architecture has weak security and strong security is required,

that design dimension has not been achieved.

We calculate a design selection index, d, as

d = (Ns/Na) � 100

where Ns is the number of design dimensions achieved by a proposed architecture and

Na is the total number of dimensions in the design space. The higher the design selec-

tion index, the more closely the proposed architecture approaches an ideal system.

Contribution analysis “identifies the reasons that one set of design choices gets

a lower score than another” [ASA96]. Recalling our discussion of quality function

deployment (QFD) in Chapter 11, value analysis is conducted to determine the
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“A doctor can bury his
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relative priority of requirements determined during function deployment, infor-

mation deployment, and task deployment. A set of “realization mechanisms” (fea-

tures of the architecture) are identified. All customer requirements (determined

using QFD) are listed and a cross-reference matrix is created. The cells of the

matrix indicate the relative strength of the relationship (on a numeric scale of 1

to 10) between a realization mechanism and a requirement for each alternative

architecture. This is sometimes called a quantified design space (QDS). The QDS

is relatively easy to implement as a spreadsheet model and can be used to iso-

late why one set of design choices gets a lower score than another. 

14.4.3 Architectural Complexity

A useful technique for assessing the overall complexity of a proposed architecture is

to consider dependencies between components within the architecture. These depen-

dencies are driven by information/control flow within the system.

Zhao [ZHA98] suggests three types of dependencies:

Sharing dependencies represent dependence relationships among consumers who use the

same resource or producers who produce for the same consumers. For example, for two

components u and v, if u and v refer to the same global data, then there exists a shared

dependence relationship between u and v.

Flow dependencies represent dependence relationships between producers and con-

sumers of resources. For example, for two components u and v, if u must complete before

control flows into v (prerequisite), or if u communicates with v by parameters, then there

exists a flow dependence relationship between u and v.

Constrained dependencies represent constraints on the relative flow of control among a

set of activities. For example, for two components u and v, u and v cannot execute at the

same time (mutual exclusion), then there exists a constrained dependence relationship

between u and v.

The sharing and flow dependencies noted by Zhao are similar in some ways to the

concept of coupling discussed in Chapter 13. Simple metrics for evaluating these

dependencies are discussed in Chapter 19.

14.5 MAPPING REQUIREMENTS INTO A SOFTWARE
ARCHITECTURE

In Chapter 13 we noted that software requirements can be mapped into various rep-

resentations of the design model. The architectural styles discussed in Section 14.3.1

represent radically different architectures, so it should come as no surprise that a

comprehensive mapping that accomplishes the transition from the requirements

model to a variety of architectural styles does not exist. In fact, there is no practical

mapping for some architectural styles, and the designer must approach the transla-

tion of requirements to design for these styles in an ad hoc fashion.
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To illustrate one approach to architectural mapping, we consider the call and return

architecture—an extremely common structure for many types of systems.6 The map-

ping technique to be presented enables a designer to derive reasonably complex call

and return architectures from data flow diagrams within the requirements model. The

technique, sometimes called structured design, has its origins in earlier design con-

cepts that stressed modularity [DEN73], top-down design [WIR71], and structured

programming [DAH72], [LIN79]. Stevens, Myers, and Constantine [STE74] were early

proponents of software design based on the flow of data through a system. Early work

was refined and presented in books by Myers [MYE78] and Yourdon and Constantine

[YOU79].

Structured design is often characterized as a data flow-oriented design method

because it provides a convenient transition from a data flow diagram to software

architecture.7 The transition from information flow (represented as a DFD) to pro-

gram structure is accomplished as part of a six-step process: (1) the type of informa-

tion flow is established; (2) flow boundaries are indicated; (3) the DFD is mapped into

program structure; (4) control hierarchy is defined; (5) resultant structure is refined

using design measures and heuristics; and (6) the architectural description is refined

and elaborated.

The type of information flow is the driver for the mapping approach required in

step 3. In the following sections we examine two flow types. 

14.5.1 Transform Flow

Recalling the fundamental system model (level 0 data flow diagram), information

must enter and exit software in an "external world" form. For example, data typed

on a keyboard, tones on a telephone line, and video images in a multimedia appli-

cation are all forms of external world information. Such externalized data must be

converted into an internal form for processing. Information enters the system along

paths that transform external data into an internal form. These paths are identified

as incoming flow. At the kernel of the software, a transition occurs. Incoming data are

passed through a transform center and begin to move along paths that now lead "out"

of the software. Data moving along these paths are called outgoing flow. The overall

flow of data occurs in a sequential manner and follows one, or only a few, "straight

line" paths.8 When a segment of a data flow diagram exhibits these characteristics,

transform flow is present.
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6 It is also important to note that the call and return architecture can reside within other more
sophisticated architectures discussed earlier in this chapter. For example, the architecture of one
or more components of a client/server architecture might be call and return.

7 It should be noted that other elements of the analysis model (e.g., the data dictionary, PSPECs,
CSPECs) are also used during the mapping method.

8 An obvious mapping for this type of information flow is the data flow architecture described in Sec-
tion 14.3.1. There are many cases, however, where the data flow architecture may not be the best
choice for a complex system. Examples include systems that will undergo substantial change over
time or systems in which the processing associated with the data flow is not necessarily sequential.
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14.5.2 Transaction Flow

The fundamental system model implies transform flow; therefore, it is possible to char-

acterize all data flow in this category. However, information flow is often characterized

by a single data item, called a transaction, that triggers other data flow along one of many

paths. When a DFD takes the form shown in Figure 14.4, transaction flow is present.

Transaction flow is characterized by data moving along an incoming path that con-

verts external world information into a transaction. The transaction is evaluated and,

based on its value, flow along one of many action paths is initiated. The hub of infor-

mation flow from which many action paths emanate is called a transaction center.

It should be noted that, within a DFD for a large system, both transform and trans-

action flow may be present. For example, in a transaction-oriented flow, information

flow along an action path may have transform flow characteristics.

14.6 TRANSFORM MAPPING

Transform mapping is a set of design steps that allows a DFD with transform flow

characteristics to be mapped into a specific architectural style. In this section trans-

form mapping is described by applying design steps to an example system—a por-

tion of the SafeHome security software presented in earlier chapters.

14.6.1 An Example

The SafeHome security system, introduced earlier in this book, is representative of

many computer-based products and systems in use today. The product monitors the

real world and reacts to changes that it encounters. It also interacts with a user through

T
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paths

Transaction
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Transaction

FIGURE 14.4
Transaction
flow
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a series of typed inputs and alphanumeric displays. The level 0 data flow diagram for

SafeHome, reproduced from Chapter 12, is shown in Figure 14.5.

During requirements analysis, more detailed flow models would be created for

SafeHome. In addition, control and process specifications, a data dictionary, and var-

ious behavioral models would also be created.

14.6.2 Design Steps

The preceding example will be used to illustrate each step in transform mapping. The

steps begin with a re-evaluation of work done during requirements analysis and then

move to the design of the software architecture. 

Step 1. Review the fundamental system model. The fundamental system model

encompasses the level 0 DFD and supporting information. In actuality, the design

step begins with an evaluation of both the System Specification and the Software

Requirements Specification. Both documents describe information flow and structure

at the software interface. Figures 14.5 and 14.6 depict level 0 and level 1 data flow

for the SafeHome software.

Step 2. Review and refine data flow diagrams for the software. Information

obtained from analysis models contained in the Software Requirements Specification

is refined to produce greater detail. For example, the level 2 DFD for monitor sensors

(Figure 14.7) is examined, and a level 3 data flow diagram is derived as shown in Fig-

ure 14.8. At level 3, each transform in the data flow diagram exhibits relatively high

cohesion (Chapter 13). That is, the process implied by a transform performs a single,

distinct function that can be implemented as a module9 in the SafeHome software.

Therefore, the DFD in Figure 14.8  contains sufficient detail for a "first cut" at the design

of architecture for the monitor sensors subsystem, and we proceed without further

refinement.
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Step 3. Determine whether the DFD has transform or transaction flow char-

acteristics. In general, information flow within a system can always be represented

as transform. However, when an obvious transaction characteristic (Figure 14.4) is

encountered, a different design mapping is recommended. In this step, the designer

selects global (softwarewide) flow characteristics based on the prevailing nature of

the DFD. In addition, local regions of transform or transaction flow are isolated.  These

subflows can be used to refine program architecture derived from a global charac-

teristic described previously. For now, we focus our attention only on the monitor sen-

sors subsystem data flow depicted in Figure 14.8. 

Evaluating the DFD (Figure 14.8), we see data entering the software along one

incoming path and exiting along three outgoing paths. No distinct transaction cen-

ter is implied (although the transform establishes alarm conditions that could be per-

ceived as such). Therefore, an overall transform characteristic will be assumed for

information flow. 
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Step 4. Isolate the transform center by specifying incoming and outgoing

flow boundaries. In the preceding section incoming flow was described as a path

in which information is converted from external to internal form; outgoing flow con-

verts from internal to external form. Incoming and outgoing flow boundaries are open

to interpretation. That is, different designers may select slightly different points in the

flow as boundary locations. In fact, alternative design solutions can be derived by

varying the placement of flow boundaries. Although care should be taken when bound-

aries are selected, a variance of one bubble along a flow path will generally have lit-

tle impact on the final program structure. 

Flow boundaries for the example are illustrated as shaded curves running verti-

cally through the flow in Figure 14.8. The transforms (bubbles) that constitute the

transform center lie within the two shaded boundaries that run from top to bottom

in the figure. An argument can be made to readjust a boundary (e.g, an incoming flow

boundary separating read sensors and acquire response info could be proposed). The

emphasis in this design step should be on selecting reasonable boundaries, rather

than lengthy iteration on placement of divisions.
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Step 5. Perform "first-level factoring." Program structure represents a top-down

distribution of control. Factoring results in a program structure in which top-level

modules perform decision making and low-level modules perform most input, com-

putation, and output work. Middle-level modules perform some control and do mod-

erate amounts of work.

When transform flow is encountered, a DFD is mapped to a specific structure (a

call and return architecture) that provides control for incoming, transform, and out-

going information processing.  This first-level factoring for the monitor sensors sub-

system is illustrated in Figure 14.9. A main controller (called monitor sensors executive)

resides at the top of the program structure and coordinates the following subordi-

nate control functions:

• An incoming information processing controller, called sensor input controller,

coordinates receipt of all incoming data.

• A transform flow controller, called alarm conditions controller, supervises all

operations on data in internalized form (e.g., a module that invokes various

data transformation procedures).
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• An outgoing information processing controller, called alarm output controller,

coordinates production of output information.

Although a three-pronged structure is implied by Figure 14.9, complex flows in

large systems may dictate two or more control modules for each of the generic con-

trol functions described previously. The number of modules at the first level should

be limited to the minimum that can accomplish control functions and still maintain

good coupling and cohesion characteristics.

Step 6. Perform "second-level factoring." Second-level factoring is accomplished

by mapping individual transforms (bubbles) of a DFD into appropriate modules within

the architecture. Beginning at the transform center boundary and moving outward

along incoming and then outgoing paths, transforms are mapped into subordinate

levels of the software structure. The general approach to second-level factoring for

the SafeHome data flow is illustrated in Figure 14.10.

Although Figure 14.10 illustrates a one-to-one mapping between DFD transforms

and software modules, different mappings frequently occur.  Two or even three bub-

bles can be combined and represented as one module (recalling potential problems

with cohesion) or a single bubble may be expanded to two or more modules. Practi-

cal considerations and measures of design quality dictate the outcome of second-

level factoring. Review and refinement may lead to changes in this structure, but it

can serve as a "first-iteration" design.

Second-level factoring for incoming flow follows in the same manner. Factoring is

again accomplished by moving outward from the transform center boundary on the

incoming flow side. The transform center of monitor sensors subsystem software is

mapped somewhat differently. Each of the data conversion or calculation transforms

of the transform portion of the DFD is mapped into a module subordinate to the trans-

form controller. A completed first-iteration architecture is shown in Figure 14.11.

The modules mapped in the preceding manner and shown in Figure 14.11 repre-

sent an initial design of software architecture. Although modules are named in a man-

ner that implies function, a brief processing narrative (adapted from the PSPEC created

during analysis modeling) should be written for each. The narrative describes

• Information that passes into and out of the module (an interface description).

• Information that is retained by a module, such as data stored in a local data

structure.

• A procedural narrative that indicates major decision points and tasks.

• A brief discussion of restrictions and special features (e.g., file I/O, hardware-

dependent characteristics, special timing requirements).

The narrative serves as a first-generation Design Specification. However, further refine-

ment and additions occur regularly during this period of design.

Keep “worker”
modules low in the
program structure. This
will lead to an
architecture that is
easier to modify.

Eliminate redundant
control modules. That
is, if a control module
does nothing except
control one other
module, its control
function should be
imploded at a higher
level.



CHAPTER 14 ARCHITECTURAL DESIGN 387

Monitor
sensors

executive

Alarm
conditions
controller

Alarm
output

controller

Sensor
input

controller

Generate
alarm
signal

Format
display

Generate
display

Set up
connection
to phone

net
Generate
pulses to

line
Transform

flow boundary

Generate
alarm
signal

Set up
connection

to phone net

Format
display

Generate
pulses to line

Generate
display

FIGURE 14.10 Second-level factoring for monitor sensors



388

Alarm
output

controller

Generate
alarm
signal

Set up
connection

to phone net

Format
display

Generate
pulses to line

Generate
display

Alarm
conditions
controller

Select
phone
number

Establish
alarm

conditions

Monitor
sensors

executive

Sensor
input

controller

Acquire
response

info

Read
sensors

FIGURE 14.11 “First-iteration” program structure for monitor sensors



CHAPTER 14 ARCHITECTURAL DESIGN

Step 7. Refine the first-iteration architecture using design heuristics for

improved software quality. A first-iteration architecture can always be refined by

applying concepts of module independence (Chapter 13). Modules are exploded or

imploded to produce sensible factoring, good cohesion, minimal coupling, and most

important, a structure that can be implemented without difficulty, tested without con-

fusion, and maintained without grief.

Refinements are dictated by the analysis and assessment methods described briefly

in Section 14.4, as well as practical considerations and common sense. There are

times, for example, when the controller for incoming data flow is totally unnecessary,

when some input processing is required in a module that is subordinate to the trans-

form controller, when high coupling due to global data cannot be avoided, or when

optimal structural characteristics (see Section 13.6) cannot be achieved. Software

requirements coupled with human judgment is the final arbiter.

Many modifications can be made to the first iteration architecture developed for

the SafeHome monitor sensors subsystem. Among many possibilities,

1. The incoming controller can be removed because it is unnecessary when a

single incoming  flow path is to be managed.

2. The substructure generated from the transform flow can be imploded into the

module establish alarm conditions (which will now include the processing

implied by select phone number). The transform controller will not be needed

and the small decrease in cohesion is tolerable.

3. The modules format display and generate display can be imploded (we

assume that display formatting is quite simple) into a new module called

produce display.

The refined software structure for the monitor sensors subsystem is shown in Fig-

ure 14.12.

The objective of the preceding seven steps is to develop an architectural repre-

sentation of software. That is, once structure is defined, we can evaluate and refine

software architecture by viewing it as a whole. Modifications made at this time require

little additional work, yet can have a profound impact on software quality.

The reader should pause for a moment and consider the difference between the

design approach described and the process of "writing programs." If code is the only

representation of software, the developer will have great difficulty evaluating or refin-

ing at a global or holistic level and will, in fact, have difficulty "seeing the forest for

the trees."

14.7 TRANSACTION MAPPING

In many software applications, a single data item triggers one or a number of infor-

mation flows that effect a function implied by the triggering data item. The data item,
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called a transaction, and its corresponding flow characteristics are discussed in Sec-

tion 14.5.2. In this section we consider design steps used to treat transaction flow.

14.7.1 An Example

Transaction mapping will be illustrated by considering the user interaction subsystem

of the SafeHome software.  Level 1 data flow for this subsystem is shown as part of

Figure 14.6. Refining the flow, a level 2 data flow diagram (a corresponding data dic-

tionary, CSPEC, and PSPECs would also be created) is developed and shown in Fig-

ure 14.13.

As shown in the figure, user commands flows into the system and results in addi-

tional information flow along one of three action paths. A single data item, com-

mand type, causes the data flow to fan outward from a hub. Therefore, the overall

data flow characteristic is transaction oriented.

It should be noted that information flow along two of the three action paths accom-

modate additional incoming flow (e.g., system parameters and data are input on the

"configure" action path). Each action path flows into a single transform, display mes-

sages and status.

14.7.2 Design Steps

The design steps for transaction mapping are similar and in some cases identical to

steps for transform mapping (Section 14.6). A major difference lies in the mapping

of DFD to software structure.
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Step 1. Review the fundamental system model.

Step 2. Review and refine data flow diagrams for the software.  

Step 3. Determine whether the DFD has transform or transaction flow char-

acteristics. Steps 1, 2, and 3 are identical to corresponding steps in transform map-

ping. The DFD shown in Figure 14.13 has a classic transaction flow characteristic.

However, flow along two of the action paths emanating from the invoke command

processing bubble appears to have transform flow characteristics. Therefore, flow

boundaries must be established for both flow types.

Step 4. Identify the transaction center and the flow characteristics along

each of the action paths. The location of the transaction center can be immedi-

ately discerned from the DFD. The transaction center lies at the origin of a number

of actions paths that flow radially from it. For the flow shown in Figure 14.13, the

invoke command processing bubble is the transaction center.

The incoming path (i.e., the flow path along which a transaction is received) and

all action paths must also be isolated. Boundaries that define a reception path and

action paths are also shown in the figure. Each action path must be evaluated for its

individual flow characteristic. For example, the "password" path (shown enclosed by

a shaded area in Figure 14.13) has transform characteristics. Incoming, transform,

and outgoing flow are indicated with boundaries.

Step 5. Map the DFD in a program structure amenable to transaction pro-

cessing.  Transaction flow is mapped into an architecture that contains an incom-

ing branch and a dispatch branch. The structure of the incoming branch is developed

in much the same way as transform mapping. Starting at the transaction center, bub-

bles along the incoming path are mapped into modules. The structure of the dispatch

branch contains a dispatcher module that controls all subordinate action modules.

Each action flow path of the DFD is mapped to a structure that corresponds to its spe-

cific flow characteristics. This process is illustrated schematically in Figure 14.14.

Considering the user interaction subsystem data flow, first-level factoring for 

step 5 is shown in Figure 14.15. The bubbles read user command and activate/deac-

tivate system map directly into the architecture without the need for intermediate con-

trol modules. The transaction center, invoke command processing, maps directly into

a dispatcher module of the same name. Controllers for system configuration and pass-

word processing are created as illustrated in Figure 14.14.

Step 6. Factor and refine the transaction structure and the structure of each

action path. Each action path of the data flow diagram has its own information flow

characteristics. We have already noted that transform or transaction flow may be

encountered. The action path-related "substructure" is developed using the design

steps discussed in this and the preceding section.

As an example, consider the password processing information flow shown (inside

shaded area) in Figure 14.13. The flow exhibits classic transform characteristics. A

First-level factoring
results in the derivation
of the control hierarchy
for the software.
Second-level factoring
distributes “worker”
modules under the
appropriate controller.
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password is input (incoming flow) and transmitted to a transform center where it is

compared against stored passwords. An alarm and warning message (outgoing flow)

are produced (if a match is not obtained). The "configure" path is drawn similarly using

the transform mapping. The resultant software architecture is shown in Figure 14.16.
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Step 7.  Refine the first-iteration architecture using design heuristics for

improved software quality. This step for transaction mapping is identical to the

corresponding step for transform mapping. In both design approaches, criteria such

as module independence, practicality (efficacy of implementation and test), and main-

tainability must be carefully considered as structural modifications are proposed.

14.8 REFINING THE ARCHITECTURAL DESIGN 

Successful application of transform or transaction mapping is supplemented by addi-

tional documentation that is required as part of architectural design. After the pro-

gram structure has been developed and refined, the following tasks must be completed:

• A processing narrative must be developed for each module.

• An interface description is provided for each module.

• Local and global data structures are defined.

• All design restrictions and limitations are noted.
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• A set of design reviews are conducted.

• Refinement is considered (if required and justified).

A processing narrative is (ideally) an unambiguous, bounded description of pro-

cessing that occurs within a module.  The narrative describes processing tasks, deci-

sions, and I/O. The interface description describes the design of internal module

interfaces, external system interfaces, and the human/computer interface {Chap-

ter 15). The design of data structures can have a profound impact on architecture and

the procedural details for each software component. Restrictions and/or limitations

for each module are also documented. Typical topics for discussion include restric-

tion on data type or format, memory or timing limitations; bounding values or quan-

tities of data structures; special cases not considered; specific characteristics of an

individual module. The purpose of a restrictions and limitations section is to reduce

the number of errors introduced because of assumed functional characteristics. 

Once design documentation has been developed for all modules, one or more

design reviews is conducted (see Chapter 8 for review guidelines). The review empha-

sizes traceability to software requirements, quality of the software architecture, inter-

face descriptions, data structure descriptions, implementation and test practicality,

and maintainability.

Any discussion of design refinement should be prefaced with the following com-

ment: "Remember that an 'optimal design' that doesn't work has questionable merit."

The software designer should be concerned with developing a representation of soft-

ware that will meet all functional and performance requirements and merit accep-

tance based on design measures and heuristics.

Refinement of software architecture during early stages of design is to be encour-

aged. As we discussed earlier in this chapter, alternative architectural styles may be

derived, refined, and evaluated for the "best" approach. This approach to optimiza-

tion is one of the true benefits derived by developing a representation of software

architecture.

It is important to note that structural simplicity often reflects both elegance and

efficiency. Design refinement should strive for the smallest number of modules that

is consistent with effective modularity and the least complex data structure that ade-

quately serves information requirements. 

14.9 SUMMARY 

Software architecture provides a holistic view of the system to be built. It depicts the

structure and organization of software components, their properties, and the con-

nections between them. Software components include program modules and the

various data representations that are manipulated by the program. Therefore, data

design is an integral part of the derivation of the software architecture. Architecture
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highlights early design decisions and provides a mechanism for considering the ben-

efits of alternative system structures. 

Data design translates the data objects defined in the analysis model into data

structures that reside within the software. The attributes that describe the object, the

relationships between data objects and their use within the program all influence the

choice of data structures. At a higher level of abstraction, data design may lead to

the definition of an architecture for a database or a data warehouse.

A number of different architectural styles and patterns are available to the soft-

ware engineer. Each style describes a system category that encompasses a set of

components that perform a function required by a system, a set of connectors that

enable communication, coordination and cooperation among components, con-

straints that define how components can be integrated to form the system, and seman-

tic models that enable a designer to understand the overall properties of a system.

Once one or more architectural styles have been proposed for a system, an archi-

tecture trade-off analysis method may be used to assess the efficacy of each proposed

architecture. This is accomplished by determining the sensitivity of selected quality

attributes (also called design dimensions) to various realization mechanisms that

reflect properties of the architecture. 

The architectural design method presented in this chapter uses data flow charac-

teristics described in the analysis model to derive a commonly used architectural

style. A data flow diagram is mapped into program structure using one of two map-

ping approaches—transform mapping or transaction mapping. Transform mapping

is applied to an information flow that exhibits distinct boundaries between incoming

and outgoing data. The DFD is mapped into a structure that allocates control to input,

processing, and output along three separately factored module hierarchies. Trans-

action mapping is applied when a single information item causes flow to branch along

one of many paths. The DFD is mapped into a structure that allocates control to a

substructure that acquires and evaluates a transaction. Another substructure con-

trols all potential processing actions based on a transaction.

Once an architecture has been derived, it is elaborated and then analyzed against

quality criteria.

Architectural design encompasses the initial set of design activities that lead to a

complete design model of the software. In the chapters that follow, the design focus

shifts to interfaces and components. 
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PROBLEMS AND POINTS TO PONDER

14.1. Using the architecture of a house or building as a metaphor, draw compar-

isons with software architecture. How are the disciplines of classical architecture and

the software architecture similar? How do they differ?
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14.2. Write a three- to five-page paper that presents guidelines for selecting data

structures based on the nature of problem. Begin by delineating the classical data

structures encountered in software work and then describe criteria for selecting from

these for particular types of problems.

14.3. Explain the difference between a database that services one or more con-

ventional business applications and a data warehouse.

14.4. Write a three- to five-page paper that describes how data mining techniques

are used in a business context and the current state of KDD techniques.

14.5. Present two or three examples of applications for each of the architectural

styles noted in Section 14.3.1.

14.6. Some of the architectural styles noted in Section 14.3.1 are hierarchical in

nature and others are not. Make a list of each type. How would the architectural styles

that are not hierarchical be implemented?

14.7. Select an application with which you are familiar. Answer each of the ques-

tions posed for control and data in Section 14.3.2.

14.8. Research the ATAM (using [KAZ98]) and present a detailed discussion of the

six steps presented in Section 14.4.1.

14.9. Select an application with which you are familiar. Using best guesses where

required, identify a set of design dimensions and then perform spectrum analysis and

design selection analysis.

14.10. Research the QDS (using [ASA96]) and develop a quantified design space for

an application with which you are familiar.

14.11. Some designers contend that all data flow may be treated as transform ori-

ented. Discuss how this contention will affect the software architecture that is derived

when a transaction-oriented flow is treated as transform. Use an example flow to

illustrate important points. 

14.12. If you haven't done so, complete problem 12.13. Use the design methods

described in this chapter to develop a software architecture for the PHTRS. 

14.13. Using a data flow diagram and a processing narrative, describe a computer-

based system that has distinct transform flow characteristics. Define flow boundaries

and map the DFD into a software structure using the technique described in Section 14.6. 

14.14. Using a data flow diagram and a processing narrative, describe a computer-

based system that has distinct transaction flow characteristics. Define flow boundaries

and map the DFD into a software structure using the technique described in Section 14.7. 

14.15. Using requirements that are derived from a classroom discussion, complete

the DFDs and architectural design for the SafeHome example presented in Sections
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14.6 and 14.7. Assess the functional independence of all modules. Document your

design. 

14.16. Discuss the relative merits and difficulties of applying data flow-oriented

design in the following areas: (a) embedded microprocessor applications, (b) engi-

neering/scientific analysis, (c) computer graphics, (d) operating system design,

(e) business applications, (f) database management system design, (g) communica-

tions software design, (h) compiler design, (i) process control applications, and 

(j) artificial intelligence applications. 

14.17. Given a set of requirements provided by your instructor (or a set of require-

ments for a problem on which you are currently working) develop a complete archi-

tectural design. Conduct a design review (Chapter 8) to assess the quality of your

design. This problem may be assigned to a team, rather than an individual.

FURTHER READINGS AND INFORMATION SOURCES

The literature on software architecture has exploded over the past decade. Books by

Shaw and Garlan [SHA96], Bass, Clements, and Kazman [BAS98] and Buschmann 

et al. [BUS96] provide in-depth treatment of the subject. Earlier work by Garlan (An

Introduction to Software Architecture, Software Engineering Institute, CMU/SEI-94-

TR-021, 1994) provides an excellent introduction.

Implementation specific books on architecture address architectural design within

a specific development environment or technology. Mowbray (CORBA Design Patterns,

Wiley, 1997) and Mark et al. (Object Management Architecture Guide, Wiley, 1996) pro-

vide detailed design guidelines for the CORBA distributed application support frame-

work. Shanley (Protected Mode Software Architecture, Addison-Wesley, 1996) provides

architectural design guidance for anyone designing PC-based real-time operating sys-

tems, multi-task operating systems, or device drivers.

Current software architecture research is documented yearly in the Proceedings of

the International Workshop on Software Architecture, sponsored by the ACM and other

computing organizations, and the Proceedings of the International Conference on Soft-

ware Engineering. 

Data modeling is a prerequisite to good data design. Books by Teory (Database

Modeling and Design, Academic Press, 1998); Schmidt (Data Modeling for Information

Professionals, Prentice-Hall, 1998); Bobak (Data Modeling and Design for Today's Archi-

tectures, Artech House, 1997); Silverston, Graziano, and Inmon (The Data Model

Resource Book, Wiley, 1997); Date [DAT95], Reingruber and Gregory (The Data Mod-

eling Handbook: A Best-Practice Approach to Building Quality Data Models, Wiley, 1994);

and Hay (Data Model Patterns: Conventions of Thought, Dorset House, 1994) contain

detailed presentations of data modeling notation, heuristics, and database design

approaches. The design of data warehouses has become increasingly important in
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recent years. Books by Humphreys, Hawkins, and Dy (Data Warehousing: Architecture

and Implementation, Prentice-Hall, 1999); Kimball et al. [KIM98]; and Inmon [INM95]

cover the topic in considerable detail.

Dozens of current books address data design and data structures, usually in

the context of a specific programming language. Typical examples are

Horowitz, E. and S. Sahni, Fundamentals of Data Structures in Pascal, 4th ed., W.H. Freeman

and Co., 1999.  

Kingston, J.H., Algorithms and Data Structures: Design, Correctness, Analysis, 2nd ed., 

Addison-Wesley, 1997.  

Main, M., Data Structures and Other Objects Using Java, Addison-Wesley, 1998. 

Preiss, B.R., Data Structures and Algorithms: With Object-Oriented Design Patterns in C++, Wiley,

1998. 

Sedgewick, R., Algorithms in C++: Fundamentals, Data Structures, Sorting, Searching, 

Addison-Wesley, 1999. 

Standish, T.A., Data Structures in Java, Addison-Wesley, 1997. 

Standish, T.A., Data Structures, Algorithms, and Software Principles in C, Addison-Wesley, 1995. 

General treatment of software design with discussion of architectural and data

design issues can be found in most books dedicated to software engineering. Books

by Pfleeger (Software Engineering: Theory and Practice, Prentice-Hall, 1998) and Som-

merville (Software Engineering, 5th ed., Addison-Wesley,1996) are representative of

those that cover design issues in some detail.

More rigorous treatments of the subject can be found in Feijs (Formalization of

Design Methods, Prentice-Hall, 1993), Witt et al. (Software Architecture and Design Prin-

ciples, Thomson Publishing, 1994), and Budgen (Software Design, Addison-Wesley,

1994).

Complete presentations of data flow-oriented design may be found in Myers

[MYE78], Yourdon and Constantine [YOU79], Buhr (System Design with Ada, Prentice-

Hall, 1984), and Page-Jones (The Practical Guide to Structured Systems Design, 2nd ed.,

Prentice-Hall, 1988). These books are dedicated to design alone and provide com-

prehensive tutorials in the data flow approach.

A wide variety of information sources on software design and related subjects is

available on the Internet. An up-to-date list of World Wide Web references that are

relevant to design concepts and methods can be found at the SEPA Web site:

http://www.mhhe.com/engcs/compsci/pressman/resources/

arch-design.mhtml
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The blueprint for a house (its architectural design) is not complete with-
out a representation of doors, windows, and utility connections for water,
electricity, and telephone (not to mention cable TV). The “doors, win-

dows, and utility connections” for computer software make up the interface
design of a system.

Interface design focuses on three areas of concern: (1) the design of inter-
faces between software components, (2) the design of interfaces between the
software and other nonhuman producers and consumers of information (i.e.,
other external entities), and (3) the design of the interface between a human
(i.e., the user) and the computer. In this chapter we focus exclusively on the
third interface design category—user interface design.

In the preface to his classic book on user interface design, Ben Shneiderman
[SHN90] states:

Frustration and anxiety are part of daily life for many users of computerized infor-

mation systems. They struggle to learn command language or menu selection sys-

tems that are supposed to help them do their job. Some people encounter such serious

cases of computer shock, terminal terror, or network neurosis that they avoid using

computerized systems. 

15 USER INTERFACE DESIGN

What is it? User interface design

creates an effective communica-

tion medium between a human

and a computer. Following a set of interface

design principles, design identifies interface objects

and actions and then creates a screen layout that

forms the basis for a user interface prototype. 

Who does it? A software engineer designs the user

interface by applying an iterative process that

draws on predefined design principles.

Why is it important? If software is difficult to use, if it

forces you into mistakes, or if it frustrates your

efforts to accomplish your goals, you won’t like it,

regardless of the computational power it exhibits

or the functionality it offers. Because it molds a

user’s perception of the software, the interface has

to be right.

What are the steps? User interface design begins

with the identification of user, task, and environ-

mental requirements. Once user tasks have been

identified, user scenarios are created and ana-

lyzed to define a set of interface objects and

actions. These form the basis for the creation of

screen layout that depicts graphical design and

placement of icons, definition of descriptive screen

text, specification and titling for windows, and

specification of major and minor menu items.

Tools are used to prototype and ultimately imple-

ment the design model, and the result is evalu-

ated for quality.

Q U I C K
L O O K
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The problems to which Shneiderman alludes are real. It is true that graphical
user interfaces, windows, icons, and mouse picks have eliminated many of the
most horrific interface problems. But even in a “Windows world,” we all have
encountered user interfaces that are difficult to learn, difficult to use, confusing,
unforgiving, and in many cases, totally frustrating. Yet, someone spent time and
energy building each of these interfaces, and it is not likely that the builder cre-
ated these problems purposely.

User interface design has as much to do with the study of people as it does
with technology issues. Who is the user? How does the user learn to interact with
a new computer-based system? How does the user interpret information pro-
duced by the system? What will the user expect of the system? These are only a
few of the many questions that must be asked and answered as part of user inter-
face design. 

15.1 THE GOLDEN RULES

In his book on interface design, Theo Mandel [MAN97] coins three “golden rules”: 

1. Place the user in control.

2. Reduce the user’s memory load.

3. Make the interface consistent.

These golden rules actually form the basis for a set of user interface design princi-

ples that guide this important software design activity.

15.1.1 Place the User in Control

During a requirements-gathering session for a major new information system, a key

user was asked about the attributes of the window-oriented graphical interface.

“What I really would like,” said the user solemnly, “is a system that reads my mind.

It knows what I want to do before I need to do it and makes it very easy for me to get

it done. That’s all, just that.”

My first reaction was to shake of my head and smile, but I paused for a moment.

There was absolutely nothing wrong with the user’s request. She wanted a system

What is the work product? User

scenarios are created and screen

layouts are generated. An inter-

face prototype is developed and modified in an

iterative fashion.

How do I ensure that I’ve done it right? The prototype

is “test driven” by the users and feedback from the

test drive is used for the next iterative modification

of the prototype.

Q U I C K
L O O K
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that reacted to her needs and helped her get things done. She wanted to control the

computer, not have the computer control her.

Most interface constraints and restrictions that are imposed by a designer are

intended to simplify the mode of interaction. But for whom? In many cases, the

designer might introduce constraints and limitations to simplify the implementation

of the interface. The result may be an interface that is easy to build, but frustrating

to use.

Mandel [MAN97] defines a number of design principles that allow the user to main-

tain control:

Define interaction modes in a way that does not force a user into unnec-

essary or undesired actions. An interaction mode is the current state of the

interface. For example, if spell check is selected in a word-processor menu, the

software moves to a spell checking mode. There is no reason to force the user

to remain in spell checking mode if the user desires to make a small text edit

along the way. The user should be able to enter and exit the mode with little or

no effort.

Provide for flexible interaction. Because different users have different interaction

preferences, choices should be provided. For example, software might allow a user

to interact via keyboard commands, mouse movement, a digitizer pen, or voice recog-

nition commands. But every action is not amenable to every interaction mechanism.

Consider, for example, the difficulty of using keyboard command (or voice input) to

draw a complex shape.

Allow user interaction to be interruptible and undoable. Even when involved

in a sequence of actions, the user should be able to interrupt the sequence to do

something else (without losing the work that had been done). The user should also

be able to “undo” any action.

Streamline interaction as skill levels advance and allow the interaction to

be customized. Users often find that they perform the same sequence of interac-

tions repeatedly. It is worthwhile to design a “macro” mechanism that enables an

advanced user to customize the interface to facilitate interaction. 

Hide technical internals from the casual user. The user interface should move

the user into the virtual world of the application. The user should not be aware of the

operating system, file management functions, or other arcane computing technol-

ogy. In essence, the interface should never require that the user interact at a level

that is “inside” the machine (e.g., a user should never be required to type operating

system commands from within application software).

Design for direct interaction with objects that appear on the screen. The user

feels a sense of control when able to manipulate the objects that are necessary to

perform a task in a manner similar to what would occur if the object were a physi-

cal thing. For example, an application interface that allows a user to “stretch” an

object (scale it in size) is an implementation of direct manipulation.
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“A common mistake
that people make
when trying to
design something
completely foolproof
is to underestimate
the ingenuity of
complete fools.”
Douglas Adams 

How do we
design

interfaces that
allow the user to
maintain control?
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15.1.2 Reduce the User’s Memory Load

The more a user has to remember, the more error-prone will be the interaction with

the system. It is for this reason that a well-designed user interface does not tax the

user’s memory. Whenever possible, the system should “remember” pertinent infor-

mation and assist the user with an interaction scenario that assists recall. Mandel

[MAN97] defines design principles that enable an interface to reduce the user’s mem-

ory load:

Reduce demand on short-term memory. When users are involved in com-

plex tasks, the demand on short-term memory can be significant. The interface

should be designed to reduce the requirement to remember past actions and

results. This can be accomplished by providing visual cues that enable a user to

recognize past actions, rather than having to recall them.

Establish meaningful defaults. The initial set of defaults should make sense

for the average user, but a user should be able to specify individual preferences.

However, a “reset” option should be available, enabling the redefinition of orig-

inal default values.

Define shortcuts that are intuitive. When mnemonics are used to accomplish

a system function (e.g., alt-P to invoke the print function), the mnemonic should

be tied to the action in a way that is easy to remember (e.g., first letter of the task

to be invoked). 

The visual layout of the interface should be based on a real world

metaphor. For example, a bill payment system should use a check book and

check register metaphor to guide the user through the bill paying process. This

enables the user to rely on well-understood visual cues, rather than memoriz-

ing an arcane interaction sequence. 

Disclose information in a progressive fashion. The interface should be orga-

nized hierarchically. That is, information about a task, an object, or some behav-

ior should be presented first at a high level of abstraction. More detail should be

presented after the user indicates interest with a mouse pick. An example, com-

mon to many word-processing applications, is the underlining function. The func-

tion itself is one of a number of of functions under a text style menu. However,

every underlining capability is not listed. The user must pick underlining, then

all underlining options (e.g., single underline, double underline, dashed under-

line) are presented. 

15.1.3 Make the Interface Consistent

The interface should present and acquire information in a consistent fashion.

This implies that (1) all visual information is organized according to a design

standard that is maintained throughout all screen displays, (2) input mecha-

nisms are constrained to a limited set that are used consistently throughout the

“The interface from
hell: ‘Enter any 11-
digit prime number
to continue . . .’ “
author unknown 

How do we
design

interfaces that
reduce the user’s
memory load?
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application, and (3) mechanisms for navigating from task to task are consis-

tently defined and implemented.  Mandel [MAN97] defines a set of  design prin-

ciples that help make the interface consistent:

Allow the user to put the current task into a meaningful context. Many

interfaces implement complex layers of interactions with dozens of screen images.

It is important to provide indicators (e.g., window titles, graphical icons, consis-

tent color coding) that enable the user to know the context of the work at hand.

In addition, the user should be able to determine where he has come from and

what alternatives exist for a transition to a new task.

Maintain consistency across a family of applications. A set of applications

(or products) should all implement the same design rules so that consistency is

maintained for all interaction.

If past interactive models have created user expectations, do not make

changes unless there is a compelling reason to do so. Once a particular

interactive sequence has become a de facto standard (e.g., the use of alt-S to

save a file), the user expects this in every application he encounters. A change

(e.g., using alt-S to invoke scaling) will cause confusion.

The interface design principles discussed in this and the preceding sections pro-

vide basic guidance for a software engineer. In the sections that follow, we exam-

ine the interface design process itself.

15.2 USER INTERFACE DESIGN

The overall process for designing a user interface begins with the creation of differ-

ent models of system function (as perceived from the outside). The human- and 

computer-oriented tasks that are required to achieve system function are then delin-

eated; design issues that apply to all interface designs are considered; tools are used

to prototype and ultimately implement the design model; and the result is evaluated

for quality.

15.2.1 Interface Design Models

Four different models come into play when a user interface is to be designed. The

software engineer creates a design model, a human engineer (or the software engi-

neer) establishes a user model, the end-user develops a mental image that is often

called the user's model or the system perception, and the implementers of the system

create a system image [RUB88]. Unfortunately, each of these models may differ sig-

nificantly. The role of interface designer is to reconcile these differences and derive

a consistent representation of the interface.

A design model of the entire system incorporates data, architectural, interface,

and procedural representations of the software. The requirements specification may
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establish certain constraints that help to define the user of the system, but the inter-

face design is often only incidental to the design model.1

The user model establishes the profile of end-users of the system. To build an effec-

tive user interface, "all design should begin with an understanding of the intended

users, including profiles of their age, sex, physical abilities, education, cultural or eth-

nic background, motivation, goals and personality" [SHN90]. In addition, users can

be categorized as

• Novices. No syntactic knowledge2 of the system and little semantic

knowledge3 of the application or computer usage in general.

• Knowledgeable, intermittent users. Reasonable semantic knowledge of

the application but relatively low recall of syntactic information necessary to

use the interface.

• Knowledgeable, frequent users. Good semantic and syntactic knowledge

that often leads to the "power-user syndrome"; that is, individuals who look

for shortcuts and abbreviated modes of interaction.

The system perception (user's model) is the image of the system that end-users

carry in their heads. For example, if the user of a particular word processor were

asked to describe its operation, the system perception would guide the response. The

accuracy of the description will depend upon the user's profile (e.g., novices would

provide a sketchy response at best) and overall familiarity with software in the appli-

cation domain. A user who understands word processors fully but has worked with

the specific word processor only once might actually be able to provide a more com-

plete description of its function than the novice who has spent weeks trying to learn

the system.

The system image combines the outward manifestation of the computer-based

system (the look and feel of the interface), coupled with all supporting information

(books, manuals, videotapes, help files) that describe system syntax and semantics.

When the system image and the system perception are coincident, users generally

feel comfortable with the software and use it effectively. To accomplish this "meld-

ing" of the models, the design model must have been developed to accommodate the

information contained in the user model, and the system image must accurately reflect

syntactic and semantic information about the interface. 

The models described in this section are "abstractions of what the user is doing

or thinks he is doing or what somebody else thinks he ought to be doing when he

1 Of course, this is not as it should be. For interactive systems, the interface design is as important
as the data, architectural, or component-level design.

2 In this context, syntactic knowledge refers to the mechanics of interaction that is required to use
the interface effectively.

3 Semantic knowledge refers to an underlying sense of the application—an understanding of the
functions that are performed, the meaning of input and output, and the goals and objectives of
the system.

When the system
image and the system
perception coincide,
the user can apply the
application effectively.

“USER, n.: The word
computer
professionals use
when they mean
'idiot.' “
Dave Barry 
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uses an interactive system" [MON84]. In essence, these models enable the interface

designer to satisfy a key element of the most important principle of user interface

design: "Know the user, know the tasks."

15.2.2 The User Interface Design Process

The design process for user interfaces is iterative and can be represented using a spi-

ral model similar to the one discussed in Chapter 2. Referring to Figure 15.1, the user

interface design process encompasses four distinct framework activities [MAN97]:

1. User, task, and environment analysis and modeling

2. Interface design

3. Interface construction

4. Interface validation

The spiral shown in Figure 15.1 implies that each of these tasks will occur more than

once, with each pass around the spiral representing additional elaboration of require-

ments and the resultant design. In most cases, the implementation activity involves

prototyping—the only practical way to validate what has been designed.

The initial analysis activity focuses on the profile of the users who will interact

with the system. Skill level, business understanding, and general receptiveness to the

new system are recorded; and different user categories are defined. For each user

category, requirements are elicited. In essence, the software engineer attempts to

understand the system perception (Section 15.2.1)  for each class of users. 

Once general requirements have been defined, a more detailed task analysis is

conducted. Those tasks that the user performs to accomplish the goals of the system

are identified, described, and elaborated (over a number of iterative passes through

the spiral). Task analysis is discussed in more detail in Section 15.3.
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“I never design a
building before I've
seen the site and
met the people who
will be using it.”
Frank Lloyd Wright 
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The analysis of the user environment focuses on the physical work environment.

Among the questions to be asked are

• Where will the interface be located physically?

• Will the user be sitting, standing, or performing other tasks unrelated to the

interface?

• Does the interface hardware accommodate space, light, or noise constraints?

• Are there special human factors considerations driven by environmental factors?

The information gathered as part of the analysis activity is used to create an analy-

sis model for the interface. Using this model as a basis, the design activity commences.

The goal of interface design is to define a set of interface objects and actions (and

their screen representations) that enable a user to perform all defined tasks in a man-

ner that meets every usability goal defined for the system. Interface design is dis-

cussed in more detail in Section 15.4.

The implementation activity normally begins with the creation of a prototype that

enables usage scenarios to be evaluated. As the iterative design process continues,

a user interface tool kit (Section 15.5) may be used to complete the construction of

the interface.

Validation focuses on (1) the ability of the interface to implement every user task

correctly, to accommodate all task variations, and to achieve all general user require-

ments; (2) the degree to which the interface is easy to use and easy to learn; and (3)

the users’ acceptance of the interface as a useful tool in their work.

As we have already noted, the activities described in this section occur iteratively.

Therefore, there is no need to attempt to specify every detail (for the analysis or design

model) on the first pass. Subsequent passes through the process elaborate task detail,

design information, and the operational features of the interface. 

15.3 TASK ANALYSIS AND MODELING

In Chapter 13, we discussed stepwise elaboration (also called functional

decomposition or stepwise refinement) as a mechanism for refining the pro-

cessing tasks that are required for software to accomplish some desired func-

tion. Later in this book, we consider object-oriented analysis as a modeling

approach for computer-based systems. Task analysis for interface design uses

either an elaborative or object-oriented approach but applies this approach

to human activities. 

Task analysis can be applied in two ways. As we have already noted, an interac-

tive, computer-based system is often used to replace a manual or semi-manual activ-

ity. To understand the tasks that must be performed to accomplish the goal of the

What is the
goal of user

interface design?
?
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activity, a human engineer4 must understand the tasks that humans currently per-

form (when using a manual approach) and then map these into a similar (but not

necessarily identical) set of tasks that are implemented in the context of the user

interface. Alternatively, the human engineer can study an existing specification for a

computer-based solution and derive a set of user tasks that will accommodate the

user model, the design model, and the system perception.

Regardless of the overall approach to task analysis, a human engineer must first

define and classify tasks. We have already noted that one approach is stepwise elab-

oration. For example, assume that a small software company wants to build a 

computer-aided design system explicitly for interior designers. By observing an inte-

rior  designer at work, the engineer notices that interior design comprises a number

of major activities: furniture layout, fabric and material selection, wall and window

coverings selection, presentation (to the customer), costing, and shopping. Each of

these major tasks can be elaborated into subtasks. For example, furniture layout can

be refined into the following tasks: (1) draw a floor plan based on room dimensions;

(2) place windows and doors at appropriate locations; (3) use furniture templates to

draw scaled furniture outlines on floor plan; (4) move furniture outlines to get best

placement; (5) label all furniture outlines; (6) draw dimensions to show location; (7)

draw perspective view for customer. A similar approach could be used for each of

the other major tasks.

Subtasks 1–7 can each be refined further.  Subtasks 1–6 will be performed by manip-

ulating information and performing actions within the user interface. On the other

hand, subtask 7 can be performed automatically in software and will result in little

direct user interaction. The design model of the interface should accommodate each

of these tasks in a way that is consistent with the user model (the profile of a "typi-

cal" interior designer) and system perception (what the interior designer expects from

an automated system).

An alternative approach to task analysis takes an object-oriented point of view.

The human engineer observes the physical objects that are used by the interior

designer and the actions that are applied to each object. For example, the furni-

ture template would be an object in this approach to task analysis. The interior

designer would select the appropriate template, move it to a position on the floor

plan, trace the furniture outline and so forth. The design model for the interface

would not provide a literal implementation for each of these actions, but it would

define user tasks that accomplish the end result (drawing furniture outlines on the

floor plan).
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4 In many cases the activities described in this section are performed by a software engineer. Ide-
ally, the individual has had some training in human engineering and user interface design.

Human tasks are
defined and classified
as part of task
analysis. A process of
elaboration is used to
refine tasks.
Alternatively, objects
and actions are
identified and refined.
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discussed in Chapter
21.
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15.4 INTERFACE DESIGN ACTIVITIES

Once task analysis has been completed, all tasks (or objects and actions) required by

the end-user have been identified in detail and the interface design activity com-

mences. The first interface design steps [NOR86] can be accomplished using the fol-

lowing approach:

1. Establish the goals5 and intentions for each task.

2. Map each goal and intention to a sequence of specific actions.

3. Specify the action sequence of tasks and subtasks, also called a user scenario,

as it will be executed at the interface level.

4. Indicate the state of the system; that is, what does the interface look like at

the time that a user scenario is performed?

5. Define control mechanisms; that is, the objects and actions available to the

user to alter the system state.

6. Show how control mechanisms affect the state of the system.

7. Indicate how the user interprets the state of the system from information pro-

vided through the interface.

Always following the golden rules discussed in Section 15.1, the interface designer

must also consider how the interface will be implemented, the environment (e.g.,

display technology, operating system, development tools) that will be used, and other

elements of the application that “sit behind” the interface.

15.4.1 Defining Interface Objects and Actions

An important step in interface design is the definition of interface objects and the

actions that are applied to them. To accomplish this, the user scenario is parsed in

much the same way as processing narratives were parsed in Chapter 12. That is, a

description of a user scenario is written. Nouns (objects) and verbs (actions) are iso-

lated to create a list of objects and actions. 

Once the objects and actions have been defined and elaborated iteratively, they

are categorized by type. Target, source, and application objects are identified. A source

object (e.g., a report icon) is dragged and dropped onto a target object (e.g., a printer

icon). The implication of this action is to create a hard-copy report. An application

object represents application-specific data that is not directly manipulated as part of

screen interaction. For example, a mailing list is used to store names for a mailing.

The list itself might be sorted, merged, or purged (menu-based actions) but it is not

dragged and dropped via user interaction.

5 Goals include a consideration of the usefulness of the task, its effectiveness in accomplishing the
overriding business objective, the degree to which the task can be learned quickly, and the degree
to which users will be satisfied with the ultimate implementation of the task.

XRef
A complete discussion
of the grammatical
parse can be found in
Section 12.6.2.

What steps
do we

perform to
accomplish
interface design?

?



CHAPTER 15 USER INTERFACE DESIGN

When the designer is satisfied that all important objects and actions have been

defined (for one design iteration), screen layout is performed. Like other interface

design activities, screen layout is an interactive process in which graphical design

and placement of icons, definition of descriptive screen text, specification and titling

for windows, and definition of major and minor menu items is conducted. If a real

world metaphor is appropriate for the application, it is specified at this time and the

layout is organized in a manner that complements the metaphor.

To provide a brief illustration of the design steps noted previously, we consider a

user scenario for an advanced version of the SafeHome system (discussed in earlier

chapters). In the advanced version, SafeHome can be accessed via modem or through

the Internet. A PC application allows the homeowner to check the status of the house

from a remote location, reset the SafeHome configuration, arm and disarm the sys-

tem, and (using an extra cost video option6) monitor rooms within the house visu-

ally. A preliminary user scenario for the interface follows:

Scenario: The homeowner wishes to gain access to the SafeHome system installed in his

house. Using software operating on a remote PC (e.g., a notebook computer carried by the

homeowner while at work or traveling), the homeowner determines the status of the alarm

system, arms or disarms the system, reconfigures security zones, and views different rooms

within the house via preinstalled video cameras.

To access SafeHome from a remote location, the homeowner provides an identifier and

a password. These define levels of access (e.g., all users may not be able to reconfigure the

system) and provide security. Once validated, the user (with full access privileges) checks

the status of the system and changes status by arming or disarming SafeHome. The user

reconfigures the system by displaying a floor plan of the house, viewing each of the secu-

rity sensors, displaying each currently configured zone, and modifying zones as required.

The user views the interior of the house via strategically placed video cameras. The user

can pan and zoom each camera to provide different views of the interior.

Homeowner tasks:

• accesses the SafeHome system

• enters an ID and  password to allow remote access

• checks system status

• arms or disarms SafeHome system

• displays floor plan and sensor locations

• displays zones on floor plan

• changes zones on floor plan

• displays video camera locations on floor plan

• selects video camera for viewing

• views video images (4 frames per second)

• pans or zooms the video camera

411

6 The video option enables the homeowner to place video cameras at key locations throughout a
house and peruse the output from a remote location. Big Brother?
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Objects (boldface) and actions (italics) are extracted from this list of homeowner tasks.

The majority of objects noted are application objects. However, video camera loca-

tion (a source object) is dragged and dropped onto video camera (a target object) to

create a video image (a window with video display).

A preliminary sketch of the screen layout for video monitoring is created (Figure

15.2). To invoke the video image, a video camera location icon, C, located in floor

plan displayed in the monitoring window is selected. In this case a camera loca-

tion in the living room, LR, is then dragged and dropped onto the video camera icon

in the upper left-hand portion of the screen. The video image window appears, dis-

playing streaming video from the camera located in the living room (LR). The zoom

and pan control slides are used to control the magnification and direction of the video

image. To select a view from another camera, the user simply drags and drops a dif-

ferent camera location icon into the camera icon in the upper left-hand corner of

the screen.

The layout sketch shown would have to be supplemented with an expansion of

each menu item within the menu bar, indicating what actions are available for the

Access   Configure  System Status   View   Monitoring

Monitoring

First Floor

S
S

S

S

S

S

S

S

M

M

Video Image—LR

LR

DR

KIT
C

C

C

SafeHome
Connect

Status

Video Camera

In Out

RL

S
M
C

door/window sensor
motion detector (beam shown)
video camera location

FIGURE 5.2 Preliminary screen layout
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video monitoring mode (state). A complete set of sketches for each homeowner task

noted in the user scenario would be created during the interface design.

15.4.2 Design Issues

As the design of a user interface evolves, four common design issues almost always sur-

face: system response time, user help facilities, error information handling, and com-

mand labeling. Unfortunately, many designers do not address these issues until relatively

late in the design process (sometimes the first inkling of a problem doesn't occur until

an operational prototype is available). Unnecessary iteration, project delays, and cus-

tomer frustration often result. It is far better to establish each as a design issue to be con-

sidered at the beginning of software design, when changes are easy and costs are low.

System response time is the primary complaint for many interactive applications.

In general, system response time is measured from the point at which the user per-

forms some control action (e.g., hits the return key or clicks a mouse) until the soft-

ware responds with desired output or action. 

System response time has two important characteristics: length and variability. If

the length of system response is too long, user frustration and stress is the inevitable

result. However, a very brief response time can also be detrimental if the user is being

paced by the interface. A rapid response may force the user to rush and therefore

make mistakes. 

Variability refers to the deviation from average response time, and in many ways,

it is the most important response time characteristic. Low variability enables the user

to establish an interaction rhythm, even if response time is relatively long. For exam-

ple, a 1-second response to a command is preferable to a response that varies from

0.1 to 2.5 seconds. The user is always off balance, always wondering whether some-

thing "different" has occurred behind the scenes.

Almost every user of an interactive, computer-based system requires help now

and then. In some cases, a simple question addressed to a knowledgeable colleague

can do the trick. In others, detailed research in a multivolume set of "user manuals"

may be the only option. In many cases, however, modern software provides on-line

help facilities that enable a user to get a question answered or resolve a problem

without leaving the interface.

Two different types of help facilities are encountered: integrated and add-on

[RUB88]. An integrated help facility is designed into the software from the beginning.

It is often context sensitive, enabling the user to select from those topics that are rel-

evant to the actions currently being performed. Obviously, this reduces the time

required for the user to obtain help and increases the "friendliness" of the interface.

An add-on help facility is added to the software after the system has been built. In

many ways, it is really an on-line user's manual with limited query capability. The

user may have to search through a list of hundreds of topics to find appropriate guid-

ance, often making many false starts and receiving much irrelevant information.

There is little doubt that the integrated help facility is preferable to the add-on approach.
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A number of design issues [RUB88] must be addressed when a help facility is

considered:

• Will help be available for all system functions and at all times during system

interaction? Options include help for only a subset of all functions and

actions or help for all functions.

• How will the user request help? Options include a help menu, a special func-

tion key, or a HELP command.

• How will help be represented? Options include a separate window, a refer-

ence to a printed document (less than ideal), or a one- or two-line suggestion

produced in a fixed screen location.

• How will the user return to normal interaction? Options include a return but-

ton displayed on the screen, a function key, or control sequence.

• How will help information be structured? Options include a "flat" structure in

which all information is accessed through a keyword, a layered hierarchy of

information that provides increasing detail as the user proceeds into the

structure, or the use of hypertext.

Error messages and warnings are "bad news" delivered to users of interactive sys-

tems when something has gone awry. At their worst, error messages and warnings

impart useless or misleading information and serve only to increase user frustration.

There are few computer users who have not encountered an error of the form:

SEVERE SYSTEM FAILURE -- 14A

Somewhere, an explanation for error 14A must exist; otherwise, why would the design-

ers have added the identification? Yet, the error message provides no real indication of

what is wrong or where to look to get additional information. An error message presented

in this manner does nothing to assuage user anxiety or to help correct the problem.

In general, every error message or warning produced by an interactive system

should have the following characteristics:

• The message should describe the problem in jargon that the user can understand.

• The message should provide constructive advice for recovering from the error.

• The message should indicate any negative consequences of the error (e.g.,

potentially corrupted data files) so that the user can check to ensure that they

have not occurred (or correct them if they have).

• The message should be accompanied by an audible or visual cue. That is, a

beep might be generated to accompany the display of the message, or the

message might flash momentarily or be displayed in a color that is easily rec-

ognizable as the "error color."

• The message should be "nonjudgmental." That is, the wording should never

place blame on the user.

Spend twice as much
effort and expend
twice as many words
on troubleshooting as
you think you’ll need
for your help facility,
and you’ll probably get
it about right.

What design
issues should

be considered
when we build a
help facility?

?
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Because no one really likes bad news, few users will like an error message no mat-

ter how well designed. But an effective error message philosophy can do much to

improve the quality of an interactive system and will significantly reduce user frus-

tration when problems do occur.

The typed command was once the most common mode of interaction between

user and system software and was commonly used for applications of every type.

Today, the use of window-oriented, point and pick interfaces has reduced reliance

on typed commands, but many power-users continue to prefer a command-oriented

mode of interaction. A number of design issues arise when typed commands are pro-

vided as a mode of interaction:

• Will every menu option have a corresponding command?

• What form will commands take? Options include a control sequence (e.g.,

alt-P), function keys, or a typed word. 

• How difficult will it be to learn and remember the commands? What can be

done if a command is forgotten?

• Can commands be customized or abbreviated by the user?

As we noted earlier in this chapter, conventions for command usage should be estab-

lished across all applications. It is confusing and often error-prone for a user to type

alt-D when a graphics object is to be duplicated in one application and alt-D when a

graphics object is to be deleted in another. The potential for error is obvious. 

15.5 IMPLEMENTATION TOOLS

Once a design model is created, it is implemented as a prototype,7 examined by users

(who fit the user model described earlier) and modified based on their comments. To

accommodate this iterative design approach, a broad class of interface design and

prototyping tools has evolved. Called user-interface toolkits or user-interface develop-

ment systems (UIDS), these tools provide components or objects that facilitate cre-

ation of windows, menus, device interaction, error messages, commands, and many

other elements of an interactive environment.

Using prepackaged software components to create a user interface, a UIDS pro-

vides built-in mechanisms [MYE89] for

• managing input devices (such as a mouse or keyboard)

• validating user input

• handling errors and displaying error messages

• providing feedback (e.g., automatic input echo)

• providing help and prompts

415

7 It should be noted that in some cases (e.g., aircraft cockpit displays) the first step might be to sim-
ulate the interface on a display device rather than prototyping it.
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• handling windows and fields, scrolling within windows

• establishing connections between application software and the interface

• insulating the application from interface management functions

• allowing the user to customize the interface

These functions can be implemented using either a language-based or graphical

approach. 

15.6 DESIGN EVALUATION

Once an operational user interface prototype has been created, it must be evaluated

to determine whether it meets the needs of the user. Evaluation can span a formal-

ity spectrum that ranges from an informal "test drive," in which a user provides

impromptu feedback to a formally designed study that uses statistical methods for

the evaluation of questionnaires completed by a population of end-users.

The user interface evaluation cycle takes the form shown in Figure 15.3. After the

design model has been completed, a first-level prototype is created. The prototype is

evaluated by the user, who provides the designer with direct comments about the

efficacy of the interface. In addition, if formal evaluation techniques are used (e.g.,

questionnaires, rating sheets), the designer may extract information from these data

Build
prototype #n

interface

Evaluation
is studied by

designer

User
evaluates
interface

Design
modifications

are made

Build
prototype #1

interface

Preliminary
design

Interface design
is complete

FIGURE 15.3
The interface
design 
evaluation
cycle
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(e.g., 80 percent of all users did not like the mechanism for saving data files). Design

modifications are made based on user input and the next level prototype is created.

The evaluation cycle continues until no further modifications to the interface design

are necessary. 

The prototyping approach is effective, but is it possible to evaluate the quality of a

user interface before a prototype is built? If potential problems can be uncovered and

corrected early, the number of loops through the evaluation cycle will be reduced and

development time will shorten. If a design model of the interface has been created, a

number of evaluation criteria [MOR81] can be applied during early design reviews:

1. The length and complexity of the written specification of the system and its

interface provide an indication of the amount of learning required by users of

the system.

2. The number of user tasks specified and the average number of actions per

task provide an indication of interaction time and the overall efficiency of the

system.

3. The number of actions, tasks, and system states indicated by the design

model imply the memory load on users of the system.

4. Interface style, help facilities, and error handling protocol provide a general

indication of the complexity of the interface and the degree to which it will be

accepted by the user.

Once the first prototype is built, the designer can collect a variety of qualitative

and quantitative data that will assist in evaluating the interface. To collect qualita-

tive data, questionnaires can be distributed to users of the prototype. Questions can

be all (1) simple yes/no response, (2) numeric response, (3) scaled (subjective)

response, or (4) percentage (subjective) response. Examples are

1. Were the icons self-explanatory? If not, which icons were unclear?

2. Were the actions easy to remember and to invoke?  

3. How many different actions did you use?

4. How easy was it to learn basic system operations (scale 1 to 5)?

5. Compared to other interfaces you've used, how would this rate—top 1%, top

10%, top 25%, top 50%, bottom 50%?

If quantitative data are desired, a form of time study analysis can be conducted.

Users are observed during interaction, and data—such as number of tasks correctly

completed over a standard time period, frequency of actions, sequence of actions,

time spent "looking" at the display, number and types of errors, error recovery time,

time spent using help, and number of help references per standard time period—are

collected and used as a guide for interface modification. 

A complete discussion of user interface evaluation methods is beyond the scope

of this book. For further information, see [LEA88] and [MAN97].
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15.7 SUMMARY

The user interface is arguably the most important element of a computer-based sys-

tem or product. If the interface is poorly designed, the user’s ability to tap the com-

putational power of an application may be severely hindered. In fact, a weak interface

may cause an otherwise well-designed and solidly implemented application to fail.

Three important principles guide the design of effective user interfaces: (1) place

the user in control, (2) reduce the user’s memory load, and (3) make the interface

consistent. To achieve an interface that abides by these principles, an organized design

process must be conducted.

User interface design begins with the identification of user, task, and environ-

mental requirements. Task analysis is a design activity that defines user tasks and

actions using either an elaborative or object-oriented approach.

Once tasks have been identified, user scenarios are created and analyzed to define

a set of interface objects and actions. This provides a basis for the creation of screen

layout that depicts graphical design and placement of icons, definition of descriptive

screen text, specification and titling for windows, and specification of major and minor

menu items. Design issues such as response time, command and action structure,

error handling, and help facilities are considered as the design model is refined. A

variety of implementation tools are used to build a prototype for evaluation by the

user. 

The user interface is the window into the software. In many cases, the interface

molds a user’s perception of the quality of the system. If the “window” is smudged,

wavy, or broken, the user may reject an otherwise powerful computer-based system.
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PROBLEMS AND POINTS TO PONDER

15.1. Describe the worst interface that you have ever worked with and critique it

relative to the concepts introduced in this chapter. Describe the best interface that

you have ever worked with and critique it relative to the concepts introduced in this

chapter.

15.2. Develop two additional design principles that “place the user in control.”

15.3. Develop two additional design principles that “reduce the user’s memory load.”

15.4. Develop two additional design principles that “make the interface consistent.”

15.5. Consider one of the following interactive applications (or an application

assigned by your instructor):

a. A desktop publishing system.

b. A computer-aided design system.

c. An interior design system (as described in Section 15.3.2).

d. An automated course registration system for a university.

e. A library management system.

f. An Internet-based polling booth for public elections.

g. A home banking system.

h. An interactive application assigned by your instructor.

Develop a design model, a user model, a system image, and a system perception for

any one of these systems.

15.6. Perform a detailed task analysis for any one of the systems listed in Problem

15.5. Use either an elaborative or object-oriented approach.

15.7. Continuing Problem 15.6, define interface objects and actions for the applica-

tion you have chosen. Identify each object type.

15.8. Develop a set of screen layouts with a definition of major and minor menu

items for the system you chose in Problem 15.5.

15.9. Develop a set of screen layouts with a definition of major and minor menu

items for the advanced SafeHome system described in Section 15.4.1. You may 

elect to take a different approach than the one shown for the screen layout in Figure

15.2.

15.10. Describe your approach to user help facilities for the task analysis design

model and task analysis you have performed as part of Problems 15.5 through 15.8.

15.11. Provide a few examples that illustrate why response time variability can be

an issue.

15.12. Develop an approach that would automatically integrate error messages and

a user help facility. That is, the system would automatically recognize the error type

419
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and provide a help window with suggestions for correcting it. Perform a reasonably

complete software design that considers appropriate data structures and algorithms.

15.13. Develop an interface evaluation questionnaire that contains 20 generic ques-

tions that would apply to most interfaces. Have ten classmates complete the ques-

tionnaire for an interactive system that you all use. Summarize the results and report

them to your class.

FURTHER READINGS AND INFORMATION SOURCES 

Although his book is not specifically about human/computer interfaces, much of what

Donald Norman (The Design of Everyday Things, reissue edition, Currency/Double-

day, 1990) has to say about the psychology of effective design applies to the user inter-

face. It is recommended reading for anyone who is serious about doing high-quality

interface design.

Dozens of books have been written about interface design over the past decade.

However, books by Mandel [MAN97] and Shneiderman [SHN90] continue to provide

the most comprehensive (and readable) treatments of the subject. Donnelly (In Your

Face: The Best of Interactive Interface Design, Rockport Publications, 1998); Fowler,

Stanwick, and Smith (GUI Design Handbook, McGraw-Hill, 1998); Weinschenk, Jamar,

and Yeo (GUI Design Essentials, Wiley, 1997); Galitz (The Essential Guide to User Inter-

face Design: An Introduction to GUI Design Principles and Techniques, Wiley, 1996); Mul-

let and Sano (Designing Visual Interfaces: Communication Oriented Techniques,

PrenticeHall, 1995); and Cooper (About Face: The Essentials of User Interface Design,

IDG Books, 1995) have written treatments that provide additional design guidelines

and principles as well as suggestions for interface requirements elicitation, design

modeling, implementation, and testing.

Task analysis and modeling are pivotal interface design activities. Hackos and

Redish (User and Task Analysis for Interface Design, Wiley, 1998) have written a book

dedicated to these subjects and provide a detailed method for approaching task analy-

sis. Wood (User Interface Design: Bridging the Gap from User Requirements to Design,

CRC Press, 1997) considers the analysis activity for interfaces and the transition 

to design tasks. One of the first books to present the subject of scenarios in user-

interface design has been edited by Carroll (Scenario-Based Design: Envisioning Work

and Technology in System Development, Wiley, 1995). A formal method for design of

user interfaces, based on state-based behavior modeling has been developed by Hor-

rocks (Constructing the User Interface with Statecharts, Addison-Wesley, 1998).

The evaluation activity focuses on usability. Books by Rubin (Handbook of Usabil-

ity Testing: How to Plan, Design, and Conduct Effective Tests, Wiley, 1994) and Nielson

(Usability Inspection Methods, Wiley, 1994) address the topic in considerable detail.

The Apple Macintosh popularized easy to use and solidly designed user interfaces.

The Apple staff (MacIntosh Human Interface Guidelines, Addison-Wesley, 1993) dis-
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cusses the now famous (and much copied) Macintosh look and feel. One of the ear-

liest among many books written about the Microsoft Windows interface was pro-

duced by the Microsoft staff (The Windows Interface Guidelines for Software Design: An

Application Design Guide, Microsoft Press, 1995). 

In a unique book that may be of considerable interest to product designers, Mur-

phy (Front Panel: Designing Software for Embedded User Interfaces, R&D Books, 1998)

provides detailed guidance for the design of interfaces for embedded systems and

addresses safety hazards inherent in controls, handling heavy machinery, and inter-

faces for medical or transport systems. Interface design for embedded products is

also discussed by Garrett (Advanced Instrumentation and Computer I/O Design: Real-

Time System Computer Interface Engineering, IEEE, 1994).

A wide variety of information sources on user interface design and related sub-

jects is available on the Internet. An up-to-date list of World Wide Web references

that are relevant to interface design issues can be found at the SEPA Web site:

http://www.mhhe.com/engcs/compsci/pressman/resources/

interface-design.mhtml
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Component-level design, also called procedural design, occurs after data,
architectural, and interface designs have been established. The intent
is to translate the design model into operational software. But the level

of abstraction of the existing design model is relatively high, and the abstrac-
tion level of the operational program is low. The translation can be challeng-
ing, opening the door to the introduction of subtle errors that are difficult to find
and correct in later stages of the software process. In a famous lecture, Edsgar
Dijkstra, a major contributor to our understanding of design, stated [DIJ72]: 

Software seems to be different from many other products, where as a rule higher

quality implies a higher price. Those who want really reliable software will discover

that they must find a means of avoiding the majority of bugs to start with, and as a

result, the programming process will become cheaper . . . effective programmers 

. . . should not waste their time debugging—they should not introduce bugs to start

with. 

Although these words were spoken many years ago, they remain true today.
When the design model is translated into source code, we must follow a set of
design principles that not only perform the translation but also do not “intro-
duce bugs to start with.”

16 COMPONENT-LEVEL DESIGN

What is it? Data, architectural,

and interface design must be

translated into operational soft-

ware. To accomplish this, the design must be rep-

resented at a level of abstraction that is close to

code. Component-level design establishes the

algorithmic detail required to manipulate data

structures, effect communication between soft-

ware components via their interfaces, and imple-

ment the processing algorithms allocated to each

component. 

Who does it? A software engineer performs 

component-level design.

Why is it important? You have to be able to deter-

mine whether the program will work before you

build it. The component-level design represents

the software in a way that allows you to review

the details of the design for correctness and con-

sistency with earlier design representations (i.e.,

the data, architectural, and interface designs). It

provides a means for assessing whether data struc-

tures, interfaces, and algorithms will work.

What are the steps? Design representations of data,

architecture, and interfaces form the foundation

for component-level design. The processing nar-

rative for each component is translated into a pro-

cedural design model using a set of structured

programming constructs. Graphical, tabular, or

text-based notation is used to represent the

design.

Q U I C K
L O O K
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It is possible to represent the component-level design using a programming lan-
guage. In essence, the program is created using the design model as a guide. An alter-
native approach is to represent the procedural design using some intermediate (e.g.,
graphical, tabular, or text-based) representation that can be translated easily into
source code. Regardless of the mechanism that is used to represent the component-
level design, the data structures, interfaces, and algorithms defined should conform
to a variety of well-established procedural design guidelines that help us to avoid
errors as the procedural design evolves. In this chapter, we examine these design
guidelines.

16.1 STRUCTURED PROGRAMMING

The foundations of component-level design were formed in the early 1960s and were

solidified with the work of Edsgar Dijkstra and his colleagues ([BOH66], [DIJ65], [DIJ76]).

In the late 1960s, Dijkstra and others proposed the use of a set of constrained logi-

cal constructs from which any program could be formed. The constructs emphasized

"maintenance of functional domain." That is, each construct had a predictable logi-

cal structure, was entered at the top and exited at the bottom, enabling a reader to

follow procedural flow more easily.

The constructs are sequence, condition, and repetition. Sequence implements pro-

cessing steps that are essential in the specification of any algorithm. Condition pro-

vides the facility for selected processing based on some logical occurrence, and

repetition allows for looping. These three constructs are fundamental to structured

programming—an important component-level design technique.

The structured constructs were proposed to limit the procedural design of soft-

ware to a small number of predictable operations. Complexity metrics (Chapter 19)

indicate that the use of the structured constructs reduces program complexity and

thereby enhances readability, testability, and maintainability. The use of a limited

number of logical constructs also contributes to a human understanding process that

psychologists call chunking. To understand this process, consider the way in which

you are reading this page. You do not read individual letters but rather recognize pat-

terns or chunks of letters that form words or phrases. The structured constructs are

What is the work product? The

procedural design for each com-

ponent, represented in graphical,

tabular, or text-based notation, is the primary work

product produced during component-level design. 

How do I ensure that I’ve done it right? A design

walkthrough or inspection is conducted. The

design is examined to determine whether data

structures, interfaces, processing sequences, and

logical conditions are correct and will produce the

appropriate data or control transformation allo-

cated to the component during earlier design

steps. 

Q U I C K
L O O K

“When I'm working
on a problem, I
never think about
beauty. I think only
how to solve the
problem. But when I
have finished, if the
solution is not
beautiful, I know it
is wrong.”
R. Buckminster
Fuller 
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logical chunks that allow a reader to recognize procedural elements of a module,

rather than reading the design or code line by line. Understanding is enhanced when

readily recognizable logical patterns are encountered.

Any program, regardless of application area or technical complexity, can be

designed and implemented using only the three structured constructs. It should be

noted, however, that dogmatic use of only these constructs can sometimes cause

practical difficulties. Section 16.1.1 considers this issue in further detail.

16.1.1 Graphical Design Notation

"A picture is worth a thousand words," but it's rather important to know which pic-

ture and which 1000 words. There is no question that graphical tools, such as the

flowchart or box diagram, provide useful pictorial patterns that readily depict proce-

dural detail. However, if graphical tools are misused, the wrong picture may lead to

the wrong software.

A flowchart is quite simple pictorially. A box is used to indicate a processing step.

A diamond represents a logical condition, and arrows show the flow of control.  Fig-

ure 16.1 illustrates three structured constructs. The sequence is represented as two

processing boxes connected by an line (arrow) of control. Condition, also called if-

then-else, is depicted as a decision diamond that if true, causes then-part processing

to occur, and if false, invokes else-part processing. Repetition is represented using 

two slightly different forms. The do while tests a condition and executes a loop task

repetitively as long as the condition holds true. A repeat until executes the loop task

first, then tests a condition and repeats the task until the condition fails. The selec-

tion (or select-case) construct shown in the figure is actually an extension of the 
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if-then-else. A parameter is tested by successive decisions until a true condition occurs

and a case part processing path is executed.

The structured constructs may be nested within one another as shown in Figure

16.2. Referring to the figure, repeat-until forms the then part of if-then-else (shown

enclosed by the outer dashed boundary). Another if-then-else forms the else part of

the larger condition. Finally, the condition itself becomes a second block in a sequence.

By nesting constructs in this manner, a complex logical schema may be developed. It

should be noted that any one of the blocks in Figure 16.2 could reference another mod-

ule, thereby accomplishing procedural layering implied by program structure. 

In general, the dogmatic use of only the structured constructs can introduce inef-

ficiency when an escape from a set of nested loops or nested conditions is required.

More important, additional complication of all logical tests along the path of escape

can cloud software control flow, increase the possibility of error, and have a nega-

tive impact on readability and maintainability. What can we do? 

The designer is left with two options: (1) The procedural representation is redesigned

so that the "escape branch" is not required at a nested location in the flow of control

or (2) the structured constructs are violated in a controlled manner; that is, a con-

strained branch out of the nested flow is designed. Option 1 is obviously the ideal

approach, but option 2 can be accommodated without violating of the spirit of struc-

tured programming.

Another graphical design tool, the box diagram, evolved from a desire to develop

a procedural design representation that would not allow violation of the structured

constructs. Developed by Nassi and Shneiderman [NAS73] and extended by Chapin

[CHA74], the diagrams (also called Nassi-Shneiderman charts, N-S charts, or Chapin

charts) have the following characteristics: (1) functional domain (that is, the scope of

Else-part First task

Next task

Then-part
Loop task

Loop
condition

Condition

FIGURE 16.2
Nesting
constructs

Structured
programming
constructs should
make it easier to
understand the design.
If using them without
“violation” results in
unnecessary
complexity, it’s 
OK to violate.

Both the flowchart and
box diagrams no
longer are used as
widely as they once
were. In general, use
them to document or
evaluate design in
specific instances, not
to represent an entire
system.



CHAPTER 16 COMPONENT-LEVEL DESIGN

repetition or if-then-else) is well defined and clearly visible as a pictorial representa-

tion, (2) arbitrary transfer of control is impossible, (3) the scope of local and/or global

data can be easily determined, (4) recursion is easy to represent.

The graphical representation of structured constructs using the box diagram is

illustrated in Figure 16.3. The fundamental element of the diagram is a box. To rep-

resent sequence, two boxes are connected bottom to top. To represent if-then-else,

a condition box is followed by a then-part and else-part box. Repetition is depicted

with a bounding pattern that encloses the process (do-while part or repeat-until part)

to be repeated. Finally, selection is represented using the graphical form shown at

the bottom of the figure.

Like flowcharts, a box diagram is layered on multiple pages as processing ele-

ments of a module are refined. A "call" to a subordinate module can be represented

within a box by specifying the module name enclosed by an oval.

16.1.2 Tabular Design Notation

In many software applications, a module may be required to evaluate a complex com-

bination of conditions and select appropriate actions based on these conditions. Deci-

sion tables  provide a notation that translates actions and conditions (described in a

processing narrative) into a tabular form. The table is difficult to misinterpret and may
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even be used as a machine readable input to a table driven algorithm. In a compre-

hensive treatment of this design tool, Ned Chapin states [HUR83]:

Some old software tools and techniques mesh well with new tools and techniques of soft-

ware engineering. Decision tables are an excellent example. Decision tables preceded soft-

ware engineering by nearly a decade, but fit so well with software engineering that they

might have been designed for that purpose.

Decision table organization is illustrated in Figure 16.4. Referring to the figure, the

table is divided into four sections. The upper left-hand quadrant contains a list of all

conditions. The lower left-hand quadrant contains a list of all actions that are possi-

ble based on combinations of conditions. The right-hand quadrants form a matrix

that indicates condition combinations and the corresponding actions that will occur

for a specific combination. Therefore, each column of the matrix may be interpreted

as a processing rule.

The following steps are applied to develop a decision table:

1. List all actions that can be associated with a specific procedure (or module).

2. List all conditions (or decisions made) during execution of the procedure.

3. Associate specific sets of conditions with specific actions, eliminating impos-

sible combinations of conditions; alternatively, develop every possible per-

mutation of conditions.

4. Define rules by indicating what action(s) occurs for a set of conditions.

Conditions 1 2 3 4 n

Rules

Condition #1

Condition #2

Condition #3

Action #1

Action #2

Action #3

Action #4

Action #5

Actions

FIGURE 16.4
Decision table
nomenclature

How do I
build a

decision table?
?
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To illustrate the use of a decision table, consider the following excerpt from a pro-

cessing narrative for a public utility billing system:

If the customer account is billed using a fixed rate method, a minimum monthly charge is

assessed for consumption of less than 100 KWH (kilowatt-hours). Otherwise, computer

billing applies a Schedule A rate structure. However, if the account is billed using a vari-

able rate method, a Schedule A rate structure will apply to consumption below 100 KWH,

with additional consumption billed according to Schedule B. 

Figure 16.5 illustrates a decision table representation of the preceding narrative.

Each of the five rules indicates one of five viable conditions (i.e., a T (true) in both

fixed rate and variable rate account makes no sense in the context of this procedure;

therefore, this condition is omitted). As a general rule, the decision table can be effec-

tively used to supplement other procedural design notation.

16.1.3 Program Design Language

Program design language (PDL), also called structured English or pseudocode, is "a pid-

gin language in that it uses the vocabulary of one language (i.e., English) and the

overall syntax of another (i.e., a structured programming language)" [CAI75]. In this

chapter, PDL is used as a generic reference for a design language.

At first glance PDL looks like a modern programming language. The difference

between PDL and a real programming language lies in the use of narrative text (e.g.,

English) embedded directly within PDL statements. Given the use of narrative text

embedded directly into a syntactical structure, PDL cannot be compiled (at least not

yet). However, PDL tools currently exist to translate PDL into a programming lan-
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guage “skeleton” and/or a graphical representation (e.g., a flowchart) of design. These

tools also produce nesting maps, a design operation index, cross-reference tables,

and a variety of other information. 

A program design language may be a simple transposition of a language such as

Ada or C. Alternatively, it may be a product purchased specifically for procedural design.

Regardless of origin, a design language should have the following characteristics:

• A fixed syntax of keywords that provide for all structured constructs, data

declaration, and modularity characteristics.

• A free syntax of natural language that describes processing features.

• Data declaration facilities that should include both simple (scalar, array) and

complex (linked list or tree) data structures.

• Subprogram definition and calling techniques that support various modes of

interface description.

A basic PDL syntax should include constructs for subprogram definition, interface

description, data declaration, techniques for block structuring, condition constructs,

repetition constructs, and I/O constructs. The format and semantics for some of these

PDL constructs are presented in the section that follows.

It should be noted that PDL can be extended to include keywords for multitasking

and/or concurrent processing, interrupt handling, interprocess synchronization, and

many other features. The application design for which PDL is to be used should dic-

tate the final form for the design language.

16.1.4 A PDL Example

To illustrate the use of PDL, we present an example of a procedural design for the

SafeHome security system software introduced in earlier chapters. The system mon-

itors alarms for fire, smoke, burglar, water, and temperature (e.g., furnace breaks

while homeowner is away during winter) and produces an alarm bell and calls a mon-

itoring service, generating a voice-synthesized message. In the PDL that follows, we

illustrate some of the important constructs noted in earlier sections.

Recall that PDL is not a programming language. The designer can adapt as required

without worry of syntax errors. However, the design for the monitoring software

would have to be reviewed (do you see any problems?) and further refined before

code could be written. The following PDL defines an elaboration of the procedural

design for the security monitor component.

PROCEDURE security.monitor; 
INTERFACE RETURNS system.status; 
TYPE signal IS STRUCTURE DEFINED 

name IS STRING LENGTH VAR; 
address IS HEX device location; 

It’s a good idea to use
your programming
language as the basis
for the PDL. This will
enable you to
generate a code
skeleton (mixed with
narrative) as you
perform component-
level design.
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bound.value IS upper bound SCALAR;
message IS STRING LENGTH VAR; 

END signal TYPE; 
TYPE system.status IS BIT (4); 
TYPE alarm.type DEFINED 

smoke.alarm IS INSTANCE OF signal;  
fire.alarm IS INSTANCE OF signal;   
water.alarm IS INSTANCE OF signal;  
temp.alarm IS INSTANCE OF signal; 
burglar.alarm IS INSTANCE OF signal; 

TYPE phone.number IS area code + 7-digit number;
• 
• 
• 

initialize all system ports and reset all hardware; 
CASE OF control.panel.switches (cps): 

WHEN cps = "test" SELECT 
CALL alarm PROCEDURE WITH "on" for test.time in seconds; 

WHEN cps = "alarm-off" SELECT 
CALL alarm PROCEDURE WITH "off";

WHEN cps = "new.bound.temp" SELECT 
CALL keypad.input PROCEDURE; 
WHEN cps = "burglar.alarm.off" SELECT deactivate signal [burglar.alarm]; 
• 
• 
• 
DEFAULT none; 

ENDCASE 
REPEAT UNTIL activate.switch is turned off 

reset all signal.values and switches; 
DO FOR alarm.type = smoke, fire, water, temp, burglar; 

READ address [alarm.type] signal.value; 
IF signal.value > bound [alarm.type] 
THEN  phone.message = message [alarm.type];

set alarm.bell to "on" for alarm.timeseconds; 
PARBEGIN  
CALL alarm PROCEDURE WITH "on", alarm.time in seconds;
CALL phone PROCEDURE WITH message [alarm.type], phone.number;
ENDPAR

ELSE  skip 
ENDIF 

ENDFOR 
ENDREP 
END security.monitor

Note that the designer for the security.monitor component has used a new con-

struct PARBEGIN . . . ENDPAR that specifies a parallel block. All tasks specified within

the PARBEGIN block are executed in parallel. In this case, implementation details are

not considered.
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16.2 COMPARISON OF DESIGN NOTATION

In the preceding section, we presented a number of different techniques for repre-

senting a procedural design. A comparison must be predicated on the premise that

any notation for component-level design, if used correctly, can be an invaluable aid

in the design process; conversely, even the best notation, if poorly applied, adds lit-

tle to understanding. With this thought in mind, we examine criteria that may be

applied to compare design notation.

Design notation should lead to a procedural representation that is easy to under-

stand and review. In addition, the notation should enhance "code to" ability so that

code does, in fact, become a natural by-product of design. Finally, the design repre-

sentation must be easily maintainable so that design always represents the program

correctly.

The following attributes of design notation have been established in the context

of the general characteristics described previously: 

Modularity. Design notation should support the development of modular software

and provide a means for interface specification. 

Overall simplicity. Design notation should be relatively simple to learn, relatively

easy to use, and generally easy to read.

Ease of editing. The procedural design may require modification as the software

process proceeds. The ease with which a design representation can be edited can

help facilitate each software engineering task. 

Machine readability. Notation that can be input directly into a computer-based

development system offers significant benefits. 

Maintainability. Software maintenance is the most costly phase of the software life

cycle. Maintenance of the software configuration nearly always means maintenance

of the procedural design representation. 

Structure enforcement. The benefits of a design approach that uses structured pro-

gramming concepts have already been discussed. Design notation that enforces the

use of only the structured constructs promotes good design practice. 

Automatic processing. A procedural design contains information that can be

processed to give the designer new or better insights into the correctness and qual-

ity of a design. Such insight can be enhanced with reports provided via software

design tools.

Data representation. The ability to represent local and global data is an essential

element of component-level design. Ideally, design notation should represent such

data directly. 

Logic verification. Automatic verification of design logic is a goal that is paramount

during software testing. Notation that enhances the ability to verify logic greatly

improves testing adequacy.

What criteria
can be used

to assess design
notation?

?
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"Code-to" ability. The software engineering task that follows component-level

design is code generation. Notation that may be converted easily to source code

reduces effort and error.

A natural question that arises in any discussion of design notation is: "What nota-

tion is really the best, given the attributes noted above?" Any answer to this question

is admittedly subjective and open to debate. However, it appears that program design

language offers the best combination of characteristics. PDL may be embedded directly

into source listings, improving documentation and making design maintenance less

difficult. Editing can be accomplished with any text editor or word-processing sys-

tem, automatic processors already exist, and the potential for "automatic code gen-

eration" is good.

However, it does not follow that other design notation is necessarily inferior to

PDL or is "not good" in specific attributes. The pictorial nature of flowcharts and box

diagrams provide a perspective on control flow that many designers prefer.  The pre-

cise tabular content of decision tables is an excellent tool for table-driven applica-

tions. And many other design representations (e.g., see [PET81], [SOM96]), not

presented in this book, offer their own unique benefits. In the final analysis, the choice

of a design tool may be more closely related to human factors than to technical

attributes.

16.3 SUMMARY

The design process encompasses a sequence of activities that slowly reduces the

level of abstraction with which software is represented. Component-level design

depicts the software at a level of abstraction that is very close to code.

At the component level, the software engineer must represent data structures,

interfaces, and algorithms in sufficient detail to guide in the generation of program-

ming language source code. To accomplish this, the designer uses one of a number

of design notations that represent component-level detail in either graphical, tabu-

lar, or text-based formats.

Structured programming is a procedural design philosophy that constrains the

number and type of logical constructs used to represent algorithmic detail. The intent

of structured programming is to assist the designer in defining algorithms that are

less complex and therefore easier to read, test, and maintain. 

REFERENCES

[BOH66] Bohm, C. and G. Jacopini, "Flow Diagrams, Turing Machines and Languages

with Only Two Formation Rules," CACM, vol. 9, no. 5, May 1966, pp. 366–371. 

[CAI75] Caine, S. and K. Gordon, "PDL—A Tool for Software Design," in Proc. National

Computer Conference, AFIPS Press, 1975, pp. 271–276. 

433



PART THREE CONVENTIONAL METHODS FOR SOFTWARE ENGINEERING434

[CHA74] Chapin, N., "A New Format for Flowcharts," Software—Practice and Experi-

ence, vol. 4, no. 4 , 1974, pp. 341–357. 

[DIJ65] Dijkstra, E., "Programming Considered as a Human Activity," in Proc. 1965

IFIP Congress, North-Holland Publishing Co., 1965. 

[DIJ72] Dijkstra, E., “The Humble Programmer,” 1972 ACM Turing Award Lecture,

CACM, vol. 15, no. 10, October, 1972, pp. 859–866.

[DIJ76] Dijkstra, E., "Structured Programming," in Software Engineering, Concepts

and Techniques, (J. Buxton et al., eds.), Van Nostrand-Reinhold, 1976. 

[HUR83] Hurley, R.B., Decision Tables in Software Engineering, Van Nostrand-

Reinhold, 1983.

[LIN79] Linger, R.C., H.D. Mills, and B.I. Witt, Structured Programming, Addison-

Wesley, 1979.

[NAS73] Nassi, I. and B. Shneiderman, "Flowchart Techniques for Structured Pro-

gramming," SIGPLAN Notices, ACM, August 1973. 

[PET81] Peters, L.J., Software Design: Methods and Techniques, Yourdon Press, 1981. 

[SOM96] Sommerville, I., Software Engineering, 5th ed., Addison-Wesley, 1996.

PROBLEMS AND POINTS TO PONDER

16.1. Select a small portion of an existing program (approximately 50–75 source

lines). Isolate the structured programming constructs by drawing boxes around them

in the source code. Does the program excerpt have constructs that violate the struc-

tured programming philosophy? If so, redesign the code to make it conform to struc-

tured programming constructs. If not, what do you notice about the boxes that you’ve

drawn?

16.2. All modern programming languages implement the structured programming

constructs. Provide examples from three programming languages.

16.3. Why is “chunking” important during the component-level design review

process?

Problems 16.4–16.11 may be represented using any one (or more) of the procedural

design notations presented in this chapter. Your instructor may assign specific design

notation to particular problems. 

16.4. Develop a procedural design for components that implement the following

sorts:  Shell-Metzner sort; heapsort; BSST (tree) sort. Refer to a book on data struc-

tures if you are unfamiliar with these sorts. 

16.5. Develop a procedural design for an interactive user interface that queries for

basic income tax information. Derive your own requirements and assume that all tax

computations are performed by other modules. 
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16.6. Develop a procedural design for a program that accepts an arbitrarily long text

as input and produces a list of words and their frequency of occurrence as output. 

16.7. Develop a procedural design of a program that will numerically integrate a

function f in the bounds a to b. 

16.8. Develop a procedural design for a generalized Turing machine that will accept

a set of quadruples as program input and produce output as specified. 

16.9. Develop a procedural design for a program that will solve the Towers of Hanoi

problem. Many books on artificial intelligence discuss this problem in some detail. 

16.10. Develop a procedural design for all or major portions of an LR parser for a

compiler. Refer to one or more books on compiler design. 

16.11. Develop a procedural design for an encryption/decryption algorithm of your

choosing. 

16.12. Write a one- or two-page argument for the procedural design notation that

you feel is best. Be certain that your argument addresses the criteria presented in

Section 16.2.

FURTHER READINGS AND INFORMATION SOURCES

The work of  Linger, Mills, and Witt (Structured Programming—Theory and Practice,

Addison-Wesley, 1979) remains a definitive treatment of the subject. The text contains

a good PDL as well as detailed discussions of the ramifications of structured pro-

gramming. Other books that focus on procedural design issues include those by Robert-

son (Simple Program Design, Boyd and Fraser Publishing, 1994), Bentley (Programming

Pearls, Addison-Wesley, 1986 and More Programming Pearls, Addison-Wesley, 1988),

and Dahl, Dijkstra, and Hoare (Structured Programming, Academic Press, 1972).

Relatively few recent books have been dedicated solely to component-level design.

In general, programming language books address procedural design in some detail

but always in the context of the language that is introduced by the book. The fol-

lowing books are representative of hundreds of titles that consider procedural design

in a programming language context:  

[ADA00] Adamson, T.A., K.C. Mansfield, and J.L. Antonakos, Structured Basic Applied to Tech-

nology, Prentice-Hall, 2000.

[ANT96] Antonakos, J.L. and K. Mansfield, Application Programming in Structured C, Prentice-

Hall, 1996.

[FOR99] Forouzan, B.A. and R. Gilberg, Computer Science: A Structured Programming Approach

Using C++, Brooks/Cole Publishing, 1999.

[OBR93] O'Brien, S.K. and S. Nameroff, Turbo Pascal 7: The Complete Reference, Osborne

McGraw-Hill, 1993. 
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[WEL95] Welburn, T. and W. Price, Structured COBOL: Fundamentals and Style, 4th ed., Mitchell

Publishers, 1995.

A wide variety of information sources on software design and related subjects is

available on the Internet. An up-to-date list of World Wide Web references that are

relevant to design concepts and methods can be found at the SEPA Web site:

http://www.mhhe.com/engcs/compsci/pressman/resources/

comp-design.mhtml
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The importance of software testing and its implications with respect to
software quality cannot be overemphasized. To quote Deutsch [DEU79], 

The development of software systems involves a series of production activities where

opportunities for injection of human fallibilities are enormous. Errors may begin to

occur at the very inception of the process where the objectives . . . may be erroneously

or imperfectly specified, as well as [in] later design and development stages . . .

Because of human inability to perform and communicate with perfection, software

development is accompanied by a quality assurance activity. 

Software testing is a critical element of software quality assurance and rep-
resents the ultimate review of specification, design, and code generation.

The increasing visibility of software as a system element and the attendant
"costs" associated with a software failure are motivating forces for well-planned,
thorough testing. It is not unusual for a software development organization to
expend between 30 and 40 percent of total project effort on testing. In the
extreme, testing of human-rated software (e.g., flight control, nuclear reactor
monitoring) can cost three to five times as much as all other software engi-
neering steps combined!

17 SOFTWARE TESTING
TECHNIQUES

What is it? Once source code has

been generated, software must

be tested to uncover (and correct)

as many errors as possible before delivery to your

customer. Your goal is to design a series of test

cases that have a high likelihood of finding errors—

but how? That’s where software testing techniques

enter the picture. These techniques provide sys-

tematic guidance for designing tests that (1) exer-

cise the internal logic of software components,

and (2) exercise the input and output domains of

the program to uncover errors in program func-

tion, behavior. and performance.

Who does it? During early stages of testing, a soft-

ware engineer performs all tests. However, as the

testing process progresses, testing specialists may

become involved.

Why is it important? Reviews and other SQA activ-

ities can and do uncover errors, but they are not

sufficient. Every time the program is executed, the

customer tests it! Therefore, you have to execute

the program before it gets to the customer with

the specific intent of finding and removing all

errors. In order to find the highest possible num-

ber of errors, tests must be conducted systemati-

cally and test cases must be designed using

disciplined techniques. 

What are the steps? Software is tested from two dif-

ferent perspectives: (1) internal program logic is

exercised using “white box” test case design tech-

Q U I C K
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In this chapter, we discuss software testing fundamentals and techniques for soft-
ware test case design. Software testing fundamentals define the overriding objec-
tives for software testing. Test case design focuses on a set of techniques for the
creation of test cases that meet overall testing objectives. In Chapter 18, testing strate-
gies and software debugging are presented.

17.1 SOFTWARE TESTING FUNDAMENTALS

Testing presents an interesting anomaly for the software engineer. During earlier soft-

ware engineering activities, the engineer attempts to build software from an abstract

concept to a tangible product. Now comes testing. The engineer creates a series of

test cases that are intended to "demolish" the software that has been built.  In fact,

testing is the one step in the software process that could be viewed (psychologically,

at least) as destructive rather than constructive.

Software engineers are by their nature constructive people. Testing requires that

the developer discard preconceived notions of the "correctness" of software just devel-

oped and overcome a conflict of interest that occurs when errors are uncovered.

Beizer [BEI90] describes this situation effectively when he states:

There's a myth that if we were really good at programming, there would be no bugs to catch.

If only we could really concentrate, if only everyone used structured programming, top-

down design, decision tables, if programs were written in SQUISH, if we had the right sil-

ver bullets,  then there would be no bugs. So goes the myth. There are bugs, the myth says,

because we are bad at what we do; and if we are bad at it, we should feel guilty about it.

Therefore, testing and test case design is an admission of failure, which instills a goodly

dose of guilt. And the tedium of testing is just punishment for our errors. Punishment for

what? For being human? Guilt for what? For failing to achieve inhuman perfection? For  not

distinguishing  between what another programmer thinks and what he says? For failing to

be telepathic? For not solving human communications problems that have been kicked

around . . . for forty centuries?

niques. Software requirements

are exercised using “black box”

test case design techniques. In

both cases, the intent is to find the maximum num-

ber of errors with the minimum amount of effort

and time.

What is the work product? A set of test cases

designed to exercise both internal logic and exter-

nal requirements is designed and documented,

expected results are defined, and actual results

are recorded.

How do I ensure that I’ve done it right? When you

begin testing, change your point of view. Try hard

to “break” the software! Design test cases in a dis-

ciplined fashion and review the test cases you do

create for thoroughness.  

Q U I C K
L O O K

“A working program
remains an elusive
thing of beauty.”
Robert Dunn 
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Should testing instill guilt? Is testing really destructive? The answer to these ques-

tions is "No!" However, the objectives of testing are somewhat different than we might

expect.

17.1.1 Testing Objectives

In an excellent book on software testing, Glen Myers [MYE79] states a number of

rules that can serve well as testing objectives:

1. Testing is a process of executing a program with the intent of finding an

error.

2. A good test case is one that has a high probability of finding an as-yet-

undiscovered error.

3. A successful test is one that uncovers an as-yet-undiscovered error. 

These objectives imply a dramatic change in viewpoint. They move counter to the

commonly held view that a successful test is one in which no errors are found.  Our

objective is to design tests that systematically uncover different classes of errors and

to do so with a minimum amount of time and effort. 

If testing is conducted successfully (according to the objectives stated previously), it

will uncover errors in the software. As a secondary benefit, testing demonstrates that

software functions appear to be working according to specification, that behavioral and

performance requirements appear to have been met. In addition, data collected as test-

ing is conducted provide a good indication of software reliability and some indication

of software quality as a whole. But testing cannot show the absence of errors and

defects, it can show only that software errors and defects are present. It is important

to keep this (rather gloomy) statement in mind as testing is being conducted.

17.1.2 Testing Principles

Before applying methods to design effective test cases, a software engineer must

understand the basic principles that guide software testing. Davis [DAV95] suggests

a set1 of testing principles that have been adapted for use in this book:

• All tests should be traceable to customer requirements. As we have

seen, the objective of software testing is to uncover errors. It follows that the

most severe defects (from the customer’s point of view) are those that cause

the program to fail to meet its requirements.

• Tests should be planned long before testing begins. Test planning

(Chapter 18) can begin as soon as the requirements model is complete.

Detailed definition of test cases can begin as soon as the design model has
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1 Only a small subset of Davis’s testing principles are noted here. For more information, see
[DAV95].

“Errors are more
common, more
pervasive, and more
troublesome in
software than with
other technologies.”
David Parnas 

What are
primary

objectives when
we test
software?

?
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been solidified. Therefore, all tests can be planned and designed before any

code has been generated.

• The Pareto principle applies to software testing. Stated simply, the

Pareto principle implies that 80 percent of all errors uncovered during testing

will likely be traceable to 20 percent of all program components. The problem,

of course, is to isolate these suspect components and to thoroughly test them.

• Testing should begin “in the small” and progress toward testing “in

the large.” The first tests planned and executed generally focus on individual

components. As testing progresses, focus shifts in an attempt to find errors in

integrated clusters of components and ultimately in the entire system (Chap-

ter 18).

• Exhaustive testing is not possible. The number of path permutations for

even a moderately sized program is exceptionally large (see Section 17.2 for

further discussion). For this reason, it is impossible to execute every combi-

nation of paths during testing. It is possible, however, to adequately cover

program logic and to ensure that all conditions in the component-level

design have been exercised.

• To be most effective, testing should be conducted by an independent

third party. By most effective, we mean testing that has the highest probabil-

ity of finding errors (the primary objective of testing). For reasons that have

been introduced earlier in this chapter and are considered in more detail in

Chapter 18, the software engineer who created the system is not the best

person to conduct all tests for the software.

17.1.3 Testability

In ideal circumstances, a software engineer designs a computer program, a system,

or a product with “testability” in mind. This enables the individuals charged with test-

ing to design effective test cases more easily. But what is testability? James Bach2

describes testability in the following manner.

Software testability is simply how easily [a computer program] can be tested.  Since

testing is so profoundly difficult, it pays to know what can be done to streamline it.  Some-

times programmers are willing to do things that will help the testing process and a check-

list of possible design points, features, etc., can be useful in negotiating with them.

There are certainly metrics that could be used to measure testability in most of its

aspects. Sometimes, testability is used to mean how adequately a particular set of

2 The paragraphs that follow are copyright 1994 by James Bach and have been adapted from an
Internet posting that first appeared in the newsgroup comp.software-eng. This material  is used
with permission.

WebRef
A useful paper entitled
“Improving Software
Testability” can be found
at 
www.stlabs.com/
newsletters/testnet
/docs/testability.
htm
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tests will cover the product. It's also used by the military to mean how easily a tool

can be checked and repaired in the field. Those two meanings are not the same as

software testability. The checklist that follows provides a set of characteristics that lead

to testable software.

Operability. "The better it works, the more efficiently it can be tested."

• The system has few bugs (bugs add analysis and reporting overhead to the

test process).

• No bugs block the execution of tests.

• The product evolves in functional stages (allows simultaneous development

and testing).

Observability. "What you see is what you test."

• Distinct output is generated for each input.

• System states and variables are visible or queriable during execution.

• Past system states and variables are visible or queriable (e.g., transaction logs).

• All factors affecting the output are visible.

• Incorrect output is easily identified.

• Internal errors are automatically detected through self-testing mechanisms.

• Internal errors are automatically reported.

• Source code is accessible.

Controllability. "The better we can control the software, the more the testing can

be automated and optimized."

• All possible outputs can be generated through some combination of input.

• All code is executable through some combination of input.

• Software and hardware states and variables can be controlled directly by the

test engineer.

• Input and output formats are consistent and structured.

• Tests can be conveniently specified, automated, and reproduced.

Decomposability. "By controlling the scope of testing, we can more quickly iso-

late problems and perform smarter retesting."

• The software system is built from independent modules.

• Software modules can be tested independently.

Simplicity. "The less there is to test, the more quickly we can test it."

• Functional simplicity (e.g., the feature set is the minimum necessary to meet

requirements).
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“Testability” occurs as
a result of good
design. Data design,
architecture, interfaces,
and component-level
detail can either
facilitate testing or
make it difficult.
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• Structural simplicity (e.g., architecture is modularized to limit the propaga-

tion of faults).

• Code simplicity (e.g., a coding standard is adopted for ease of inspection and

maintenance).

Stability. "The fewer the changes, the fewer the disruptions to testing."

• Changes to the software are infrequent.

• Changes to the software are controlled.

• Changes to the software do not invalidate existing tests.

• The software recovers well from failures.

Understandability. "The more information we have, the smarter we will test."

• The design is well understood.

• Dependencies between internal, external, and shared components are well

understood.

• Changes to the design are communicated.

• Technical documentation is instantly accessible.

• Technical documentation is well organized.

• Technical documentation is specific and detailed.

• Technical documentation is accurate.

The attributes suggested by Bach can be used by a software engineer to develop a soft-

ware configuration (i.e., programs, data, and documents) that is amenable to testing.

And what about the tests themselves? Kaner, Falk, and Nguyen [KAN93] suggest

the following attributes of a “good” test:

1. A good test has a high probability of finding an error. To achieve this goal, the

tester must understand the software and attempt to develop a mental picture

of how the software might fail. Ideally, the classes of failure are probed. For

example, one class of potential failure in a GUI (graphical user interface) is a

failure to recognize proper mouse position. A set of tests would be designed

to exercise the mouse in an attempt to demonstrate an error in mouse posi-

tion recognition.

2. A good test is not redundant. Testing time and resources are limited. There is

no point in conducting a test that has the same purpose as another test.

Every test should have a different purpose (even if it is subtly different). For

example, a module of the SafeHome software (discussed in earlier chapters)

is designed to recognize a user password to activate and deactivate the sys-

tem. In an effort to uncover an error in password input, the tester designs a

series of tests that input a sequence of passwords. Valid and invalid pass-

words (four numeral sequences) are input as separate tests. However, each

What are the
attributes of

a “good” test?
?
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valid/invalid password should probe a different mode of failure. For example,

the invalid password 1234 should not be accepted by a system programmed

to recognize 8080 as the valid password. If it is accepted, an error is present.

Another test input, say 1235, would have the same purpose as 1234 and is

therefore redundant. However, the invalid input 8081 or 8180 has a subtle

difference, attempting to demonstrate that an error exists for passwords

“close to” but not identical with the valid password.

3. A good test should be “best of breed” [KAN93]. In a group of tests that have a

similar intent, time and resource limitations may mitigate toward the execu-

tion of only a subset of these tests. In such cases, the test that has the highest

likelihood of uncovering a whole class of errors should be used.

4. A good test should be neither too simple nor too complex. Although it is

sometimes possible to combine a series of tests into one test case, the possi-

ble side effects associated with this approach may mask errors. In general,

each test should be executed separately.

17.2 TEST CASE DESIGN

The design of tests for software and other engineered products can be as challeng-

ing as the initial design of the product itself. Yet, for reasons that we have already

discussed, software engineers often treat testing as an afterthought, developing test

cases that may "feel right" but have little assurance of being complete. Recalling the

objectives of testing, we must design tests that have the highest likelihood of finding

the most errors with a minimum amount of time and effort.

A rich variety of test case design methods have evolved for software. These meth-

ods provide the developer with a systematic approach to testing. More important,

methods provide a mechanism that can help to ensure the completeness of tests and

provide the highest likelihood for uncovering errors in software.

Any engineered product (and most other things) can be tested in one of two ways:

(1) Knowing the specified function that a product has been designed to perform, tests

can be conducted that demonstrate each function is fully operational while at the

same time searching for errors in each function; (2) knowing the internal workings

of a product, tests can be conducted to ensure that "all gears mesh," that is, internal

operations are performed according to specifications and all internal components

have been adequately exercised. The first test approach is called black-box testing

and the second, white-box testing.

When computer software is considered, black-box testing alludes to tests that are

conducted at the software interface. Although they are designed to uncover errors,

black-box tests are used to demonstrate that software functions are operational, that

input is properly accepted and output is correctly produced, and that the integrity of
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external information (e.g., a database) is maintained. A black-box test examines some

fundamental aspect of a system with little regard for the internal logical structure of

the software.

White-box testing of software is predicated on close examination of procedural

detail. Logical paths through the software are tested by providing test cases that exer-

cise specific sets of conditions and/or loops. The "status of the program" may be

examined at various points to determine if the expected or asserted status corre-

sponds to the actual status.

At first glance it would seem that very thorough white-box testing would lead to

"100 percent correct programs." All we need do is define all logical paths, develop

test cases to exercise them, and evaluate results, that is, generate test cases to exer-

cise program logic exhaustively. Unfortunately, exhaustive testing presents certain

logistical problems. For even small programs, the number of possible logical paths

can be very large. For example, consider the 100 line program in the language C. After

some basic data declaration, the program contains two nested loops that execute

from 1 to 20 times each, depending on conditions specified at input. Inside the inte-

rior loop, four if-then-else constructs are required. There are approximately 1014 pos-

sible paths that may be executed in this program!

To put this number in perspective, we assume that a magic test processor ("magic"

because no such processor exists) has been developed for exhaustive testing. The

processor can develop a test case, execute it, and evaluate the results in one mil-

lisecond. Working 24 hours a day, 365 days a year, the processor would work for 3170

years to test the program. This would, undeniably, cause havoc in most development

schedules. Exhaustive testing is impossible for large software systems.

White-box testing should not, however, be dismissed as impractical. A limited

number of important logical paths can be selected and exercised. Important data

structures can be probed for validity. The attributes of both black- and white-box test-

ing can be combined to provide an approach that validates the software interface

and selectively ensures that the internal workings of the software are correct.

17.3 WHITE-BOX TESTING

White-box testing, sometimes called glass-box testing, is a test case design method

that uses the control structure of the procedural design to derive test cases. Using

white-box testing methods, the software engineer can derive test cases that (1) guar-

antee that all independent paths within a module have been exercised at least once,

(2) exercise all logical decisions on their true and false sides, (3) execute all loops at

their boundaries and within their operational bounds, and (4) exercise internal data

structures to ensure their validity.

A reasonable question might be posed at this juncture: "Why spend time and energy

worrying about (and testing) logical minutiae when we might better expend effort

It is not possible to
exhaustively test every
program path because
the number of paths is
simply too large.

White-box tests can be
designed only after a
component-level design
(or source code)
exists. The logical
details of the program
must be available.
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ensuring that program requirements have been met?" Stated another way, why don't

we spend all of our energy on black-box tests? The answer lies in the nature of soft-

ware defects (e.g., [JON81]):

• Logic errors and incorrect assumptions are inversely proportional to the proba-

bility that a program path will be executed. Errors tend to creep into our work

when we design and implement function, conditions, or control that are out

of the mainstream. Everyday processing tends to be well understood (and

well scrutinized), while "special case" processing tends to fall into the cracks.

• We often believe that a logical path is not likely to be executed when, in fact, it

may be executed on a regular basis. The logical flow of a program is some-

times counterintuitive, meaning that our unconscious assumptions about

flow of control and data may lead us to make design errors that are uncov-

ered only once path testing commences. 

• Typographical errors are random. When a program is translated into program-

ming language source code, it is likely that some typing errors will occur.

Many will be uncovered by syntax and type checking mechanisms, but others

may go undetected until testing begins. It is as likely that a typo will exist on

an obscure logical path as on a mainstream path. 

Each of these reasons provides an argument for conducting white-box tests. Black-

box testing, no matter how thorough, may miss the kinds of errors noted here. White-

box testing is far more likely to uncover them.

17.4 BASIS PATH TESTING

Basis path testing is a white-box testing technique first proposed by Tom McCabe

[MCC76]. The basis path method enables the test case designer to derive a logical com-

plexity measure of a procedural design and use this measure as a guide for defining a

basis set of execution paths. Test cases derived to exercise the basis set are guaran-

teed to execute every statement in the program at least one time during testing.

17.4.1 Flow Graph Notation

Before the basis path method can be introduced, a simple notation for the represen-

tation of control flow, called a flow graph (or program graph) must be introduced.3

The flow graph depicts logical control flow using the notation illustrated in Figure

17.1. Each structured construct (Chapter 16) has a corresponding flow graph symbol.

To illustrate the use of a flow graph, we consider the procedural design represen-

tation in Figure 17.2A. Here, a flowchart is used to depict program control structure.
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“Bugs lurk in corners
and congregate at
boundaries.”
Boris Beizer 

3 In actuality, the basis path method can be conducted without the use of flow graphs. However,
they serve as a useful tool for understanding control flow and illustrating the approach.



PART THREE CONVENTIONAL METHODS FOR SOFTWARE ENGINEERING446

Figure 17.2B maps the flowchart into a corresponding flow graph (assuming that no

compound conditions are contained in the decision diamonds of the flowchart). Refer-

ring to Figure 17.2B, each circle, called a flow graph node, represents one or more

procedural statements. A sequence of process boxes and a decision diamond can

map into a single node. The arrows on the flow graph, called edges or links, repre-

sent flow of control and are analogous to flowchart arrows. An edge must terminate

at a node, even if the node does not represent any procedural statements (e.g., see

the symbol for the if-then-else construct). Areas bounded by edges and nodes are

called regions. When counting regions, we include the area outside the graph as a

region.4

When compound conditions are encountered in a procedural design, the genera-

tion of a flow graph becomes slightly more complicated. A compound condition occurs

when one or more Boolean operators (logical OR, AND, NAND, NOR) is present in a

conditional statement. Referring to Figure 17.3, the PDL segment translates into the

flow graph shown. Note that a separate node is created for each of the conditions a

and b in the statement IF a OR b. Each node that contains a condition is called a pred-

icate node and is characterized by two or more edges emanating from it.

17.4.2 Cyclomatic Complexity

Cyclomatic complexity is a software metric that provides a quantitative measure of the

logical complexity of a program. When used in the context of the basis path testing

method, the value computed for cyclomatic complexity defines the number of inde-

pendent paths in the basis set of a program and provides us with an upper bound for

the number of tests that must be conducted to ensure that all statements have been

executed at least once.

An independent path is any path through the program that introduces at least one

new set of processing statements or a new condition. When stated in terms of a flow

If While

The structured constructs in flow graph form:

Where each circle represents one or more
nonbranching PDL or source code statements

Until

Case

Sequence

FIGURE 17.1
Flow graph
notation

4 A more-detailed discussion of graphs and their use in testing is contained in Section 17.6.1.

Draw a flow graph
when the logical
control structure of a
module is complex.
The flow graph
enables you to trace
program paths more
readily.
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graph, an independent path must move along at least one edge that has not been tra-

versed before the path is defined. For example, a set of independent paths for the flow

graph illustrated in Figure 17.2B is 

path 1: 1-11 

path 2: 1-2-3-4-5-10-1-11 

path 3: 1-2-3-6-8-9-10-1-11 

path 4: 1-2-3-6-7-9-10-1-11 

Note that each new path introduces a new edge. The path 

1-2-3-4-5-10-1-2-3-6-8-9-10-1-11 

is not considered to be an independent path because it is simply a combination of

already specified paths and does not traverse any new edges.

Paths 1, 2, 3, and 4 constitute a basis set for the flow graph in Figure 17.2B. That

is, if tests can be designed to force execution of these paths (a basis set), every state-

ment in the program will have been guaranteed to be executed at least one time and

every condition will have been executed on its true and false sides. It should be noted

that the basis set is not unique. In fact, a number of different basis sets can be derived

for a given procedural design.

How do we know how many paths to look for? The computation of cyclomatic

complexity provides the answer. 

Cyclomatic complexity has a foundation in graph theory and provides us with an

extremely useful software metric. Complexity is computed in one of three ways:

1. The number of regions of the flow graph correspond to the cyclomatic com-

plexity.

2. Cyclomatic complexity, V(G), for a flow graph, G, is defined as

V(G) = E � N + 2

Predicate
node

.

.

.
IF a OR b

then procedure   x
else procedure   y

ENDIF

y

b

a

x

x

FIGURE 17.3
Compound
logic

Cyclomatic complexity
is a useful metric for
predicting those
modules that are likely
to be error prone. It
can be used for test
planning as well as
test case design.

How is
cyclomatic

complexity
computed?

?
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where E is the number of flow graph edges, N is the number of flow graph

nodes.

3. Cyclomatic complexity, V(G), for a flow graph, G, is also defined as

V(G) = P + 1 

where P is the number of predicate nodes contained in the flow graph G.

Referring once more to the flow graph in Figure 17.2B, the cyclomatic complexity

can be computed using each of the algorithms just noted:

1. The flow graph has four regions.

2. V(G) = 11 edges � 9 nodes + 2 = 4.

3. V(G) = 3 predicate nodes + 1 = 4.

Therefore, the cyclomatic complexity of the flow graph in Figure 17.2B is 4.

More important, the value for V(G) provides us with an upper bound for the num-

ber of independent paths that form the basis set and, by implication, an upper bound

on the number of tests that must be designed and executed to guarantee coverage

of all program statements.

17.4.3 Deriving Test Cases

The basis path testing method can be applied to a procedural design or to source

code. In this section, we present basis path testing as a series of steps. The proce-

dure average, depicted in PDL in Figure 17.4, will be used as an example to illustrate

each step in the test case design method. Note that average, although an extremely

simple algorithm, contains compound conditions and loops. The following steps can

be applied to derive the basis set:

1. Using the design or code as a foundation, draw a corresponding flow

graph. A flow graph is created using the symbols and construction rules pre-

sented in Section 16.4.1. Referring to the PDL for average in Figure 17.4, a

flow graph is created by numbering those PDL statements that will be

mapped into corresponding flow graph nodes. The corresponding flow graph

is in Figure 17.5.

2. Determine the cyclomatic complexity of the resultant flow graph. The

cyclomatic complexity, V(G), is determined by applying the algorithms

described in Section 17.5.2. It should be noted that V(G) can be determined

without developing a flow graph by counting all conditional statements in the

PDL (for the procedure average, compound conditions count as two) and

adding 1. Referring to Figure 17.5,

V(G) = 6 regions 

V(G) = 17 edges � 13 nodes + 2 = 6 

V(G) = 5 predicate nodes + 1 = 6
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3. Determine a basis set of linearly independent paths. The value of V(G)

provides the number of linearly independent paths through the program con-

trol structure. In the case of procedure average, we expect to specify six

paths: 

path 1: 1-2-10-11-13 

path 2: 1-2-10-12-13 

path 3: 1-2-3-10-11-13 

path 4: 1-2-3-4-5-8-9-2-. . . 

path 5: 1-2-3-4-5-6-8-9-2-. . . 

path 6: 1-2-3-4-5-6-7-8-9-2-. . . 

The ellipsis (. . .) following paths 4, 5, and 6 indicates that any path through the

remainder of the control structure is acceptable. It is often worthwhile to iden-

tify predicate nodes as an aid in the derivation of test cases. In this case, nodes

2, 3, 5, 6, and 10 are predicate nodes.

4. Prepare test cases that will force execution of each path in the basis

set. Data should be chosen so that conditions at the predicate nodes are

appropriately set as each path is tested. Test cases that satisfy the basis set

just described are

PROCEDURE average;

INTERFACE RETURNS average, total.input, total.valid;
INTERFACE ACCEPTS value, minimum, maximum;

TYPE value[1:100] IS SCALAR ARRAY;
TYPE average, total.input, total.valid;

minimum, maximum, sum IS SCALAR;
TYPE i IS INTEGER;

* This procedure computes the average of 100 or fewer
numbers that lie between bounding values; it also computes the
sum and the total number valid.

i = 1;
total.input = total.valid = 0;
sum = 0;
DO WHILE value[i] <> –999 AND total.input < 100

ENDDO
IF total.valid > 0

ENDIF
END average

increment total.input by 1;
IF value[i] > = minimum AND value[i] < = maximum

ENDIF
increment i by 1;

THEN average = sum / total.valid;
ELSE average = –999;

THEN increment total.valid by 1;
sum = s sum + value[i]

ELSE skip

1
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6
4

5
7
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9
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13

2

FIGURE 17.4
PDL for test
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Path 1 test case:

value(k) = valid input, where k < i for 2 ≤ i ≤ 100

value(i) = �999 where 2 ≤ i ≤ 100 

Expected results: Correct average based on k values and proper totals.

Note: Path 1 cannot be tested stand-alone but must be tested as part of path 4, 5, and

6 tests.

Path 2 test case: 

value(1) = �999 

Expected results: Average = �999; other totals at initial values.

Path 3 test case:

Attempt to process 101 or more values.

First 100 values should be valid.

Expected results: Same as test case 1.

Path 4 test case: 

value(i) = valid input where i < 100 

value(k) < minimum where k < i

Expected results: Correct average based on k values and proper totals.
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Path 5 test case:

value(i) = valid input where i < 100 

value(k) > maximum where k <= i

Expected results: Correct average based on n values and proper totals.

Path 6 test case: 

value(i) = valid input where i < 100 

Expected results: Correct average based on n values and proper totals.

Each test case is executed and compared to expected results. Once all test cases have

been completed, the tester can be sure that all statements in the program have been

executed at least once.

It is important to note that some independent paths (e.g., path 1 in our example)

cannot be tested in stand-alone fashion. That is, the combination of data required to

traverse the path cannot be achieved in the normal flow of the program. In such cases,

these paths are tested as part of another path test.

17.4.4 Graph Matrices

The procedure for deriving the flow graph and even determining a set of basis paths

is amenable to mechanization. To develop a software tool that assists in basis path

testing, a data structure, called a graph matrix, can be quite useful.

A graph matrix is a square matrix whose size (i.e., number of rows and columns)

is equal to the number of nodes on the flow graph. Each row and column corresponds

to an identified node, and matrix entries correspond to connections (an edge) between

nodes. A simple example of a flow graph and its corresponding graph matrix [BEI90]

is shown in Figure 17.6. 

Referring to the figure, each node on the flow graph is identified by numbers, while

each edge is identified by letters. A letter entry is made in the matrix to correspond

to a connection between two nodes. For example, node 3 is connected to node 4 by

edge b.

To this point, the graph matrix is nothing more than a tabular representation of a

flow graph. However, by adding a link weight to each matrix entry, the graph matrix

can become a powerful tool for evaluating program control structure during testing.

The link weight provides additional information about control flow. In its simplest

form, the link weight is 1 (a connection exists) or 0 (a connection does not exist). But

link weights can be assigned other, more interesting properties:

• The probability that a link (edge) will be executed.

• The processing time expended during traversal of a link.

• The memory required during traversal of a link.

• The resources required during traversal of a link. 

What is a
graph matrix

and how do we
extend it for use
in testing?

?
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To illustrate, we use the simplest weighting to indicate connections (0 or 1). The graph

matrix in Figure 17.6 is redrawn as shown in Figure 17.7. Each letter has been replaced

with a 1, indicating that a connection exists (zeros have been excluded for clarity).

Represented in this form, the graph matrix is called a connection matrix.

Referring to Figure 17.7, each row with two or more entries represents a predicate

node. Therefore, performing the arithmetic shown to the right of the connection matrix

provides us with still another method for determining cyclomatic complexity (Sec-

tion 17.4.2).

Beizer [BEI90] provides a thorough treatment of additional mathematical algo-

rithms that can be applied to graph matrices. Using these techniques, the analysis

required to design test cases can be partially or fully automated.
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17.5 CONTROL STRUCTURE TESTING

The basis path testing technique described in Section 17.4 is one of a number of tech-

niques for control structure testing. Although basis path testing is simple and highly

effective, it is not sufficient in itself. In this section, other variations on control struc-

ture testing are discussed. These broaden testing coverage and improve quality of

white-box testing.

17.5.1 Condition Testing5

Condition testing is a test case design method that exercises the logical conditions

contained in a program module. A simple condition is a Boolean variable or a rela-

tional expression, possibly preceded with one NOT (¬) operator. A relational expres-

sion takes the form

E1 <relational-operator> E2

where E1 and E2 are arithmetic expressions and <relational-operator> is one of the

following: <, ≤, =, ≠ (nonequality), >, or ≥.  A compound condition is composed of two

or more simple conditions, Boolean operators, and parentheses.  We assume that

Boolean operators allowed in a compound condition include OR (|), AND (&) and NOT

(¬). A condition without relational expressions is referred to as a Boolean expression.

Therefore, the possible types of elements in a condition include a Boolean oper-

ator, a Boolean variable, a pair of Boolean parentheses (surrounding a simple or com-

pound condition), a relational operator, or an arithmetic expression.

If a condition is incorrect, then at least one component of the condition is incor-

rect. Therefore, types of errors in a condition include the following:

• Boolean operator error (incorrect/missing/extra Boolean operators).

• Boolean variable error.

• Boolean parenthesis error.

• Relational operator error.

• Arithmetic expression error.

The condition testing method focuses on testing each condition in the program.  Con-

dition testing strategies (discussed later in this section) generally have two advan-

tages. First, measurement of test coverage of a condition is simple.  Second, the test

coverage of conditions in a program provides guidance for the generation of addi-

tional tests for the program.

The purpose of condition testing is to detect not only errors in the conditions of a

program but also other errors in the program. If a test set for a program P is effective

5 Section 17.5.1 and 17.5.2 have been adapted from [TAI89] with permission of Professor K. C. Tai.

Errors are much more
common in the
neighborhood of
logical conditions than
they are in the locus of
sequential processing
statements.
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for detecting errors in the conditions contained in P, it is likely that this test set is also

effective for detecting other errors in P. In addition, if a testing strategy is effective for

detecting errors in a condition, then it is likely that this strategy will also be effective

for detecting errors in a program.

A number of condition testing strategies have been proposed. Branch testing is

probably the simplest condition testing strategy.  For a compound condition C, the

true and false branches of C and every simple condition in C need to be executed at

least once [MYE79].

Domain testing [WHI80] requires three or four tests to be derived for a relational

expression. For a relational expression of the form

E1 <relational-operator> E2

three tests are required to make the value of E1 greater than, equal to, or less

than that of E2 [HOW82]. If <relational-operator> is incorrect and E1 and E2 are

correct, then these three tests guarantee the detection of the relational operator

error. To detect errors in E1 and E2, a test that makes the value of E1 greater or

less than that of E2 should make the difference between these two values as small

as possible.

For a Boolean expression with n variables, all of 2n possible tests are required (n > 0).

This strategy can detect Boolean operator, variable, and parenthesis errors, but it is

practical only if n is small.

Error-sensitive tests for Boolean expressions can also be derived [FOS84, TAI87].

For a singular Boolean expression (a Boolean expression in which each Boolean

variable occurs only once) with n Boolean variables (n > 0), we can easily gener-

ate a test set with less than 2n tests such that this test set guarantees the detec-

tion of multiple Boolean operator errors and is also effective for detecting other

errors.

Tai [TAI89] suggests a condition testing strategy that builds on the techniques just

outlined. Called BRO (branch and relational operator) testing, the technique guaran-

tees the detection of branch and relational operator errors in a condition provided

that all Boolean variables and relational operators in the condition occur only once

and have no common variables.

The BRO strategy uses condition constraints for a condition C. A condition con-

straint for C with n simple conditions is defined as (D1, D2, . . ., Dn), where Di (0 < i ≤ n)

is a symbol specifying a constraint on the outcome of the ith simple condition in con-

dition C. A condition constraint D for condition C is said to be covered by an execu-

tion of C if, during this execution of C, the outcome of each simple condition in C

satisfies the corresponding constraint in D.

For a Boolean variable, B, we specify a constraint on the outcome of B that states

that B must be either true (t) or false (f). Similarly, for a relational expression, the sym-

bols >, =, < are used to specify constraints on the outcome of the expression.
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As an example, consider the condition 

C1:   B1 & B2

where B1 and B2 are Boolean variables. The condition constraint for C1 is of the form

(D1, D2), where each of D1 and D2 is t or f. The value (t, f) is a condition constraint

for C1 and is covered by the test that makes the value of B1 to be true and the value

of B2 to be false. The BRO testing strategy requires that the constraint set {(t, t), (f, t),

(t, f)} be covered by the executions of C1. If C1 is incorrect due to one or more Boolean

operator errors, at least one of the constraint set will force C1 to fail.

As a second example, a condition of the form

C2:   B1 & (E3 = E4)

where B1 is a Boolean expression and E3 and E4 are arithmetic expressions. A con-

dition constraint for C2 is of the form (D1, D2), where each of D1 is t or f and D2 is

>, =, <. Since C2 is the same as C1 except that the second simple condition in C2 is a

relational expression, we can construct a constraint set for C2 by modifying the con-

straint set {(t, t), (f, t), (t, f)} defined for C1. Note that t for (E3 = E4) implies = and that

f for (E3 = E4) implies either < or >. By replacing (t, t) and (f, t) with (t, =) and (f, =),

respectively, and by replacing (t, f) with (t, <) and (t, >), the resulting constraint set

for C2 is {(t, =), (f, =), (t, <), (t, >)}. Coverage of the preceding constraint set will guar-

antee detection of Boolean and relational operator errors in C2.

As a third example, we consider a condition of the form

C3:   (E1 > E2) & (E3 = E4)

where E1, E2, E3, and E4 are arithmetic expressions. A condition constraint for C3 is

of the form (D1, D2), where each of D1 and D2 is >, =, <.  Since C3 is the same as C2

except that the first simple condition in C3 is a relational expression, we can con-

struct a constraint set for C3 by modifying the constraint set for C2, obtaining

{(>, =), (=, =), (<, =), (>, >), (>, <)}

Coverage of this constraint set will guarantee detection of relational operator errors

in C3.

17.5.2 Data Flow Testing

The data flow testing method selects test paths of a program according to the loca-

tions of definitions and uses of variables in the program. A number of data flow test-

ing strategies have been studied and compared (e.g., [FRA88], [NTA88], [FRA93]).

To illustrate the data flow testing approach, assume that each statement in a

program is assigned a unique statement number and that each function does not

modify its parameters or global variables. For a statement with S as its statement

number,
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DEF(S) = {X | statement S contains a definition of X}

USE(S) = {X | statement S contains a use of X}

If statement S is an if or loop statement, its DEF set is empty and its USE set is based

on the condition of statement S. The definition of variable X at statement S is said to

be live at statement S' if there exists a path from statement S to statement S' that con-

tains no other definition of X.

A definition-use (DU) chain of variable X is of the form [X, S, S'], where S and S' are

statement numbers, X is in DEF(S) and USE(S'), and the definition of X in statement

S is live at statement S'.

One simple data flow testing strategy is to require that every DU chain be covered

at least once. We refer to this strategy as the DU testing strategy. It has been shown

that DU testing does not guarantee the coverage of all branches of a program. How-

ever, a branch is not guaranteed to be covered by DU testing only in rare situations

such as if-then-else constructs in which the then part has no definition of any vari-

able and the else part does not exist. In this situation, the else branch of the if state-

ment is not necessarily covered by DU testing.

Data flow testing strategies are useful for selecting test paths of a program con-

taining nested if and loop statements.  To illustrate this, consider the application of

DU testing to select test paths for the PDL that follows:

proc x
B1;
do while C1

if C2
then 

if C4 
then B4;
else B5;

endif;
else

if C3 
then B2;
else B3;

endif;
endif;

enddo;
B6;

end proc;

To apply the DU testing strategy to select test paths of the control flow diagram, we

need to know the definitions and uses of variables in each condition or block in the

PDL. Assume that variable X is defined in the last statement of blocks B1, B2, B3, B4,

and B5 and is used in the first statement of blocks B2, B3, B4, B5, and B6. The DU

testing strategy requires an execution of the shortest path from each of Bi, 0 < i ≤ 5,
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to each of Bj, 1 < j ≤ 6. (Such testing also covers any use of variable X in conditions

C1, C2, C3, and C4.) Although there are 25 DU chains of variable X, we need only five

paths to cover these DU chains. The reason is that five paths are needed to cover the

DU chain of X from Bi, 0 < i ≤ 5, to B6 and other DU chains can be covered by mak-

ing these five paths contain iterations of the loop.

If we apply the branch testing strategy to select test paths of the PDL just noted,

we do not need any additional information. To select paths of the diagram for BRO

testing, we need to know the structure of each condition or block.  (After the selec-

tion of a path of a program, we need to determine whether the path is feasible for

the program; that is, whether at least one input exists that exercises the path.)

Since the statements in a program are related to each other according to the def-

initions and uses of variables, the data flow testing approach is effective for error

detection. However, the problems of measuring test coverage and selecting test paths

for data flow testing are more difficult than the corresponding problems for condition

testing. 

17.5.3 Loop Testing

Loops are the cornerstone for the vast majority of all algorithms implemented in soft-

ware. And yet, we often pay them little heed while conducting software tests.

Loop testing is a white-box testing technique that focuses exclusively on the valid-

ity of loop constructs. Four different classes of loops [BEI90] can be defined: simple

loops, concatenated loops, nested loops, and unstructured loops (Figure 17.8).

Simple loops. The following set of tests can be applied to simple loops, where n is

the maximum number of allowable passes through the loop. 

1. Skip the loop entirely. 

2. Only one pass through the loop. 

3. Two passes through the loop. 

4. m passes through the loop where m < n.

5. n �1, n, n + 1 passes through the loop.

Nested loops. If we were to extend the test approach for simple loops to nested

loops, the number of possible tests would grow geometrically as the level of nesting

increases. This would result in an impractical number of tests. Beizer [BEI90] sug-

gests an approach that will help to reduce the number of tests:

1. Start at the innermost loop. Set all other loops to minimum values.

2. Conduct simple loop tests for the innermost loop while holding the outer

loops at their minimum iteration parameter (e.g., loop counter) values. Add

other tests for out-of-range or excluded values.

Complex loop
structures are another
hiding place for bugs.
It’s well worth
spending time
designing tests that
fully exercise loop
structures.
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3. Work outward, conducting tests for the next loop, but keeping all other outer

loops at minimum values and other nested loops to "typical" values. 

4. Continue until all loops have been tested.

Concatenated loops. Concatenated loops can be tested using the approach defined

for simple loops, if each of the loops is independent of the other. However, if two

loops are concatenated and the loop counter for loop 1 is used as the initial value for

loop 2, then the loops are not independent. When the loops are not independent, the

approach applied to nested loops is recommended.

Unstructured loops. Whenever possible, this class of loops should be redesigned

to reflect the use of the structured programming constructs (Chapter 16).

17.6 BLACK-BOX TESTING

Black-box testing, also called behavioral testing, focuses on the functional require-

ments of the software. That is, black-box testing enables the software engineer to

derive sets of input conditions that will fully exercise all functional requirements for

a program. Black-box testing is not an alternative to white-box techniques. Rather,

it is a complementary approach that is likely to uncover a different class of errors

than white-box methods.
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Black-box testing attempts to find errors in the following categories: (1) incorrect

or missing functions, (2) interface errors, (3) errors in data structures or external data

base access, (4) behavior or performance errors, and (5) initialization and termina-

tion errors.

Unlike white-box testing, which is performed early in the testing process, black-

box testing tends to be applied during later stages of testing (see Chapter 18). Because

black-box testing purposely disregards control structure, attention is focused on the

information domain. Tests are designed to answer the following questions: 

• How is functional validity tested?

• How is system behavior and performance tested?

• What classes of input will make good test cases?

• Is the system particularly sensitive to certain input values?

• How are the boundaries of a data class isolated?

• What data rates and data volume can the system tolerate?

• What effect will specific combinations of data have on system operation?

By applying black-box techniques, we derive a set of test cases that satisfy the fol-

lowing criteria [MYE79]: (1) test cases that reduce, by a count that is greater than one,

the number of additional test cases that must be designed to achieve reasonable test-

ing and (2) test cases that tell us something about the presence or absence of classes

of errors, rather than an error associated only with the specific test at hand.

17.6.1 Graph-Based Testing Methods

The first step in black-box testing is to understand the objects6 that are modeled in

software and the relationships that connect these objects. Once this has been accom-

plished, the next step is to define a series of tests that verify “all objects have the

expected relationship to one another [BEI95].” Stated in another way, software test-

ing begins by creating a graph of important objects and their relationships and then

devising a series of tests that will cover the graph so that each object and relation-

ship is exercised and errors are uncovered.

To accomplish these steps, the software engineer begins by creating a graph—a

collection of nodes that represent objects; links that represent the relationships between

objects; node weights that describe the properties of a node (e.g., a specific data value

or state behavior); and link weights that describe some characteristic of a link.7

6 In this context, the term object encompasses the data objects that we discussed in Chapters 11
and 12 as well as program objects such as modules or collections of programming language
statements.

7 If these concepts seem vaguely familiar, recall that graphs were also used in Section 17.4.1 to
create a program graph for the basis path testing method. The nodes of the program graph con-
tained instructions (program objects) characterized as either procedural design representations
or source code, and the directed links indicated the control flow between these program objects.
Here, the use of graphs is extended to encompass black-box testing as well.

A graph represents the
relationships between
data objects and
program objects,
enabling us to derive
test cases that search
for errors associated
with these
relationships.
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The symbolic representation of a graph is shown in Figure 17.9A. Nodes are rep-

resented as circles connected by links that take a number of different forms. A directed

link (represented by an arrow) indicates that a relationship moves in only one direc-

tion. A bidirectional link, also called a symmetric link, implies that the relationship

applies in both directions. Parallel links are used when a number of different rela-

tionships are established between graph nodes.

As a simple example, consider a portion of a graph for a word-processing appli-

cation (Figure 17.9B) where

Object #1 = new file menu select

Object #2 = document window

Object #3 = document text

Referring to the figure, a menu select on new file generates a document window.

The node weight of document window provides a list of the window attributes that

are to be expected when the window is generated. The link weight indicates that the

window must be generated in less than 1.0 second. An undirected link establishes a
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symmetric relationship between the new file menu select and document text,

and parallel links indicate relationships between document window and docu-

ment text. In reality, a far more detailed graph would have to be generated as a pre-

cursor to test case design. The software engineer then derives test cases by traversing

the graph and covering each of the relationships shown. These test cases are designed

in an attempt to find errors in any of the relationships.

Beizer [BEI95] describes a number of behavioral testing methods that can make

use of graphs:

Transaction flow modeling. The nodes represent steps in some transac-

tion (e.g., the steps required to make an airline reservation using an on-line

service), and the links represent the logical connection between steps (e.g.,

flight.information.input is followed by validation/availability.processing).

The data flow diagram (Chapter 12) can be used to assist in creating graphs

of this type.

Finite state modeling. The nodes represent different user observable states

of the software (e.g., each of the “screens” that appear as an order entry clerk

takes a phone order), and the links represent the transitions that occur to

move from state to state (e.g., order-information is verified during inven-

tory-availability look-up and is followed by customer-billing-information

input). The state transition diagram (Chapter 12) can be used to assist in 

creating graphs of this type.

Data flow modeling. The nodes are data objects and the links are the

transformations that occur to translate one data object into another. For

example, the node FICA.tax.withheld (FTW) is computed from

gross.wages (GW) using the relationship, FTW = 0.62 � GW. 

Timing modeling. The nodes are program objects and the links are the

sequential connections between those objects. Link weights are used to

specify the required execution times as the program executes.

A detailed discussion of each of these graph-based testing methods is beyond the

scope of this book. The interested reader should see [BEI95] for a comprehensive dis-

cussion. It is worthwhile, however, to provide a generic outline of the graph-based

testing approach.

Graph-based testing begins with the definition of all nodes and node weights. That

is, objects and attributes are identified. The data model (Chapter 12) can be used as

a starting point, but it is important to note that many nodes may be program objects

(not explicitly represented in the data model). To provide an indication of the start

and stop points for the graph, it is useful to define entry and exit nodes.

Once nodes have been identified, links and link weights should be established. In

general, links should be named, although links that represent control flow between

program objects need not be named. 

What generic
activities are

required during
graph-based
testing?

?
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In many cases, the graph model may have loops (i.e., a path through the graph in

which one or more nodes is encountered more than one time). Loop testing (Section

17.5.3) can also be applied at the behavioral (black-box) level. The graph will assist

in identifying those loops that need to be tested.

Each relationship is studied separately so that test cases can be derived. The tran-

sitivity of sequential relationships is studied to determine how the impact of rela-

tionships propagates across objects defined in a graph. Transitivity can be illustrated

by considering three objects, X, Y, and Z. Consider the following relationships:

X is required to compute Y

Y is required to compute Z

Therefore, a transitive relationship has been established between X and Z:

X is required to compute Z

Based on this transitive relationship, tests to find errors in the calculation of Z must

consider a variety of values for both X and Y.

The symmetry of a relationship (graph link) is also an important guide to the design

of test cases. If a link is indeed bidirectional (symmetric), it is important to test this

feature. The UNDO feature [BEI95] in many personal computer applications imple-

ments limited symmetry. That is, UNDO allows an action to be negated after it has

been completed. This should be thoroughly tested and all exceptions (i.e., places

where UNDO cannot be used) should be noted. Finally, every node in the graph should

have a relationship that leads back to itself; in essence, a “no action” or “null action”

loop. These reflexive relationships should also be tested. 

As test case design begins, the first objective is to achieve node coverage. By this

we mean that tests should be designed to demonstrate that no nodes have been inad-

vertently omitted and that node weights (object attributes) are correct. 

Next, link coverage is addressed. Each relationship is tested based on its proper-

ties. For example, a symmetric relationship is tested to demonstrate that it is, in fact,

bidirectional. A transitive relationship is tested to demonstrate that transitivity is pre-

sent. A reflexive relationship is tested to ensure that a null loop is present. When link

weights have been specified, tests are devised to demonstrate that these weights are

valid. Finally, loop testing is invoked (Section 17.5.3).

17.6.2 Equivalence Partitioning

Equivalence partitioning is a black-box testing method that divides the input domain of

a program into classes of data from which test cases can be derived. An ideal test case

single-handedly uncovers a class of errors (e.g., incorrect processing of all character

data) that might otherwise require many cases to be executed before the general error

is observed. Equivalence partitioning strives to define a test case that uncovers classes

of errors, thereby reducing the total number of test cases that must be developed.
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Test case design for equivalence partitioning is based on an evaluation of equiv-

alence classes for an input condition. Using concepts introduced in the preceding

section, if a set of objects can be linked by relationships that are symmetric, transi-

tive, and reflexive, an equivalence class is present [BEI95]. An equivalence class rep-

resents a set of valid or invalid states for input conditions. Typically, an input condition

is either a specific numeric value, a range of values, a set of related values, or a Boolean

condition. Equivalence classes may be defined according to the following guidelines:   

1. If an input condition specifies a range, one valid and two invalid equivalence

classes are defined.

2. If an input condition requires a specific value, one valid and two invalid

equivalence classes are defined.

3. If an input condition specifies a member of a set, one valid and one invalid

equivalence class are defined.

4. If an input condition is Boolean, one valid and one invalid class are defined.

As an example, consider data maintained as part of an automated banking appli-

cation. The user can access the bank using a personal computer, provide a six-digit

password, and follow with a series of typed commands that trigger various banking

functions. During the log-on sequence, the software supplied for the banking appli-

cation accepts data in the form

area code—blank or three-digit number 

prefix—three-digit number not beginning with 0 or 1 

suffix—four-digit number 

password—six digit alphanumeric string 

commands—check, deposit, bill pay, and the like

The input conditions associated with each data element for the banking applica-

tion can be specified as

area code: Input condition, Boolean—the area code may or may not be 

present.

Input condition, range—values defined  between 200 and 999, with

specific exceptions.

prefix: Input condition, range—specified value >200

Input condition, value—four-digit length

password: Input condition, Boolean—a password may or may not be present. 

Input condition, value—six-character string.

command: Input condition, set—containing commands noted previously.

Applying the guidelines for the derivation of equivalence classes, test cases for each

input domain data item can be developed and executed. Test cases are selected so

that the largest number of attributes of an equivalence class are exercised at once.

Input classes are
known relatively early
in the software
process. For this
reason, begin thinking
about equivalence
partitioning as the
design is created.
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17.6.3 Boundary Value Analysis

For reasons that are not completely clear, a greater number of errors tends to occur

at the boundaries of the input domain rather than in the "center." It is for this reason

that boundary value analysis (BVA) has been developed as a testing technique. Bound-

ary value analysis leads to a selection of test cases that exercise bounding values.

Boundary value analysis is a test case design technique that complements equiv-

alence partitioning. Rather than selecting any element of an equivalence class, BVA

leads to the selection of test cases at the "edges" of the class. Rather than focusing

solely on input conditions, BVA derives test cases from the output domain as well

[MYE79].

Guidelines for BVA are similar in many respects to those provided for equivalence

partitioning:

1. If an input condition specifies a range bounded by values a and b, test cases

should be designed with values a and b and just above and just below a

and b.

2. If an input condition specifies a number of values, test cases should be devel-

oped that exercise the minimum and maximum numbers. Values just above

and below minimum and maximum are also tested.

3. Apply guidelines 1 and 2 to output conditions. For example, assume that a

temperature vs. pressure table is required as output from an engineering

analysis program. Test cases should be designed to create an output report

that produces the maximum (and minimum) allowable number of table

entries. 

4. If internal program data structures have prescribed boundaries (e.g., an array

has a defined limit of 100 entries), be certain to design a test case to exercise

the data structure at its boundary.

Most software engineers intuitively perform BVA to some degree. By applying these

guidelines, boundary testing will be more complete, thereby having a higher likeli-

hood for error detection.

16.6.4 Comparison Testing

There are some situations (e.g., aircraft avionics, automobile braking systems) in

which the reliability of software is absolutely critical. In such applications redundant

hardware and software are often used to minimize the possibility of error. When

redundant software is developed, separate software engineering teams develop inde-

pendent versions of an application using the same specification. In such situations,

each version can be tested with the same test data to ensure that all provide identi-

cal output. Then all versions are executed in parallel with real-time comparison of

results to ensure consistency.
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Using lessons learned from redundant systems, researchers (e.g., [BRI87]) have

suggested that independent versions of software be developed for critical applica-

tions, even when only a single version will be used in the delivered computer-based

system. These independent versions form the basis of a black-box testing technique

called comparison testing or back-to-back testing [KNI89].

When multiple implementations of the same specification have been produced,

test cases designed using other black-box techniques (e.g., equivalence partitioning)

are provided as input to each version of the software. If the output from each version

is the same, it is assumed that all implementations are correct. If the output is dif-

ferent, each of the applications is investigated to determine if a defect in one or more

versions is responsible for the difference. In most cases, the comparison of outputs

can be performed by an automated tool.

Comparison testing is not foolproof. If the specification from which all versions

have been developed is in error, all versions will likely reflect the error. In addition,

if each of the independent versions produces identical but incorrect results, condi-

tion testing will fail to detect the error.

17.6.5 Orthogonal Array Testing

There are many applications in which the input domain is relatively limited. That is,

the number of input parameters is small and the values that each of the parameters

may take are clearly bounded. When these numbers are very small (e.g., three input

parameters taking on three discrete values each), it is possible to consider every input

permutation and exhaustively test processing of the input domain. However, as the

number of input values grows and the number of discrete values for each data item

increases, exhaustive testing become impractical or impossible.

Orthogonal array testing can be applied to problems in which the input domain

is relatively small but too large to accommodate exhaustive testing. The orthog-

onal array testing method is particularly useful in finding errors associated with

region faults—an error category associated with faulty logic within a software

component.

To illustrate the difference between orthogonal array testing and more conven-

tional “one input item at a time” approaches, consider a system that has three input

items, X, Y, and Z. Each of these input items has three discrete values associated with

it. There are 33 = 27 possible test cases. Phadke [PHA97] suggests a geometric view

of the possible test cases associated with X, Y, and Z illustrated in Figure 17.10. Refer-

ring to the figure, one input item at a time may be varied in sequence along each input

axis. This results in relatively limited coverage of the input domain (represented by

the left-hand cube in the figure). 

When orthogonal array testing occurs, an L9 orthogonal array of test cases is cre-

ated. The L9 orthogonal array has a “balancing property [PHA97].” That is, test cases

(represented by black dots in the figure) are “dispersed uniformly throughout the test

Orthogonal array
testing enables you to
design test cases that
provide maximum test
coverage with a
reasonable number of
test cases.
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domain,” as illustrated in the right-hand cube in Figure 17.10. Test coverage across

the input domain is more complete. 

To illustrate the use of the L9 orthogonal array, consider the send function for a

fax application. Four parameters, P1, P2, P3, and P4, are passed to the send function.

Each takes on three discrete values. For example, P1 takes on values:

P1 = 1, send it now

P1 = 2, send it one hour later

P1 = 3, send it after midnight

P2, P3, and P4 would also take on values of 1, 2 and 3, signifying other send functions.

If a “one input item at a time” testing strategy  were chosen, the following sequence

of tests (P1, P2, P3, P4) would be specified: (1, 1, 1, 1), (2, 1, 1, 1), (3, 1, 1, 1), (1, 2, 1,

1), (1, 3, 1, 1), (1, 1, 2, 1), (1, 1, 3, 1), (1, 1, 1, 2), and (1, 1, 1, 3). Phadke [PHA97]

assesses these test cases in the following manner:

Such test cases are useful only when one is certain that these test parameters do not inter-

act. They can detect logic faults where a single parameter value makes the software mal-

function. These faults are called single mode faults. This method cannot detect logic faults

that cause malfunction when two or more parameters simultaneously take certain values;

that is, it cannot detect any interactions. Thus its ability to detect faults is limited.  

Given the relatively small number of input parameters and discrete values, exhaus-

tive testing is possible. The number of tests required is 34 = 81, large, but manage-

able. All faults associated with data item permutation would be found, but the effort

required is relatively high.

The orthogonal array testing approach enables us to provide good test coverage

with far fewer test cases than the exhaustive strategy. An L9 orthogonal array for the

fax send function is illustrated in Figure 17.11. 
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Phadke [PHA97] assesses the result of tests using the L9 orthogonal array in the

following manner:

Detect and isolate all single mode faults. A single mode fault is a consistent problem

with any level of any single parameter. For example, if all test cases of factor P1 = 1 cause

an error condition, it is a single mode failure. In this example tests 1, 2 and 3 [Figure 17.11]

will show errors. By analyzing the information about which tests show errors, one can iden-

tify which parameter values cause the fault. In this example, by noting that tests 1, 2, and

3 cause an error, one can isolate [logical processing associated with “send it now” (P1 = 1)]

as the source of the error. Such an isolation of fault is important to fix the fault.

Detect all double mode faults. If there exists a consistent problem when specific levels

of two parameters occur together, it is called a double mode fault. Indeed, a double mode

fault is an indication of pairwise incompatibility or harmful interactions between two test

parameters.

Multimode faults. Orthogonal arrays [of the type shown] can assure the detection of only

single and double mode faults. However, many multi-mode faults are also detected by these

tests.

A detailed discussion of orthogonal array testing can be found in [PHA89].

17.7 TESTING FOR SPECIALIZED ENVIRONMENTS,  
ARCHITECTURES,  AND APPLICATIONS

As computer software has become more complex, the need for specialized testing

approaches has also grown. The white-box and black-box testing methods discussed

in Sections 17.5 and 17.6 are applicable across all environments, architectures, and
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applications, but unique guidelines and approaches to testing are sometimes war-

ranted. In this section we consider testing guidelines for specialized environments,

architectures, and applications that are commonly encountered by software engineers.

17.7.1 Testing GUIs

Graphical user interfaces (GUIs) present interesting challenges for software engineers.

Because of reusable components provided as part of GUI development environments,

the creation of the user interface has become less time consuming and more precise.

But, at the same time, the complexity of GUIs has grown, leading to more difficulty

in the design and execution of test cases.

Because many modern GUIs have the same look and feel, a series of standard tests

can be derived. Finite state modeling graphs may be used to derive a series of tests

that address specific data and program objects that are relevant to the GUI.

Due to the large number of permutations associated with GUI operations, testing

should be approached using automated tools. A wide array of GUI testing tools has

appeared on the market over the past few years. For further discussion, see Chap-

ter 31.

17.7.2 Testing of Client/Server Architectures

Client/server (C/S) architectures represent a significant challenge for software

testers. The distributed nature of client/server environments, the performance

issues associated with transaction processing, the potential presence of a number

of different hardware platforms, the complexities of network communication, the

need to service multiple clients from a centralized (or in some cases, distributed)

database, and the coordination requirements imposed on the server all combine to

make testing of C/S architectures and the software that reside within them con-

siderably more difficult than stand-alone applications. In fact, recent industry stud-

ies indicate a significant increase in testing time and cost when C/S environments

are developed. 

17.7.3 Testing Documentation and Help Facilities

The term software testing conjures images of large numbers of test cases prepared to

exercise computer programs and the data that they manipulate. Recalling the defin-

ition of software presented in the first chapter of this book, it is important to note that

testing must also extend to the third element of the software configuration—docu-

mentation.

Errors in documentation can be as devastating to the acceptance of the program

as errors in data or source code. Nothing is more frustrating than following a user

guide or an on-line help facility exactly and getting results or behaviors that do not

coincide with those predicted by the documentation. It is for this reason that that doc-

umentation testing should be a meaningful part of every software test plan.
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Documentation testing can be approached in two phases. The first phase, review

and inspection (Chapter 8), examines the document for editorial clarity. The second

phase, live test, uses the documentation in conjunction with the use of the actual

program.

Surprisingly, a live test for documentation can be approached using techniques

that are analogous to many of the black-box testing methods discussed in Section

17.6. Graph-based testing can be used to describe the use of the program; equiva-

lence partitioning and boundary value analysis can be used to define various classes

of input and associated interactions. Program usage is then tracked through the doc-

umentation. The following questions should be answered during both phases:

• Does the documentation accurately describe how to accomplish each mode

of use?

• Is the description of each interaction sequence accurate?

• Are examples accurate?

• Are terminology, menu descriptions, and system responses consistent with

the actual program?

• Is it relatively easy to locate guidance within the documentation?

• Can troubleshooting be accomplished easily with the documentation?

• Are the document table of contents and index accurate and complete?

• Is the design of the document (layout, typefaces, indentation, graphics) con-

ducive to understanding and quick assimilation of information?

• Are all software error messages displayed for the user described in more

detail in the document? Are actions to be taken as a consequence of an error

message clearly delineated?

• If hypertext links are used, are they accurate and complete?

• If hypertext is used, is the navigation design appropriate for the information

required?

The only viable way to answer these questions is to have an independent third party

(e.g., selected users) test the documentation in the context of program usage. All dis-

crepancies are noted and areas of document ambiguity or weakness are defined for

potential rewrite.

17.7.4 Testing for Real-Time Systems

The time-dependent, asynchronous nature of many real-time applications adds a new

and potentially difficult element to the testing mix—time. Not only does the test case

designer have to consider white- and black-box test cases but also event handling

(i.e., interrupt processing), the timing of the data, and the parallelism of the tasks

(processes) that handle the data. In many situations, test data provided when a real-

What
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addressed as we
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?



CHAPTER 17 SOFTWARE TESTING TECHNIQUES

time system is in one state will result in proper processing, while the same data pro-

vided when the system is in a different state may lead to error. 

For example, the real-time software that controls a new photocopier accepts oper-

ator interrupts (i.e., the machine operator hits control keys such as RESET or DARKEN)

with no error when the machine is making copies (in the "copying" state). These same

operator interrupts, if input when the machine is in the "jammed" state, cause a dis-

play of the diagnostic code indicating the location of the jam to be lost (an error).

In addition, the intimate relationship that exists between real-time software and

its hardware environment can also cause testing problems. Software tests must con-

sider the impact of hardware faults on software processing. Such faults can be

extremely difficult to simulate realistically.

Comprehensive test case design methods for real-time systems have yet to evolve.

However, an overall four-step strategy can be proposed:

Task testing. The first step in the testing of real-time software is to test each

task independently. That is, white-box and black-box tests are designed and

executed for each task. Each task is executed independently during these

tests. Task testing uncovers errors in logic and function but not timing or

behavior.

Behavioral testing. Using system models created with CASE tools, it is pos-

sible to simulate the behavior of a real-time system and examine its behavior

as a consequence of external events. These analysis activities can serve as

the basis for the design of test cases that are conducted when the real-time

software has been built. Using a technique that is similar to equivalence par-

titioning (Section 17.6.1), events (e.g., interrupts, control signals) are catego-

rized for testing. For example, events for the photocopier might be user

interrupts (e.g., reset counter), mechanical interrupts (e.g., paper jammed),

system interrupts (e.g., toner low), and failure modes (e.g., roller overheated).

Each of these events is tested individually and the behavior of the executable

system is examined to detect errors that occur as a consequence of process-

ing associated with these events. The behavior of the system model (devel-

oped during the analysis activity) and the executable software can be

compared for conformance. Once each class of events has been tested,

events are presented to the system in random order and with random fre-

quency. The behavior of the software is examined to detect behavior errors.

Intertask testing. Once errors in individual tasks and in system behavior

have been isolated, testing shifts to time-related errors. Asynchronous tasks

that are known to communicate with one another are tested with different data

rates and processing load to determine if intertask synchronization errors will

occur. In addition, tasks that communicate via a message queue or data store

are tested to uncover errors in the sizing of these data storage areas.
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System testing. Software and hardware are integrated and a full range of

system tests (Chapter 18) are conducted in an attempt to uncover errors at

the software/hardware interface. Most real-time systems process interrupts.

Therefore, testing the handling of these Boolean events is essential. Using

the state transition diagram and the control specification (Chapter 12), the

tester develops a list of all possible interrupts and the processing that occurs

as a consequence of the interrupts. Tests are then designed to assess the fol-

lowing system characteristics:

• Are interrupt priorities properly assigned and properly handled?

• Is processing for each interrupt handled correctly?

• Does the performance (e.g., processing time) of each interrupt-handling

procedure conform to requirements?

• Does a high volume of interrupts arriving at critical times create prob-

lems in function or performance?

In addition, global data areas that are used to transfer information as part of inter-

rupt processing should be tested to assess the potential for the generation of side

effects.

17.8 SUMMARY

The primary objective for test case design is to derive a set of tests that have the high-

est likelihood for uncovering errors in the software. To accomplish this objective, two

different categories of test case design techniques are used: white-box testing and

black-box testing.

White-box tests focus on the program control structure. Test cases are derived to

ensure that all statements in the program have been executed at least once during

testing and that all logical conditions have been exercised. Basis path testing, a

white-box technique, makes use of program graphs (or graph matrices) to derive

the set of linearly independent tests that will ensure coverage. Condition and data

flow testing further exercise program logic, and loop testing complements other

white-box techniques by providing a procedure for exercising loops of varying degrees

of complexity.

Hetzel [HET84] describes white-box testing as "testing in the small." His implica-

tion is that the white-box tests that we have considered in this chapter are typically

applied to small program components (e.g., modules or small groups of modules).

Black-box testing, on the other hand, broadens our focus and might be called "test-

ing in the large."

Black-box tests are designed to validate functional requirements without regard

to the internal workings of a program. Black-box testing techniques focus on the

information domain of the software, deriving test cases by partitioning the input and

output domain of a program in a manner that provides thorough test coverage. Equiv-
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alence partitioning divides the input domain into classes of data that are likely to

exercise specific software function. Boundary value analysis probes the program's

ability to handle data at the limits of acceptability. Orthogonal array testing provides

an efficient, systematic method for testing systems will small numbers of input para-

meters.

Specialized testing methods encompass a broad array of software capabilities and

application areas. Testing for graphical user interfaces, client/server architectures,

documentation and help facilities, and real-time systems each require specialized

guidelines and techniques.

Experienced software developers often say, "Testing never ends, it just gets trans-

ferred from you [the software engineer] to your customer. Every time your customer

uses the program, a test is being conducted." By applying test case design, the soft-

ware engineer can achieve more complete testing and thereby uncover and correct

the highest number of errors before the "customer's tests" begin.
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PROBLEMS AND POINTS TO PONDER

17.1. Myers [MYE79] uses the following program as a self-assessment for your abil-

ity to specify adequate testing: A program reads three integer values. The three val-

ues are interpreted as representing the lengths of the sides of a triangle. The program

prints a message that states whether the triangle is scalene, isosceles, or equilateral.

Develop a set of test cases that you feel will adequately test this program. 

17.2. Design and implement the program (with error handling where appropriate)

specified in Problem 1. Derive a flow graph for the program and apply basis path test-

ing to develop test cases that will guarantee that all statements in the program have

been tested. Execute the cases and show your results. 

17.3. Can you think of any additional testing objectives that are not discussed in

Section 17.1.1? 

17.4. Apply the basis path testing technique to any one of the programs that you

have implemented in Problems 16.4 through 16.11.

17.5. Specify, design, and implement a software tool that will compute the cyclo-

matic complexity for the programming language of your choice. Use the  graph matrix

as the operative data structure in your design. 

17.6. Read Beizer [BEI95] and determine how the program you have developed in

Problem 17.5 can be extended to accommodate various link weights. Extend your

tool to process execution probabilities or link processing times. 
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17.7. Use the condition testing approach described in Section 17.5.1 to design a set

of test cases for the program you created in Problem 17.2.

17.8. Using the data flow testing approach described in Section 17.5.2, make a list

of definition-use chains for the program you created in Problem 17.2.

17.9. Design an automated tool that will recognize loops and categorize them as

indicated in Section 17.5.3. 

17.10. Extend the tool described in Problem 17.9 to generate test cases for each

loop category, once encountered. It will be necessary to perform this function inter-

actively with the tester.

17.11. Give at least three examples in which black-box testing might give the impres-

sion that "everything's OK," while white-box tests might uncover an error. Give at

least three examples in which white-box testing might give the  impression that "every-

thing's OK," while black-box tests might uncover an error. 

17.12. Will exhaustive testing (even if it is possible for very small programs) guar-

antee that the program is 100 percent correct? 

17.13. Using the equivalence partitioning method, derive a set of test cases for Safe-

Home system described earlier in this book.

17.14. Using boundary value analysis, derive a set of test cases for the PHTRS sys-

tem described in Problem 12.13.

17.15. Do a bit of outside research and write a brief paper that discusses the mechan-

ics for generating orthogonal arrays for test data. 

17.16. Select a specific GUI for a program with which you are familiar and design a

series of tests to exercise the GUI.

17.17. Do some research on a client/server system with which you are familiar.

Develop a set of user scenarios and then create an operational profile for the system.

17.18. Test a user manual (or help facility) for an application that you use frequently.

Find at least one error in the documentation.

FURTHER READINGS AND INFORMATION SOURCES

Software engineering presents both technical and management challenges. Books by

Black (Managing the Testing Process, Microsoft Press, 1999); Dustin, Rashka, and Paul

(Test Process Improvement: Step-by-Step Guide to Structured Testing, Addison-Wesley,

1999); Perry (Surviving the Top Ten Challenges of Software Testing: A People-Oriented

Approach, Dorset House, 1997); and Kit and Finzi (Software Testing in the Real World:

Improving the Process, Addison-Wesley, 1995) address  management and process issues.  
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A number of excellent books are now available for those readers who desire addi-

tional information on software testing technology. Kaner, Nguyen, and Falk (Testing

Computer Software, Wiley, 1999); Hutcheson (Software Testing Methods and Metrics:

The Most Important Tests, McGraw-Hill, 1997); Marick (The Craft of Software Testing:

Subsystem Testing Including Object-Based and Object-Oriented Testing, Prentice-Hall,

1995); Jorgensen (Software Testing : A Craftsman's Approach, CRC Press, 1995) present

treatments of the subject that consider testing methods and strategies. 

Myers [MYE79] remains a classic text, covering black-box techniques in consid-

erable detail. Beizer [BEI90] provides comprehensive coverage of white-box tech-

niques, introducing a level of mathematical rigor that has often been missing in other

treatments of testing. His later book [BEI95] presents a concise treatment of impor-

tant methods. Perry (Effective Methods for Software Testing, Wiley-QED, 1995) and

Friedman and Voas (Software Assessment: Reliability, Safety, Testability, Wiley, 1995)

present good introductions to testing strategies and tactics. Mosley (The Handbook

of MIS Application Software Testing, Prentice-Hall, 1993) discusses testing issues for

large information systems, and Marks (Testing Very Big Systems, McGraw-Hill, 1992)

discusses the special issues that must be considered when testing major program-

ming systems.

Software testing is a resource-intensive activity. It is for this reason that many

organizations automate parts of the testing process. Books by Dustin, Rashka, and

Poston (Automated Software Testing: Introduction, Management, and Performance, Addi-

son-Wesley, 1999) and Poston (Automating Specification-Based Software Testing, IEEE

Computer Society, 1996) discuss tools, strategies, and methods for automated test-

ing. An excellent source of information on automated tools for software testing is the

Testing Tools Reference Guide (Software Quality Engineering, Jacksonville, FL, updated

yearly). This directory contains descriptions of hundreds of testing tools, categorized

by testing activity, hardware platform, and software support.

A number of books consider testing methods and strategies in specialized appli-

cation areas. Gardiner (Testing Safety-Related Software: A Practical Handbook, Springer-

Verlag, 1999) has edited a book that addresses testing of safety-critical systems.

Mosley (Client/Server Software Testing on the Desk Top and the Web, Prentice-Hall,

1999) discusses the test process for clients, servers, and network components. Rubin

(Handbook of Usability Testing, Wiley, 1994) has written a useful guide for those who

must exercise human interfaces.

A wide variety of information sources on software testing and related subjects is

available on the Internet. An up-to-date list of World Wide Web references that are

relevant to testing concepts, methods, and strategies can be found at the SEPA Web

site: 

http://www.mhhe.com/engcs/compsci/sepa/resources/

test-techniques.mhtml 
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A strategy for software testing integrates software test case design meth-
ods into a well-planned series of steps that result in the successful con-
struction of software. The strategy provides a road map that describes

the steps to be conducted as part of testing, when these steps are planned and
then undertaken, and how much effort, time, and resources will be required.
Therefore, any testing strategy must incorporate test planning, test case design,
test execution, and resultant data collection and evaluation. 

A software testing strategy should be flexible enough to promote a cus-
tomized testing approach. At the same time, it must be rigid enough to promote
reasonable planning and management tracking as the project progresses.
Shooman [SHO83] discusses these issues:

In many ways, testing is an individualistic process, and the number of different types

of tests varies as much as the different development approaches. For many years,

our only defense against programming errors was careful design and the native intel-

ligence of the programmer. We are now in an era in which modern design techniques

[and formal technical reviews] are helping us to reduce the number of initial errors

that are inherent in the code. Similarly, different test methods are beginning to clus-

ter themselves into several distinct approaches and philosophies.

18 SOFTWARE TESTING
STRATEGIES

What is it? Designing effective

test cases (Chapter 17) is impor-

tant, but so is the strategy you use

to execute them. Should you develop a formal

plan for your tests? Should you test the entire pro-

gram as a whole or run tests only on a small part

of it? Should you rerun tests you’ve already con-

ducted as you add new components to a large

system? When should you involve the customer?

These and many other questions are answered

when you develop a software testing strategy. 

Who does it? A strategy for software testing is devel-

oped by the project manager, software engineers,

and testing specialists.

Why is it important? Testing often accounts for more

project effort than any other software engineer-

ing activity. If it is conducted haphazardly, time

is wasted, unnecessary effort is expended, and

even worse, errors sneak through undetected. It

would therefore seem reasonable to establish a

systematic strategy for testing software.

What are the steps? Testing begins “in the small” and

progresses “to the large.” By this we mean that

early testing focuses on a single component and

applies white- and black-box tests to uncover

errors in program logic and function. After indi-

vidual components are tested they must be inte-

grated. Testing continues as the software is

constructed. Finally, a series of high-order tests are

executed once the full program is operational.

Q U I C K
L O O K
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These “approaches and philosophies” are what we shall call strategy. In Chapter
17, the technology of software testing was presented.1 In this chapter, we focus our
attention on the strategy for software testing.

18.1 A STRATEGIC APPROACH TO SOFTWARE TESTING

Testing is a set of activities that can be planned in advance and conducted system-

atically. For this reason a template for software testing—a set of steps into which we

can place specific test case design techniques and testing methods—should be defined

for the software process.

A number of software testing strategies have been proposed in the literature. All

provide the software developer with a template for testing and all have the follow-

ing generic characteristics:

•   Testing begins at the component level2 and works "outward" toward the inte-

gration of the entire computer-based system.      

•   Different testing techniques are appropriate at different points in time.

•   Testing is conducted by the developer of the software and (for large projects)

an independent test group.

•   Testing and debugging are different activities, but debugging must be accom-

modated in any testing strategy. 

A strategy for software testing must accommodate low-level tests that are necessary

to verify that a small source code segment has been correctly implemented as well

as high-level tests that validate major system functions against customer require-

ments. A strategy must provide guidance for the practitioner and a set of milestones

for the manager. Because the steps of the test strategy occur at a time when dead-

These tests are designed to

uncover errors in requirements.

What is the work product? A

Test Specification documents the software team’s

approach to testing by defining a plan that

describes an overall strategy and a procedure

that defines specific testing steps and the tests that

will be conducted. 

How do I ensure that I’ve done it right? By reviewing

the Test Specification prior to testing, you can

assess the completeness of test cases and testing

tasks. An effective test plan and procedure will

lead to the orderly construction of the software

and the discovery of errors at each stage in the

construction process. 

Q U I C K
L O O K

1 Testing for object-oriented systems is discussed in Chapter 23.

2 For object-oriented systems, testing begins at the class or object level. See Chapter 23 for details.

WebRef
Useful information on
software testing strategies
is provided by the
Software Testing
Newsletter at
www.ondaweb.com
/sti/newsltr.htm
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line pressure begins to rise, progress must be measurable and problems must sur-

face as early as possible.

18.1.1 Verification and Validation

Software testing is one element of a broader topic that is often referred to as verifi-

cation and validation (V&V). Verification refers to the set of activities that ensure that

software correctly implements a specific function. Validation refers to a different set

of activities that ensure that the software that has been built is traceable to customer

requirements. Boehm [BOE81] states this another way: 

Verification: "Are we building the product right?" 

Validation: "Are we building the right product?" 

The definition of V&V encompasses many of the activities that we have referred to

as software quality assurance (SQA).

Verification and validation encompasses a wide array of SQA activities that include

formal technical reviews, quality and configuration audits, performance monitoring,

simulation, feasibility study, documentation review, database review, algorithm analy-

sis, development testing, qualification testing, and installation testing [WAL89].

Although testing plays an extremely important role in V&V, many other activities are

also necessary.

Testing does provide the last bastion from which quality can be assessed and, more

pragmatically, errors can be uncovered. But testing should not be viewed as a safety

net. As they say, "You can't test in quality. If it's not there before you begin testing, it

won't be there when you're finished testing." Quality is incorporated into software

throughout the process of software engineering. Proper application of methods and

tools, effective formal technical reviews, and solid management and measurement

all lead to quality that is confirmed during testing.

Miller [MIL77] relates software testing to quality assurance by stating that "the

underlying motivation of program testing is to affirm software quality with methods

that can be economically and effectively applied to both large-scale and small-scale

systems."

18.1.2 Organizing for Software Testing

For every software project, there is an inherent conflict of interest that occurs as test-

ing begins. The people who have built the software are now asked to test the soft-

ware. This seems harmless in itself; after all, who knows the program better than its

developers? Unfortunately, these same developers have a vested interest in demon-

strating that the program is error free, that it works according to customer require-

ments, and that it will be completed on schedule and within budget. Each of these

interests mitigate against thorough testing. 
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XRef
SQA activities are
discussed in detail in
Chapter 8.

“Testing is an
unavoidable part of
any responsible
effort to develop a
software system.”
William Howden 
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From a psychological point of view, software analysis and design (along with cod-

ing) are constructive tasks. The software engineer creates a computer program, its

documentation, and related data structures. Like any builder, the software engineer

is proud of the edifice that has been built and looks askance at anyone who attempts

to tear it down. When testing commences, there is a subtle, yet definite, attempt to

"break" the thing that the software engineer has built. From the point of view of the

builder, testing can be considered to be (psychologically) destructive. So the builder

treads lightly, designing and executing tests that will demonstrate that the program

works, rather than uncovering errors. Unfortunately, errors will be present. And, if

the software engineer doesn't find them, the customer will!

There are often a number of misconceptions that can be erroneously inferred from

the preceeding discussion: (1) that the developer of software should do no testing at

all, (2) that the software should be "tossed over the wall" to strangers who will test

it mercilessly, (3) that testers get involved with the project only when the testing steps

are about to begin. Each of these statements is incorrect.

The software developer is always responsible for testing the individual units (com-

ponents) of the program, ensuring that each performs the function for which it was

designed. In many cases, the developer also conducts integration testing—a testing

step that leads to the construction (and test) of the complete program structure. Only

after the software architecture is complete does an independent test group become

involved.

The role of an independent test group (ITG) is to remove the inherent problems

associated with letting the builder test the thing that has been built. Independent test-

ing removes the conflict of interest that may otherwise be present. After all, person-

nel in the independent group team are paid to find errors.

However, the software engineer doesn't turn the program over to ITG and walk

away. The developer and the ITG work closely throughout a software project to ensure

that thorough tests will be conducted. While testing is conducted, the developer must

be available to correct errors that are uncovered.

The ITG is part of the software development project team in the sense that it

becomes involved during the specification activity and stays involved (planning and

specifying test procedures) throughout a large project. However, in many cases the

ITG reports to the software quality assurance organization, thereby achieving a degree

of independence that might not be possible if it were a part of the software engi-

neering organization.

18.1.3 A Software Testing Strategy

The software engineering process may be viewed as the spiral illustrated in Figure

18.1. Initially, system engineering defines the role of software and leads to software

requirements analysis, where the information domain, function, behavior, perfor-

mance, constraints, and validation criteria for software are established. Moving

An independent test
group does not have
the “conflict of
interest” that builders
of the software have.

If an ITG does not
exist within your
organization, you’ll
have to take its point
of view. When you
test, try to break the
software.
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inward along the spiral, we come to design and finally to coding. To develop com-

puter software, we spiral inward along streamlines that decrease the level of abstrac-

tion on each turn.

A strategy for software testing may also be viewed in the context of the spiral (Fig-

ure 18.1). Unit testing begins at the vortex of the spiral and concentrates on each unit

(i.e., component) of the software as implemented in source code. Testing progresses

by moving outward along the spiral to integration testing, where the focus is on design

and the construction of the software architecture. Taking another turn outward on

the spiral, we encounter validation testing, where requirements established as part of

software requirements analysis are validated against the software that has been con-

structed. Finally, we arrive at system testing, where the software and other system

elements are tested as a whole. To test computer software, we spiral out along stream-

lines that broaden the scope of testing with each turn.

Considering the process from a procedural point of view, testing within the con-

text of software engineering is actually a series of four steps that are implemented

sequentially. The steps are shown in Figure 18.2.  Initially, tests focus on each com-

ponent individually, ensuring that it functions properly as a unit. Hence, the name

unit testing. Unit testing makes heavy use of white-box testing techniques, exercis-

ing specific paths in a module's control structure to ensure complete coverage and

maximum error detection. Next, components must be assembled or integrated to

form the complete software package.  Integration testing addresses the issues asso-

ciated with the dual problems of verification and program construction.  Black-box

test case design techniques are the most prevalent during integration, although a lim-

ited amount of white-box testing may be used to ensure coverage of major control

paths. After the software has been integrated (constructed), a set of high-order tests

are conducted. Validation criteria (established during requirements analysis) must be

tested.  Validation testing provides final assurance that software meets all functional,

behavioral, and performance requirements. Black-box testing techniques are used

exclusively during validation.
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Validation testing
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Unit testing

Code

Design
Requirements

System engineering

FIGURE 18.1
Testing 
strategy

XRef
Black-box and white-
box testing techniques
are discussed in
Chapter 17.
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The last high-order testing step falls outside the boundary of software engineer-

ing and into the broader context of computer system engineering. Software, once

validated, must be combined with other system elements (e.g., hardware, people,

databases). System testing verifies that all elements mesh properly and that overall

system function/performance is achieved.

18.1.4 Criteria for Completion of Testing

A classic question arises every time software testing is discussed: "When are we done

testing—how do we know that we've tested enough?" Sadly, there is no definitive

answer to this question, but there are a few pragmatic responses and early attempts

at empirical guidance.

One response to the question is: "You're never done testing, the burden simply

shifts from you (the software engineer) to your customer." Every time the cus-

tomer/user executes a computer program, the program is being tested. This sober-

ing fact underlines the importance of other software quality assurance activities.

Another response (somewhat cynical but nonetheless accurate) is: "You're done test-

ing when you run out of time or you run out of money." 

Although few practitioners would argue with these responses, a software engi-

neer needs more rigorous criteria for determining when sufficient testing has been

conducted. Musa and Ackerman [MUS89] suggest a response that is based on sta-

tistical criteria: "No, we cannot be absolutely certain that the software will never fail,

but relative to a theoretically sound and experimentally validated statistical model,

we have done sufficient testing to say with 95 percent confidence that the probabil-

ity of 1000 CPU hours of failure free operation in a probabilistically defined environ-

ment is at least 0.995."

Unit
testCode

Design

Requirements

Testing
“direction”

Integration test

High-order
tests

FIGURE 18.2
Software 
testing steps

When are 
we done

testing?
?
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Using statistical modeling and software reliability theory, models of software fail-

ures (uncovered during testing) as a function of execution time can be developed

[MUS89]. A version of the failure model, called a logarithmic Poisson execution-time

model, takes the form

f(t) = (1/p) ln [l0 pt + 1] (18-1)

where f(t) = cumulative number of failures that are expected to occur once the

software has been tested for a certain amount of execution time, t,

l0 = the initial software failure intensity (failures per time unit) at the begin-

ning of testing, 

p = the exponential reduction in failure intensity as errors are uncovered

and repairs are made.

The instantaneous failure intensity, l(t) can be derived by taking the derivative of

f(t)

l(t) = l0 / (l0 pt + 1) (18-2)

Using the relationship noted in Equation (18-2), testers can predict the drop-off of

errors as testing progresses. The actual error intensity can be plotted against the pre-

dicted curve (Figure 18.3). If the actual data gathered during testing and the loga-

rithmic Poisson execution time model are reasonably close to one another over a

number of data points, the model can be used to predict total testing time required

to achieve an acceptably low failure intensity.

By collecting metrics during software testing and making use of existing software

reliability models, it is possible to develop meaningful guidelines for answering the

question: "When are we done testing?" There is little debate that further work remains

to be done before quantitative rules for testing can be established, but the empirical

approaches that currently exist are considerably better than raw intuition.
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18.2 STRATEGIC ISSUES

Later in this chapter, we explore a systematic strategy for software testing. But even

the best strategy will fail if a series of overriding issues are not addressed. Tom Gilb

[GIL95] argues that the following issues must be addressed if a successful software

testing strategy is to be implemented:

Specify product requirements in a quantifiable manner long before

testing commences. Although the overriding objective of testing is to find

errors, a good testing strategy also assesses other quality characteristics such

as portability, maintainability, and usability (Chapter 19). These should be

specified in a way that is measurable so that testing results are unambiguous.

State testing objectives explicitly. The specific objectives of testing

should be stated in measurable terms. For example, test effectiveness, test

coverage, mean time to failure, the cost to find and fix defects, remaining

defect density or frequency of occurrence, and test work-hours per regres-

sion test all should be stated within the test plan [GIL95]. 

Understand the users of the software and develop a profile for

each user category. Use-cases that describe the interaction scenario for

each class of user can reduce overall testing effort by focusing testing on

actual use of the product.

Develop a testing plan that emphasizes “rapid cycle testing.”  Gilb

[GIL95] recommends that a software engineering team “learn to test in rapid

cycles (2 percent of project effort) of customer-useful, at least field ‘trialable,’

increments of functionality and/or quality improvement.” The feedback gen-

erated from these rapid cycle tests can be used to control quality levels and

the corresponding test strategies.

Build “robust” software that is designed to test itself. Software

should be designed in a manner that uses antibugging (Section 18.3.1)

techniques. That is, software should be capable of diagnosing certain

classes of errors. In addition, the design should accommodate automated

testing and regression testing. 

Use effective formal technical reviews as a filter prior to testing. For-

mal technical reviews (Chapter 8) can be as effective as testing in uncovering

errors. For this reason, reviews can reduce the amount of testing effort that is

required to produce high-quality software.

Conduct formal technical reviews to assess the test strategy and test

cases themselves. Formal technical reviews can uncover inconsistencies,

omissions, and outright errors in the testing approach. This saves time and

also improves product quality.

XRef
Use-cases describe a
scenario for software
use and are discussed
in Chapter 11.

“Testing only to end-
user perceived
requirements is like
inspecting a building
based on the work
done by the interior
decorator at the
expense of the
foundations, girders,
and plumbing.”
Boris Beizer 

What
guidelines

lead to a
successful testing
strategy?
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Develop a continuous improvement approach for the testing

process. The test strategy should be measured. The metrics collected during

testing should be used as part of a statistical process control approach for

software testing.

18.3 UNIT TESTING

Unit testing focuses verification effort on the smallest unit of software design—the

software component or module. Using the component-level design description as a

guide, important control paths are tested to uncover errors within the boundary of

the module. The relative complexity of tests and uncovered errors is limited by the

constrained scope established for unit testing. The unit test is white-box oriented,

and the step can be conducted in parallel for multiple components.

18.3.1 Unit Test Considerations

The tests that occur as part of unit tests are illustrated schematically in Figure 18.4.

The module interface is tested to ensure that information properly flows into and out

of the program unit under test. The local data structure is examined to ensure that

data stored temporarily maintains its integrity during all steps in an algorithm's exe-

cution. Boundary conditions are tested to ensure that the module operates properly

at boundaries established to limit or restrict processing. All independent paths (basis

paths) through the control structure are exercised to ensure that all statements in a

module have been executed at least once. And finally, all error handling paths are

tested.
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Tests of data flow across a module interface are required before any other test is

initiated. If data do not enter and exit properly, all other tests are moot. In addition,

local data structures should be exercised and the local impact on global data should

be ascertained (if possible) during unit testing.

Selective testing of execution paths is an essential task during the unit test. Test

cases should be designed to uncover errors due to erroneous computations, incor-

rect comparisons, or improper control flow.  Basis path and loop testing are effective

techniques for uncovering a broad array of path errors.

Among the more common errors in computation are (1)  misunderstood or incor-

rect arithmetic precedence, (2) mixed mode operations, (3) incorrect initialization, 

(4) precision inaccuracy, (5) incorrect symbolic representation of an expression. Com-

parison and control flow are closely coupled to one another (i.e., change of flow fre-

quently occurs after a comparison).  Test cases should uncover errors such as 

(1) comparison of different data types, (2) incorrect logical operators or precedence,

(3) expectation of equality when precision error makes equality unlikely, (4) incor-

rect comparison of variables, (5) improper or nonexistent loop termination, (6) fail-

ure to exit when divergent iteration is encountered, and (7) improperly modified loop

variables.

Good design dictates that error conditions be anticipated and error-handling paths

set up to reroute or cleanly terminate processing when an error does occur. Yourdon

[YOU75] calls this approach antibugging. Unfortunately, there is a tendency to incor-

porate error handling into software and then never test it. A true story may serve to

illustrate:

A major interactive design system was developed under contract. In one transaction pro-

cessing module, a practical joker placed the following error handling message after a series

of conditional tests that invoked various control flow branches:  ERROR! THERE IS NO

WAY YOU CAN GET HERE. This "error message" was uncovered by a customer during user

training! 

Among the potential errors that should be tested when error handling is evaluated

are 

1. Error description is unintelligible. 

2. Error noted does not correspond to error encountered.

3. Error condition causes system intervention prior to error handling. 

4. Exception-condition processing is incorrect.

5. Error description does not provide enough information to assist in the loca-

tion of the cause of the error.

Boundary testing is the last (and probably most important) task of the unit test

step.  Software often fails at its boundaries.  That is, errors often occur when the nth

element of an n-dimensional array is processed, when the ith repetition of a loop with

Be sure that you
design tests to execute
every error-handling
path. If you don’t, the
path may fail when it
is invoked,
exacerbating an
already dicey situation.

What errors
are

commonly found
during unit
testing?

?



CHAPTER 18 SOFTWARE TESTING STRATEGIES

i passes is invoked, when the maximum or minimum allowable value is encountered.

Test cases that exercise data structure, control flow, and data values just below, at,

and just above maxima and minima are very likely to uncover errors.

18.3.2 Unit Test Procedures

Unit testing is normally considered as an adjunct to the coding step. After source level

code has been developed, reviewed, and verified for correspondence to component-

level design, unit test case design begins. A review of design information provides

guidance for establishing test cases that are likely to uncover errors in each of the

categories discussed earlier.  Each test case should be coupled with a set of expected

results.

Because a component is not a stand-alone program, driver and/or stub software

must be developed for each unit test. The unit test environment is illustrated in Fig-

ure 18.5.  In most applications a driver is nothing more than a "main program" that

accepts test case data, passes such data to the component (to be tested), and prints

relevant results.  Stubs serve to replace modules that are subordinate (called by) the

component to be tested. A stub or "dummy subprogram" uses the subordinate mod-

ule's interface, may do minimal data manipulation, prints verification of entry, and

returns control to the module undergoing testing.

Drivers and stubs represent overhead. That is, both are software that must be writ-

ten (formal design is not commonly applied) but that is not delivered with the final

software product. If drivers and stubs are kept simple, actual overhead is relatively

low. Unfortunately, many components cannot be adequately unit tested with "sim-

ple" overhead software. In such cases, complete testing can be postponed until the

integration test step (where drivers or stubs are also used).
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Unit testing is simplified when a component with high cohesion is designed.  When

only one function is addressed by a component, the number of test cases is reduced

and errors can be more easily predicted and uncovered.

18.4 INTEGRATION TESTING3

A neophyte in the software world might ask a seemingly legitimate question once all

modules have been unit tested: "If they all work individually, why do you doubt that

they'll work when we put them together?" The problem, of course, is "putting them

together"—interfacing. Data can be lost across an interface; one module can have an

inadvertent, adverse affect on another; subfunctions, when combined, may not pro-

duce the desired major function; individually acceptable imprecision may be magni-

fied to unacceptable levels; global data structures can present problems.  Sadly, the

list goes on and on.

Integration testing is a systematic technique for constructing the program struc-

ture while at the same time conducting tests to uncover errors associated with inter-

facing. The objective is to take unit tested components and build a program structure

that has been dictated by design.

There is often a tendency to attempt nonincremental integration; that is, to con-

struct the program using a "big bang" approach. All components are combined in

advance. The entire program is tested as a whole. And chaos usually results! A set

of errors is encountered. Correction is difficult because isolation of causes is com-

plicated by the vast expanse of the entire program. Once these errors are corrected,

new ones appear and the process continues in a seemingly endless loop.

Incremental integration is the antithesis of the big bang approach. The program

is constructed and tested in small increments, where errors are easier to isolate and

correct; interfaces are more likely to be tested completely; and a systematic test

approach may be applied. In the sections that follow, a number of different incre-

mental integration strategies are discussed.

18.4.1 Top-down Integration

Top-down integration testing is an incremental approach to construction of program

structure. Modules are integrated by moving downward through the control hierar-

chy, beginning with the main control module (main program). Modules subordinate

(and ultimately subordinate) to the main control module are incorporated into the

structure in either a depth-first or breadth-first manner.

Referring to Figure 18.6, depth-first integration would integrate all components on

a major control path of the structure. Selection of a major path is somewhat arbitrary

and depends on application-specific characteristics. For example, selecting the left-

hand path, components M1, M2 , M5 would be integrated first. Next, M8 or (if neces-

3 Integration strategies for object-oriented systems are discussed in Chapter 23.

Taking the big bang
approach to
integration is a lazy
strategy that is
doomed to failure.
Integration testing
should be conducted
incrementally.

When you develop a
detailed project
schedule you have to
consider the manner in
which integration will
occur so that
components will be
available when
needed.
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sary for proper functioning of M2) M6 would be integrated. Then, the central and right-

hand control paths are built. Breadth-first integration incorporates all components

directly subordinate at each level, moving across the structure horizontally. From the

figure, components  M2, M3, and M4 (a replacement for stub S4) would be integrated

first. The next control level, M5, M6, and so on, follows.

The integration process is performed in a series of five steps:

1. The main control module is used as a test driver and stubs are substituted for

all components directly subordinate to the main control module.

2. Depending on the integration approach selected (i.e., depth or breadth first),

subordinate stubs are replaced one at a time with actual components. 

3. Tests are conducted as each component is integrated.

4. On completion of each set of tests, another stub is replaced with the real

component.

5. Regression testing (Section 18.4.3) may be conducted to ensure that new

errors have not been introduced.

The process continues from step 2 until the entire program structure is built.

The top-down integration strategy verifies major control or decision points early

in the test process. In a well-factored program structure, decision making occurs at

upper levels in the hierarchy and is therefore encountered first. If major control prob-

lems do exist, early recognition is essential. If depth-first integration is selected, a

complete function of the software may be implemented and demonstrated.  For exam-

ple, consider a classic transaction structure (Chapter 14) in which a complex series

of interactive inputs is requested, acquired, and validated via an incoming path. The
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incoming path may be integrated in a top-down manner. All input processing (for

subsequent transaction dispatching) may be demonstrated before other elements of

the structure have been integrated.  Early demonstration of functional capability is a

confidence builder for both the developer and the customer.

Top-down strategy sounds relatively uncomplicated, but in practice, logistical prob-

lems can arise. The most common of these problems occurs when processing at low

levels in the hierarchy is required to adequately test upper levels.  Stubs replace low-

level modules at the beginning of top-down testing; therefore, no significant data can

flow upward in the program structure. The tester is left with three choices: (1) delay

many tests until stubs are replaced with actual modules, (2) develop stubs that per-

form limited functions that simulate the actual module, or (3) integrate the software

from the bottom of the hierarchy upward.

The first approach (delay tests until stubs are replaced by actual modules) causes

us to loose some control over correspondence between specific tests and incorpora-

tion of specific modules. This can lead to difficulty in determining the cause of errors

and tends to violate the highly constrained nature of the top-down approach. The

second approach is workable but can lead to significant overhead, as stubs become

more and more complex. The third approach, called bottom-up testing, is discussed

in the next section.

18.4.2 Bottom-up Integration

Bottom-up integration testing, as its name implies, begins construction and testing

with atomic modules (i.e., components at the lowest levels in the program structure).

Because components are integrated from the bottom up, processing required for com-

ponents subordinate to a given level is always available and the need for stubs is

eliminated.

A bottom-up integration strategy may be implemented with the following steps:

1. Low-level components are combined into clusters (sometimes called builds)

that perform a specific software subfunction.

2. A driver (a control program for testing) is written to coordinate test case

input and output. 

3. The cluster is tested.

4. Drivers are removed and clusters are combined moving upward in the pro-

gram structure.

Integration follows the pattern illustrated in Figure 18.7. Components are com-

bined to form clusters 1, 2, and 3. Each of the clusters is tested using a driver (shown

as a dashed block). Components in clusters 1 and 2 are subordinate to Ma. Drivers

D1 and D2 are removed and the clusters are interfaced directly to Ma. Similarly, 

driver D3 for cluster 3 is removed prior to integration with module Mb. Both  Ma and

Mb will ultimately be integrated with component Mc, and so forth.

Bottom-up integration
eliminates the need for
complex stubs.

What
problems

may be
encountered when
the top-down
integration
strategy is
chosen?

?

What are the
steps for

bottom-up
integration?

?
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As integration moves upward, the need for separate test drivers lessens. In fact,

if the top two levels of program structure are integrated top down, the number of 

drivers can be reduced substantially and integration of clusters is greatly simplified.

18.4.3 Regression Testing

Each time a new module is added as part of integration testing, the software changes.

New data flow paths are established, new I/O may occur, and new control logic is

invoked. These changes may cause problems with functions that previously worked

flawlessly. In the context of an integration test strategy, regression testing is the re-

execution of some subset of tests that have already been conducted to ensure that

changes have not propagated unintended side effects. 

In a broader context, successful tests (of any kind) result in the discovery of errors,

and errors must be corrected. Whenever software is corrected, some aspect of the

software configuration (the program, its documentation, or the data that support it)

is changed. Regression testing is the activity that helps to ensure that changes (due

to testing or for other reasons) do not introduce unintended behavior or additional

errors.

Regression testing may be conducted manually, by re-executing a subset of all test

cases or using automated capture/playback tools. Capture/playback tools enable the

software engineer to capture test cases and results for subsequent playback and com-

parison. 
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The regression test suite (the subset of tests to be executed) contains three differ-

ent classes of test cases:

• A representative sample of tests that will exercise all software functions.

• Additional tests that focus on software functions that are likely to be affected

by the change.

• Tests that focus on the software components that have been changed. 

As integration testing proceeds, the number of regression tests can grow quite large.

Therefore, the regression test suite should be designed to include only those tests

that address one or more classes of errors in each of the major program functions. It

is impractical and inefficient to re-execute every test for every program function once

a change has occurred. 

18.4.4 Smoke Testing

Smoke testing is an integration testing approach that is commonly used when “shrink-

wrapped” software products are being developed. It is designed as a pacing mecha-

nism for time-critical projects, allowing the software team to assess its project on a

frequent basis. In essence, the smoke testing approach encompasses the following

activities:

1. Software components that have been translated into code are integrated into

a “build.” A build includes all data files, libraries, reusable modules, and engi-

neered components that are required to implement one or more product

functions.

2. A series of tests is designed to expose errors that will keep the build from

properly performing its function. The intent should be to uncover “show stop-

per” errors that have the highest likelihood of throwing the software project

behind schedule.

3. The build is integrated with other builds and the entire product (in its current

form) is smoke tested daily. The integration approach may be top down or

bottom up.

The daily frequency of testing the entire product may surprise some readers. How-

ever, frequent tests give both managers and practitioners a realistic assessment of

integration testing progress. McConnell [MCO96] describes the smoke test in the fol-

lowing manner:

The smoke test should exercise the entire system from end to end. It does not have to be

exhaustive, but it should be capable of exposing major problems. The smoke test should

be thorough enough that if the build passes, you can assume that it is stable enough to be

tested more thoroughly. 

Smoke testing might
be characterized as a
rolling integration
strategy. The software
is rebuilt (with new
components added)
and exercised every
day.
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Smoke testing provides a number of benefits when it is applied on complex, time-

critical software engineering projects:

• Integration risk is minimized. Because smoke tests are conducted daily, incom-

patibilities and other show-stopper errors are uncovered early, thereby reduc-

ing the likelihood of serious schedule impact when errors are uncovered.

• The quality of the end-product is improved. Because the approach is construc-

tion (integration) oriented, smoke testing is likely to uncover both functional

errors and architectural and component-level design defects. If these defects

are corrected early, better product quality will result.

• Error diagnosis and correction are simplified. Like all integration testing

approaches, errors uncovered during smoke testing are likely to be associ-

ated with “new software increments”—that is, the software that has just been

added to the build(s) is a probable cause of a newly discovered error.

• Progress is easier to assess. With each passing day, more of the software has

been integrated and more has been demonstrated to work. This improves team

morale and gives managers a good indication that progress is being made.

18.4.5 Comments on Integration Testing

There has been much discussion (e.g., [BEI84]) of the relative advantages and dis-

advantages of top-down versus bottom-up integration testing. In general, the advan-

tages of one strategy tend to result in disadvantages for the other strategy. The major

disadvantage of the top-down approach is the need for stubs and the attendant test-

ing difficulties that can be associated with them. Problems associated with stubs may

be offset by the advantage of testing major control functions early. The major disad-

vantage of bottom-up integration is that "the program as an entity does not exist until

the last module is added" [MYE79].  This drawback is tempered by easier test case

design and a lack of stubs.

Selection of an integration strategy depends upon software characteristics and,

sometimes, project schedule. In general, a combined approach (sometimes called

sandwich testing) that uses top-down tests for upper levels of the program structure,

coupled with bottom-up tests for subordinate levels may be the best compromise.

As integration testing is conducted, the tester should identify critical modules. A

critical module has one or more of the following characteristics: (1) addresses sev-

eral software requirements, (2) has a high level of control (resides relatively high in

the program structure), (3) is complex or error prone (cyclomatic complexity may be

used as an indicator), or (4) has definite performance requirements. Critical modules

should be tested as early as is possible. In addition, regression tests should focus on

critical module function.
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18.4.6 Integration Test Documentation

An overall plan for integration of the software and a description of specific tests are

documented in a Test Specification. This document contains a test plan, and a test pro-

cedure, is a work product of the software process, and becomes part of the software

configuration.  

The test plan describes the overall strategy for integration. Testing is divided into

phases and builds that address specific functional and behavioral characteristics of

the software. For example, integration testing for a CAD system might be divided into

the following test phases: 

•  User interaction (command selection, drawing creation, display representa-

tion, error processing and representation).

•  Data manipulation and analysis (symbol creation, dimensioning; rotation,

computation of physical properties). 

•  Display processing and generation (two-dimensional displays, three-

dimensional displays, graphs and charts). 

•  Database management (access, update, integrity, performance).

Each of these phases and subphases (denoted in parentheses) delineates a broad

functional category within the software and can generally be related to a specific

domain of the program structure. Therefore, program builds (groups of modules) are

created to correspond to each phase. The following criteria and corresponding tests

are applied for all test phases:

Interface integrity. Internal and external interfaces are tested as each

module (or cluster) is incorporated into the structure. 

Functional validity. Tests designed to uncover functional errors are con-

ducted.

Information content. Tests designed to uncover errors associated with

local or global data structures are conducted. 

Performance. Tests designed to verify performance bounds established

during software design are conducted. 

A schedule for integration, the development of overhead software, and related

topics is also discussed as part of the test plan. Start and end dates for each phase

are established and "availability windows" for unit tested modules are defined. A brief

description of overhead software (stubs and drivers) concentrates on characteristics

that might require special effort. Finally, test environment and resources are described.

Unusual hardware configurations, exotic simulators, and special test tools or tech-

niques are a few of many topics that may also be discussed.  

The detailed testing procedure that is required to accomplish the test plan is

described next. The order of integration and corresponding tests at each integration

Test Specification
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step are described. A listing of all test cases (annotated for subsequent reference) and

expected results is also included.

A history of actual test results, problems, or peculiarities is recorded in the Test

Specification. Information contained in this section can be vital during software main-

tenance. Appropriate references and appendixes are also presented.

Like all other elements of a software configuration, the test specification format

may be tailored to the local needs of a software engineering organization. It is

important to note, however, that an integration strategy (contained in a test plan)

and testing details (described in a test procedure) are essential ingredients and must

appear.

18.5 VALIDATION TESTING

At the culmination of integration testing, software is completely assembled as a pack-

age, interfacing errors have been uncovered and corrected, and a final series of soft-

ware tests—validation testing—may begin. Validation can be defined in many ways,

but a simple (albeit harsh) definition is that validation succeeds when software func-

tions in a manner that can be reasonably expected by the customer. At this point a

battle-hardened software developer might protest: "Who or what is the arbiter of rea-

sonable expectations?"

Reasonable expectations are defined in the Software Requirements Specification—

a document (Chapter 11) that describes all user-visible attributes of the software. The

specification contains a section called Validation Criteria. Information contained in

that section forms the basis for a validation testing approach.

18.5.1 Validation Test Criteria

Software validation is achieved through a series of black-box tests that demonstrate

conformity with requirements. A test plan outlines the classes of tests to be conducted

and a test procedure defines specific test cases that will be used to demonstrate con-

formity with requirements. Both the plan and procedure are designed to ensure that

all functional requirements are satisfied, all behavioral characteristics are achieved,

all performance requirements are attained, documentation is correct, and human-

engineered and other requirements are met (e.g., transportability, compatibility, error

recovery, maintainability).

After each validation test case has been conducted, one of two possible condi-

tions exist: (1) The function or performance characteristics conform to specification

and are accepted or (2) a deviation from specification is uncovered and a deficiency

list is created.  Deviation or error discovered at this stage in a project can rarely be

corrected prior to scheduled delivery. It is often necessary to negotiate with the cus-

tomer to establish a method for resolving deficiencies.
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18.5.2 Configuration Review

An important element of the validation process is a configuration review. The intent

of the review is to ensure that all elements of the software configuration have been

properly developed, are cataloged, and have the necessary detail to bolster the sup-

port phase of the software life cycle. The configuration review, sometimes called an

audit, has been discussed in more detail in Chapter 9.

18.5.3 Alpha and Beta Testing

It is virtually impossible for a software developer to foresee how the customer will

really use a program. Instructions for use may be misinterpreted; strange combina-

tions of data may be regularly used; output that seemed clear to the tester may be

unintelligible to a user in the field.

When custom software is built for one customer, a series of acceptance tests are

conducted to enable the customer to validate all requirements. Conducted by the end-

user rather than software engineers, an acceptance test can range from an informal

"test drive" to a planned and systematically executed series of tests. In fact, accep-

tance testing can be conducted over a period of weeks or months, thereby uncover-

ing cumulative errors that might degrade the system over time.

If software is developed as a product to be used by many customers, it is imprac-

tical to perform formal acceptance tests with each one. Most software product builders

use a process called alpha and beta testing to uncover errors that only the end-user

seems able to find.

The alpha test is conducted at the developer's site by a customer. The software is

used in a natural setting with the developer "looking over the shoulder" of the user

and recording errors and usage problems. Alpha tests are conducted in a controlled

environment.

The beta test is conducted at one or more customer sites by the end-user of the

software. Unlike alpha testing, the developer is generally not present. Therefore, the

beta test is a "live" application of the software in an environment that cannot be con-

trolled by the developer. The customer records all problems (real or imagined) that

are encountered during beta testing and reports these to the developer at regular

intervals. As a result of problems reported during beta tests, software engineers make

modifications and then prepare for release of the software product to the entire cus-

tomer base.

18.6 SYSTEM TESTING

At the beginning of this book, we stressed the fact that software is only one element

of a larger computer-based system.  Ultimately, software is incorporated with other

system elements (e.g., hardware, people, information), and a series of system inte-

gration and validation tests are conducted.  These tests fall outside the scope of the
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software process and are not conducted solely by software engineers.  However, steps

taken during software design and testing can greatly improve the probability of suc-

cessful software integration in the larger system.

A classic system testing problem is "finger-pointing."  This occurs when an error

is uncovered, and each system element developer blames the other for the problem.

Rather than indulging in such nonsense, the software engineer should anticipate

potential interfacing problems and (1)  design error-handling paths that test all infor-

mation coming from other elements of the system, (2) conduct a series of tests that

simulate bad data or other potential errors at the software interface, (3) record the

results of tests to use as "evidence" if finger-pointing does occur, and (4) participate

in planning and design of system tests to ensure that software is adequately tested.   

System testing is actually a series of different tests whose primary purpose is to

fully exercise the computer-based system. Although each test has a different purpose,

all work to verify that system elements have been properly integrated and perform

allocated functions. In the sections that follow, we discuss the types of system tests

[BEI84] that are worthwhile for software-based systems. 

18.6.1 Recovery Testing

Many computer based systems must recover from faults and resume processing within

a prespecified time. In some cases, a system must be fault tolerant; that is, process-

ing faults must not cause overall system function to cease. In other cases, a system

failure must be corrected within a specified period of time or severe economic dam-

age will occur.

Recovery testing is a system test that forces the software to fail in a variety of ways

and verifies that recovery is properly performed. If recovery is automatic (performed

by the system itself), reinitialization, checkpointing mechanisms, data recovery, and

restart are evaluated for correctness. If recovery requires human intervention, the

mean-time-to-repair (MTTR)  is evaluated to determine whether it is within accept-

able limits.

18.6.2 Security Testing

Any computer-based system that manages sensitive information or causes actions

that can improperly harm (or benefit) individuals is a target for improper or illegal

penetration. Penetration spans a broad range of activities: hackers who attempt to

penetrate systems for sport; disgruntled employees who attempt to penetrate for

revenge; dishonest individuals who attempt to penetrate for illicit personal gain.

Security testing attempts to verify that protection mechanisms built into a system

will, in fact, protect it from improper penetration. To quote Beizer [BEI84]: "The sys-

tem's security must, of course, be tested for invulnerability from frontal attack—but

must also be tested for invulnerability from flank or rear attack."

During security testing, the tester plays the role(s) of the individual who desires to

penetrate the system. Anything goes! The tester may attempt to acquire passwords

497

“Like death and
taxes, testing is both
unpleasant and
inevitable.”
Ed Yourdon 

WebRef
Extensive information on
software testing and
related quality issues can
be obtained at
www.stqe.net



PART THREE CONVENTIONAL METHODS FOR SOFTWARE ENGINEERING498

through external clerical means; may attack the system with custom software designed

to breakdown any defenses that have been constructed; may overwhelm the system,

thereby denying service to others; may purposely cause system errors, hoping to pen-

etrate during recovery; may browse through insecure data, hoping to find the key to

system entry.

Given enough time and resources, good security testing will ultimately penetrate

a system. The role of the system designer is to make penetration cost more than the

value of the information that will be obtained.

18.6.3 Stress Testing

During earlier software testing steps, white-box and black-box techniques resulted

in thorough evaluation of normal program functions and performance. Stress tests

are designed to confront programs with abnormal situations. In essence, the tester

who performs stress testing asks: "How high can we crank this up before it fails?"      

Stress testing executes a system in a manner that demands resources in abnormal

quantity, frequency, or volume. For example, (1) special tests may be designed that

generate ten interrupts per second, when one or two is the average rate, (2) input

data rates may be increased by an order of magnitude to determine how input func-

tions will respond, (3) test cases that require maximum memory or other resources

are executed, (4) test cases that may cause thrashing in a virtual operating system

are designed, (5) test cases that may cause excessive hunting for disk-resident data

are created. Essentially, the tester attempts to break the program.

A variation of stress testing is a technique called sensitivity testing. In some situa-

tions (the most common occur in mathematical algorithms), a very small range of

data contained within the bounds of valid data for a program may cause extreme and

even erroneous processing or profound performance degradation. Sensitivity testing

attempts to uncover data combinations within valid input classes that may cause

instability or improper processing.

18.6.4 Performance Testing

For real-time and embedded systems, software that provides required function but

does not conform to performance requirements is unacceptable. Performance testing

is designed to test the run-time performance of software within the context of an

integrated system. Performance testing occurs throughout all steps in the testing

process. Even at the unit level, the performance of an individual module may be

assessed as white-box tests are conducted. However, it is not until all system ele-

ments are fully integrated that the true performance of a system can be ascertained.

Performance tests are often coupled with stress testing and usually require both

hardware and software instrumentation. That is, it is often necessary to measure

resource utilization (e.g., processor cycles) in an exacting fashion. External instru-

“If you’re trying to
find true system
bugs and have never
subjected your
software to a real
stress test, then it is
high time you
started.”
Boris Beizer 



CHAPTER 18 SOFTWARE TESTING STRATEGIES

mentation can monitor execution intervals, log events (e.g., interrupts) as they occur,

and sample machine states on a regular basis. By instrumenting a system, the tester

can uncover situations that lead to degradation and possible system failure.

18.7 THE ART OF DEBUGGING

Software testing is a process that can be systematically planned and specified. Test

case design can be conducted, a strategy can be defined, and results can be evalu-

ated against prescribed expectations.

Debugging occurs as a consequence of successful testing. That is, when a test case

uncovers an error, debugging is the process that results in the removal of the error.

Although debugging can and should be an orderly process, it is still very much an art.

A software engineer, evaluating the results of a test, is often confronted with a "symp-

tomatic" indication of a software problem. That is, the external manifestation of the

error and the internal cause of the error may have no obvious relationship to one

another. The poorly understood mental process that connects a symptom to a cause

is debugging.

18.7.1 The Debugging Process

Debugging is not testing but always occurs as a consequence of testing.4 Referring

to Figure 18.8, the debugging process begins with the execution of a test case. Results

are assessed and a lack of correspondence between expected and actual perfor-

mance is encountered. In many cases, the noncorresponding data are a symptom
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of an underlying cause as yet hidden. The debugging process attempts to match

symptom with cause, thereby leading to error correction.

The debugging process will always have one of two outcomes: (1) the cause will

be found and corrected, or (2) the cause will not be found. In the latter case, the per-

son performing debugging may suspect a cause, design a test case to help validate

that suspicion, and work toward error correction in an iterative fashion.

Why is debugging so difficult? In all likelihood, human psychology (see the next

section) has more to do with an answer than software technology. However, a few

characteristics of bugs provide some clues:

1. The symptom and the cause may be geographically remote. That is, the

symptom may appear in one part of a program, while the cause may actually

be located at a site that is far removed. Highly coupled program structures

(Chapter 13) exacerbate this situation.

2. The symptom may disappear (temporarily) when another error is corrected.

3. The symptom may actually be caused by nonerrors (e.g., round-off 

inaccuracies). 

4. The symptom may be caused by human error that is not easily traced.

5. The symptom may be a result of timing problems, rather than processing

problems.

6. It may be difficult to accurately reproduce input conditions (e.g., a real-time

application in which input ordering is indeterminate).

7. The symptom may be intermittent. This is particularly common in embedded

systems that couple hardware and software inextricably.

8. The symptom may be due to causes that are distributed across a number of

tasks running on different processors [CHE90].      

During debugging, we encounter errors that range from mildly annoying (e.g., an

incorrect output format) to catastrophic (e.g. the system fails, causing serious eco-

nomic or physical damage). As the consequences of an error increase, the amount

of pressure to find the cause also increases. Often, pressure sometimes forces a soft-

ware developer to fix one error and at the same time introduce two more.

18.7.2 Psychological Considerations

Unfortunately, there appears to be some evidence that debugging prowess is an innate

human trait. Some people are good at it and others aren't. Although experimental

evidence on debugging is open to many interpretations, large variances in debug-

ging ability have been reported for programmers with the same education and expe-

rience.

Commenting on the human aspects of debugging, Shneiderman [SHN80] states:

“The variety within all
computer programs
that must be
diagnosed [for
debugging] is
probably greater
than the variety
within all other
examples of systems
that are regularly
diagnosed.”
John Gould 
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Debugging is one of the more frustrating parts of programming. It has elements of problem

solving or brain teasers, coupled with the annoying recognition that you have made a mis-

take. Heightened anxiety and the unwillingness to accept the possibility of errors increases

the task difficulty. Fortunately, there is a great sigh of relief and a lessening of tension when

the bug is ultimately . . . corrected. 

Although it may be difficult to "learn" debugging, a number of approaches to the prob-

lem can be proposed. We examine these in the next section.

18.7.3 Debugging Approaches

Regardless of the approach that is taken, debugging has one overriding objective: to

find and correct the cause of a software error. The objective is realized by a combi-

nation of systematic evaluation, intuition, and luck. Bradley [BRA85] describes the

debugging approach in this way:

Debugging is a straightforward application of the scientific method that has been devel-

oped over 2,500 years. The basis of debugging is to locate the problem's source [the

cause] by binary partitioning, through working hypotheses that predict new values to be

examined.

Take a simple non-software example: A lamp in my house does not work. If nothing in

the house works, the cause must be in the main circuit breaker or outside; I look around to

see whether the neighborhood is blacked out. I plug the suspect lamp into a working socket

and a working appliance into the suspect circuit. So goes the alternation of hypothesis and

test. 

In general, three categories for debugging approaches may be proposed [MYE79]: 

(1) brute force, (2) backtracking, and (3) cause elimination.      

The brute force category of debugging is probably the most common and least effi-

cient method for isolating the cause of a software error. We apply brute force debug-

ging methods when all else fails. Using a "let the computer find the error" philosophy,

memory dumps are taken, run-time traces are invoked, and the program is loaded

with WRITE statements. We hope that somewhere in the morass of information that

is produced we will find a clue that can lead us to the cause of an error. Although the

mass of information produced may ultimately lead to success, it more frequently leads

to wasted effort and time. Thought must be expended first!

Backtracking is a fairly common debugging approach that can be used success-

fully in small programs. Beginning at the site where a symptom has been uncovered,

the source code is traced backward (manually) until the site of the cause is found.

Unfortunately, as the number of source lines increases, the number of potential back-

ward paths may become unmanageably large.

The third approach to debugging—cause elimination—is manifested by induction

or deduction and introduces the concept of binary partitioning. Data related to the

error occurrence are organized to isolate potential causes. A "cause hypothesis" is
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devised and the aforementioned data are used to prove or disprove the hypothesis.

Alternatively, a list of all possible causes is developed and tests are conducted to elim-

inate each. If initial tests indicate that a particular cause hypothesis shows promise,

data are refined in an attempt to isolate the bug.

Each of these debugging approaches can be supplemented with debugging tools.

We can apply a wide variety of debugging compilers, dynamic debugging aids ("trac-

ers"), automatic test case generators, memory dumps, and cross-reference maps.

However, tools are not a substitute for careful evaluation based on a complete soft-

ware design document and clear source code.      

Any discussion of debugging approaches and tools is incomplete without mention

of a powerful ally—other people! Each of us can recall puzzling for hours or days over

a persistent bug. A colleague wanders by and in desperation we explain the problem

and throw open the listing. Instantaneously (it seems), the cause of the error is uncov-

ered. Smiling smugly, our colleague wanders off. A fresh viewpoint, unclouded by

hours of frustration, can do wonders. A final maxim for debugging might be: "When

all else fails, get help!"

Once a bug has been found, it must be corrected. But, as we have already noted,

the correction of a bug can introduce other errors and therefore do more harm than

good. Van Vleck [VAN89] suggests three simple questions that every software engi-

neer should ask before making the "correction" that removes the cause of a bug:

1. Is the cause of the bug reproduced in another part of the program?

In many situations, a program defect is caused by an erroneous pattern of

logic that may be reproduced elsewhere. Explicit consideration of the logical

pattern may result in the discovery of other errors.

2. What "next bug" might be introduced by the fix I'm about to make?

Before the correction is made, the source code (or, better, the design) should

be evaluated to assess coupling of logic and data structures. If the correction

is to be made in a highly coupled section of the program, special care must

be taken when any change is made.

3. What could we have done to prevent this bug in the first place? This

question is the first step toward establishing a statistical software quality

assurance approach (Chapter 8). If we correct the process as well as the

product, the bug will be removed from the current program and may be elim-

inated from all future programs.

18.8 SUMMARY

Software testing accounts for the largest percentage of technical effort in the soft-

ware process. Yet we are only beginning to understand the subtleties of systematic

test planning, execution, and control.

CASE Tools
Testing and Debugging

When I
correct an

error, what
questions should I
ask myself?

?
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The objective of software testing is to uncover errors. To fulfill this objective, a

series of test steps—unit, integration, validation, and system tests—are planned and

executed. Unit and integration tests concentrate on functional verification of a com-

ponent and incorporation of components into a program structure. Validation test-

ing demonstrates traceability to software requirements, and system testing validates

software once it has been incorporated into a larger system.

Each test step is accomplished through a series of systematic test techniques that

assist in the design of test cases. With each testing step, the level of abstraction with

which software is considered is broadened.

Unlike testing (a systematic, planned activity), debugging must be viewed as an

art. Beginning with a symptomatic indication of a problem, the debugging activity

must track down the cause of an error. Of the many resources available during debug-

ging, the most valuable is the counsel of other members of the software engineering

staff.

The requirement for higher-quality software demands a more systematic approach

to testing. To quote Dunn and Ullman [DUN82],

What is required is an overall strategy, spanning the strategic test space, quite as deliber-

ate in its methodology as was the systematic development on which analysis, design and

code were based. 

In this chapter, we have examined the strategic test space, considering the steps that

have the highest likelihood of meeting the overriding test objective: to find and remove

errors in an orderly and effective manner.

REFERENCES

[BEI84]  Beizer, B., Software System Testing and Quality Assurance, Van Nostrand-

Reinhold, 1984. 

[BOE81]  Boehm, B., Software Engineering Economics, Prentice-Hall, 1981, p. 37. 

[BRA85]  Bradley, J.H., "The Science and Art of Debugging," Computerworld, August

19, 1985, pp. 35–38. 

[CHE90] Cheung, W.H., J.P. Black, and E. Manning, "A Framework for Distributed

Debugging," IEEE Software, January 1990, pp. 106–115.

[DUN82]  Dunn, R. and R. Ullman, Quality Assurance for Computer Software, McGraw-

Hill, 1982, p. 158. 

[GIL95] Gilb, T., “What We Fail to Do in Our Current Testing Culture,” Testing 

Techniques Newsletter, (on-line edition, ttn@soft.com), Software Research, January 

1995.

[MCO96] McConnell, S., “Best Practices: Daily Build and Smoke Test”, IEEE Software,

vol. 13, no. 4, July 1996, 143–144.

[MIL77]  Miller, E., "The Philosophy of Testing," in Program Testing Techniques, IEEE

Computer Society Press, 1977, pp. 1–3. 

503



PART THREE CONVENTIONAL METHODS FOR SOFTWARE ENGINEERING504

[MUS89] Musa, J.D. and Ackerman, A.F., "Quantifying Software Validation: When to

Stop Testing?" IEEE Software, May 1989, pp. 19–27.  

[MYE79] Myers, G., The Art of Software Testing, Wiley, 1979.

[SHO83] Shooman, M.L., Software Engineering, McGraw-Hill, 1983. 

[SHN80]  Shneiderman, B., Software Psychology, Winthrop Publishers, 1980, p. 28. 

[VAN89] Van Vleck, T., "Three Questions About Each Bug You Find," ACM Software

Engineering Notes, vol. 14, no. 5, July 1989, pp. 62–63.

[WAL89] Wallace, D.R. and R.U. Fujii, "Software Verification and Validation: An

Overview," IEEE Software, May 1989, pp. 10–17.

[YOU75] Yourdon, E., Techniques of Program Structure and Design, Prentice-Hall, 1975.

PROBLEMS AND POINTS TO PONDER

18.1. Using your own words, describe the difference between verification and val-

idation. Do both make use of test case design methods and testing strategies? 

18.2. List some problems that might be associated with the creation of an inde-

pendent test group. Are an ITG and an SQA group made up of the same people? 

18.3. Is it always possible to develop a strategy for testing software that uses the

sequence of testing steps described in Section 18.1.3? What possible complications

might arise for embedded systems? 

18.4. If you could select only three test case design methods to apply during unit

testing, what would they be and why? 

18.5. Why is a highly coupled module difficult to unit test? 

18.6. The concept of "antibugging" (Section 18.2.1) is an extremely effective way to

provide built-in debugging assistance when an error is uncovered:

a. Develop a set of guidelines for antibugging.

b. Discuss advantages of using the technique.

c. Discuss disadvantages.

18.7. Develop an integration testing strategy for the any one of the systems imple-

mented in Problems 16.4 through 16.11. Define test phases, note the order of inte-

gration, specify additional test software, and justify your order of integration. Assume

that all modules (or classes) have been unit tested and are available. Note: it may be

necessary to do a bit of design work first.

18.8. How can project scheduling affect integration testing? 

18.9. Is unit testing possible or even desirable in all circumstances? Provide exam-

ples to justify your answer. 

18.10. Who should perform the validation test—the software developer or the soft-

ware user? Justify your answer. 
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18.11. Develop a complete test strategy for the SafeHome system discussed earlier

in this book. Document it in a Test Specification.

18.12. As a class project, develop a Debugging Guide for your installation. The guide

should provide language and system-oriented hints that have been learned through

the school of hard knocks!  Begin with an outline of topics that will be reviewed by

the class and your instructor. Publish the guide for others in your local environment.

FURTHER READINGS AND INFORMATION RESOURCES

Books by Black (Managing the Testing Process, Microsoft Press, 1999); Dustin, Rashka,

and Paul (Test Process Improvement: Step-by-Step Guide to Structured Testing,

Addison-Wesley, 1999); Perry (Surviving the Top Ten Challenges of Software Testing: A

People-Oriented Approach, Dorset House, 1997);  and Kit and Finzi (Software Testing

in the Real World: Improving the Process, Addison-Wesley, 1995) address software test-

ing strategies.  

Kaner, Nguyen, and Falk (Testing Computer Software, Wiley, 1999); Hutcheson (Soft-

ware Testing Methods and Metrics: The Most Important Tests McGraw-Hill, 1997); Mar-

ick (The Craft of Software Testing: Subsystem Testing Including Object-Based and

Object-Oriented Testing, Prentice-Hall, 1995); Jorgensen (Software Testing: A Crafts-

man's Approach, CRC Press, 1995) present treatments of the subject that consider

testing methods and strategies. 

In addition, older books by Evans (Productive Software Test Management, Wiley-

Interscience, 1984), Hetzel (The Complete Guide to Software Testing, QED Information

Sciences, 1984), Beizer [BEI84], Ould and Unwin (Testing in Software Development,

Cambridge University Press, 1986), Marks (Testing Very Big Systems, McGraw-Hill,

1992, and Kaner et al. (Testing Computer Software, 2nd ed., Van Nostrand-Reinhold,

1993), delineate the steps of an effective testing strategy, provide a set of techniques

and guidelines, and suggest procedures for controlling and tracking the testing process.

Hutcheson (Software Testing Methods and Metrics, McGraw-Hill, 1996) presents test-

ing methods and strategies but also provides a detailed discussion of how measure-

ment can be used to achieve efficient testing. 

Guidelines for debugging are contained in a book by Dunn (Software Defect Removal,

McGraw-Hill, 1984). Beizer [BEI84] presents an interesting "taxonomy of bugs" that

can lead to effective methods for test planning.  McConnell (Code Complete, Microsoft

Press, 1993) presents pragmatic advice on unit and integration testing as well as

debugging.

A wide variety of information sources on software testing and related subjects is

available on the Internet. An up-to-date list of World Wide Web references that are rel-

evant to testing concepts, methods, and strategies can be found at the SEPA Website:

http://www.mhhe.com/engcs/compsci/pressman/resources/

test-strategy.mhtml
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A key element of any engineering process is measurement. We use mea-
sures to better understand the attributes of the models that we create
and to assess the quality of the engineered products or systems that

we build. But unlike other engineering disciplines, software engineering is not
grounded in the basic quantitative laws of physics. Absolute measures, such as
voltage, mass, velocity, or temperature, are uncommon in the software world.
Instead, we attempt to derive a set of indirect measures that lead to metrics
that provide an indication of the quality of some representation of software.
Because software measures and metrics are not absolute, they are open to
debate. Fenton [FEN91] addresses this issue when he states: 

Measurement is the process by which numbers or symbols are assigned to the attri-

butes of entities in the real world in such a way as to define them according to clearly

defined rules. . . . In the physical sciences, medicine, economics, and more recently

the social sciences, we are now able to measure attributes that we previously thought

to be unmeasurable. . . . Of course, such measurements are not as refined as many

measurements in the physical sciences . . ., but they exist [and important decisions

are made based on them]. We feel that the obligation to attempt to “measure the

unmeasurable” in order to improve our understanding of particular entities is as pow-

erful in software engineering as in any discipline.

19 TECHNICAL METRICS FOR
SOFTWARE

What is it? By its nature, engi-

neering is a quantitative disci-

pline. Engineers use numbers to

help them design and assess the product to be

built. Until recently, software engineers had little

quantitative guidance in their work—but that’s

changing. Technical metrics help software engi-

neers gain insight into the design and construc-

tion of the products they build. 

Who does it? Software engineers use technical met-

rics to help them build higher-quality software.

Why is it important? There will always be a quali-

tative element to the creation of computer soft-

ware. The problem is that qualitative assessment

may not be enough. A software engineer needs

objective criteria to help guide the design of data,

architecture, interfaces, and components. The

tester needs quantitative guidance that will help

in the selection of test cases and their targets. 

Technical metrics provide a basis from which

analysis, design, coding, and testing can be 

conducted more objectively and assessed more

quantitatively.

What are the steps? The first step in the measure-

ment process is to derive the software measures

and metrics that are appropriate for the repre-

sentation of software that is being considered.

Next, data required to derive the formulated met-

rics are collected. Once computed, appropriate

metrics are analyzed based on pre-established

Q U I C K
L O O K
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But some members of the software community continue to argue that software is
unmeasurable or that attempts at measurement should be postponed until we bet-
ter understand software and the attributes that should be used to describe it. This is
a mistake.

Although technical metrics for computer software are not absolute, they provide
us with a systematic way to assess quality based on a set of clearly defined rules.
They also provide the software engineer with on-the-spot, rather than after-the-fact
insight. This enables the engineer to discover and correct potential problems before
they become catastrophic defects.

In Chapter 4, we discussed software metrics as they are applied at the process and
project level. In this chapter, our focus shifts to measures that can be used to assess
the quality of the product as it is being engineered. These measures of internal prod-
uct attributes provide the software engineer with a real-time indication of the effi-
cacy of the analysis, design, and code models; the effectiveness of test cases; and the
overall quality of the software to be built.

19.1 SOFTWARE QUALITY

Even the most jaded software developers will agree that high-quality software is an

important goal. But how do we define quality? In Chapter 8, we proposed a number

of different ways to look at software quality and introduced a definition that stressed

conformance to explicitly stated functional and performance requirements, explic-

itly documented development standards, and implicit characteristics that are expected

of all professionally developed software. 

There is little question that the preceding definition could be modified or extended

and debated endlessly. For the purposes of this book, the definition serves to empha-

size three important points:

1. Software requirements are the foundation from which quality is measured.

Lack of conformance to requirements is lack of quality.1

guidelines and past data. The

results of the analysis are inter-

preted to gain insight into the

quality of the software, and the results of the inter-

pretation lead to modification of work products

arising out of analysis, design, code, or test.

What is the work product? Software metrics that are

computed from data collected from the analysis

and design models, source code, and test cases.

How do I ensure that I’ve done it right? You should

establish the objectives of measurement before

data collection begins, defining each technical

metric in an unambiguous manner. Define only

a few metrics and then use them to gain insight

into the quality of a software engineering work

product. 

Q U I C K
L O O K

1 It is important to note that quality extends to the technical attributes of the analysis, design, and
code models. Models that exhibit high quality (in the technical sense) will lead to software that
exhibits high quality from the customer’s point of view.

“Every program does
something right, it
just may not be the
thing that we want
it to do.”
author unknown 
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2. Specified standards define a set of development criteria that guide the man-

ner in which software is engineered. If the criteria are not followed, lack of

quality will almost surely result.

3. There is a set of implicit requirements that often goes unmentioned (e.g., the

desire for ease of use). If software conforms to its explicit requirements but

fails to meet implicit requirements, software quality is suspect. 

Software quality is a complex mix of factors that will vary across different applica-

tions and the customers who request them. In the sections that follow, software qual-

ity factors are identified and the human activities required to achieve them are

described.

19.1.1 McCall’s Quality Factors

The factors that affect software quality can be categorized in two broad groups: 

(1) factors that can be directly measured (e.g., defects per function-point) and (2) fac-

tors that can be measured only indirectly (e.g., usability or maintainability). In each

case measurement must occur. We must compare the software (documents, pro-

grams, data) to some datum and arrive at an indication of quality.

McCall, Richards, and Walters [MCC77] propose a useful categorization of fac-

tors that affect software quality. These software quality factors, shown in 

Figure 19.1, focus on three important aspects of a software product: its opera-

tional characteristics, its ability to undergo change, and its adaptability to new

environments.

Referring to the factors noted in Figure 19.1, McCall and his colleagues provide

the following descriptions: 

Correctness. The extent to which a program satisfies its specification and fulfills the cus-

tomer's mission objectives. 

Reliability. The extent to which a program can be expected to perform its intended function

with required precision. [It should be noted that other, more complete definitions of relia-

bility have been proposed (see Chapter 8).]
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PRODUCT TRANSITIONPRODUCT REVISION

Correctness                              Usability                              Efficiency
Reliability                              Integrity

Maintainability
Flexibility
Testability

Portability
Reusability
Interoperability

FIGURE 19.1
McCall’s 
software 
quality factors

It’s interesting to note
that McCall’s quality
factors are as valid
today as they were
when they were first
proposed in the
1970s. Therefore, it’s
reasonable to assert
that the factors that
affect software quality
do not change.
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Efficiency. The amount of computing resources and code required by a program to perform

its function. 

Integrity. Extent to which access to software or data by unauthorized persons can be 

controlled. 

Usability. Effort required to learn, operate, prepare input, and interpret output of a program. 

Maintainability. Effort required to locate and fix an error in a program. [This is a very lim-

ited definition.] 

Flexibility. Effort required to modify an operational program. 

Testability. Effort required to test a program to ensure that it performs its intended function. 

Portability. Effort required to transfer the program from one hardware and/or software sys-

tem environment to another. 

Reusability. Extent to which a program [or parts of a program] can be reused in other

applications—related to the packaging and scope of the functions that the program 

performs. 

Interoperability. Effort required to couple one system to another.

It is difficult, and in some cases impossible, to develop direct measures of these

quality factors. Therefore, a set of metrics are defined and used to develop expres-

sions for each of the factors according to the following relationship: 

Fq = c1 � m1 + c2 � m2 + . . . + cn � mn

where Fq is a software quality factor, cn are regression coefficients, mn are the met-

rics that affect the quality factor. Unfortunately, many of the metrics defined by McCall

et al. can be measured only subjectively. The metrics may be in the form of a check-

list that is used to "grade" specific attributes of the software [CAV78]. The grading

scheme proposed by McCall et al. is a 0 (low) to 10 (high) scale. The following met-

rics are used in the grading scheme: 

Auditability. The ease with which conformance to standards can be checked. 

Accuracy. The precision of computations and control. 

Communication commonality. The degree to which standard interfaces, proto-

cols, and bandwidth are used. 

Completeness. The degree to which full implementation of required function

has been achieved. 

Conciseness. The compactness of the program in terms of lines of code. 

Consistency. The use of uniform design and documentation techniques

throughout the software development project. 

Data commonality. The use of standard data structures and types throughout

the program.

“A product’s quality is
a function of how
much it changes the
world for the
better.”
Tom DeMarco 

XRef
The metrics noted can
be assessed during
formal technical
reviews discussed in
Chapter 8.
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Error tolerance. The damage that occurs when the program encounters an

error. 

Execution efficiency. The run-time performance of a program.

Expandability. The degree to which architectural, data, or procedural design

can be extended.

Generality. The breadth of potential application of program components.

Hardware independence. The degree to which the software is decoupled from

the hardware on which it operates.

Instrumentation. The degree to which the program monitors its own opera-

tion and identifies errors that do occur.

Modularity. The functional independence (Chapter 13) of program compo-

nents. 

Operability. The ease of operation of a program.

Security. The availability of mechanisms that control or protect programs and

data. 

Self-documentation. The degree to which the source code provides meaning-

ful documentation.

Simplicity. The degree to which a program can be understood without diffi-

culty. 

Software system independence. The degree to which the program is indepen-

dent of nonstandard programming language features, operating system char-

acteristics, and other environmental constraints.

Traceability. The ability to trace a design representation or actual program

component back to requirements. 

Training. The degree to which the software assists in enabling new users to

apply the system.

The relationship between software quality factors and these metrics is shown in

Figure 19.2. It should be noted that the weight given to each metric is dependent on

local products and concerns.

19.1.2 FURPS

The quality factors described by McCall and his colleagues [MCC77] represent one 

of a number of suggested “checklists” for software quality. Hewlett-Packard [GRA87]

developed a set of software quality factors that has been given the acronym FURPS—
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functionality, usability, reliability, performance, and supportability. The FURPS qual-

ity factors draw liberally from earlier work, defining the following attributes for each

of the five major factors:

• Functionality is assessed by evaluating the feature set and capabilities of the

program, the generality of the functions that are delivered, and the security of

the overall system.

• Usability is assessed by considering human factors (Chapter 15), overall aes-

thetics, consistency, and documentation.

• Reliability is evaluated by measuring the frequency and severity of failure, the

accuracy of output results, the mean-time-to-failure (MTTF), the ability to

recover from failure, and the predictability of the program.

• Performance is measured by processing speed, response time, resource con-

sumption, throughput, and efficiency.

Software
quality
metric

Quality
factor

Auditability
Accuracy
Communication

commonality
Completeness
Complexity
Concision
Consistency
Data commonality
Error tolerance
Execution efficiency
Expandability
Generality
Hardware Indep.
Instrumentation
Modularity
Operability
Security
Self-documentation
Simplicity
System Indep.
Traceability
Training
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(Adapted from Arthur, L. A., Measuring Programmer Productivity and Software Quality, Wiley-
Interscience, 1985.)
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• Supportability combines the ability to extend the program (extensibility),

adaptability, serviceability—these three attributes represent a more common

term, maintainability—in addition, testability, compatibility, configurability

(the ability to organize and control elements of the software configuration,

Chapter 9), the ease with which a system can be installed, and the ease with

which problems can be localized.

The FURPS quality factors and attributes just described can be used to establish

quality metrics for each step in the software engineering process.

19.1.3 ISO 9126 Quality Factors

The ISO 9126 standard was developed in an attempt to identify the key quality attrib-

utes for computer software. The standard identifies six key quality attributes:

Functionality. The degree to which the software satisfies stated needs as indi-

cated by the following subattributes: suitability, accuracy, interoperability,

compliance, and security. 

Reliability. The amount of time that the software is available for use as indi-

cated by the following subattributes: maturity, fault tolerance, recoverability.

Usability. The degree to which the software is easy to use as indicated by the

following subattributes: understandability, learnability, operability.

Efficiency. The degree to which the software makes optimal use of system

resources as indicated by the following subattributes: time behavior, resource

behavior.

Maintainability. The ease with which repair may be made to the software as

indicated by the following subattributes: analyzability, changeability, stability,

testability.

Portability. The ease with which the software can be transposed from one

environment to another as indicated by the following subattributes: adapt-

ability, installability, conformance, replaceability.

Like other software quality factors discussed in Sections 19.1.1 and 19.1.2, the ISO

9126 factors do not necessarily lend themselves to direct measurement. However,

they do provide a worthwhile basis for indirect measures and an excellent checklist

for assessing the quality of a system.

19.1.4 The Transition to a Quantitative View

In the preceding sections, a set of qualitative factors for the "measurement" of soft-

ware quality was discussed. We strive to develop precise measures for software qual-

ity and are sometimes frustrated by the subjective nature of the activity. Cavano and

McCall [CAV78] discuss this situation: 

513

“Any activity becomes
creative when the
doer cares about
doing it right, or
better.”
John Updike 



PART THREE CONVENTIONAL METHODS FOR SOFTWARE ENGINEERING514

The determination of quality is a key factor in every day events—wine tasting contests,

sporting events [e.g., gymnastics], talent contests, etc. In these situations, quality is judged

in the most fundamental and direct manner: side by side comparison of objects under iden-

tical conditions and with predetermined concepts. The wine may be judged according to

clarity, color, bouquet, taste, etc. However, this type of judgement is very subjective; to have

any value at all, it must be made by an expert.

Subjectivity and specialization also apply to determining software quality. To help solve

this problem, a more precise definition of software quality is needed as well as a way to

derive quantitative measurements of software quality for objective analysis . . . Since there

is no such thing as absolute knowledge, one should not expect to measure software qual-

ity exactly, for every measurement is partially imperfect. Jacob Bronkowski described this

paradox of knowledge in this way: "Year by year we devise more precise instruments with

which to observe nature with more fineness. And when we look at the observations we are

discomfited to see that they are still fuzzy, and we feel that they are as uncertain as ever."

In the sections that follow, we examine a set of software metrics that can be applied

to the quantitative assessment of software quality. In all cases, the metrics represent

indirect measures; that is, we never really measure quality but rather some mani-

festation of quality. The complicating factor is the precise relationship between the

variable that is measured and the quality of software.

19.2 A FRAMEWORK FOR TECHNICAL SOFTWARE METRICS

As we noted in the introduction to this chapter, measurement assigns numbers or

symbols to attributes of entities in the real word. To accomplish this, a measurement

model encompassing a consistent set of rules is required. Although the theory of mea-

surement (e.g., [KYB84]) and its application to computer software (e.g., [DEM81],

[BRI96], [ZUS97]) are topics that are beyond the scope of this book, it is worthwhile

to establish a fundamental framework and a set of basic principles for the measure-

ment of technical metrics for software.

19.2.1 The Challenge of Technical Metrics

Over the past three decades, many researchers have attempted to develop a single

metric that provides a comprehensive measure of software complexity. Fenton [FEN94]

characterizes this research as a search for “the impossible holy grail.” Although dozens

of complexity measures have been proposed [ZUS90], each takes a somewhat dif-

ferent view of what complexity is and what attributes of a system lead to complex-

ity. By analogy, consider a metric for evaluating an attractive car. Some observers

might emphasize body design, others might consider mechanical characteristics, still

others might tout cost, or performance, or fuel economy, or the ability to recycle when

the car is junked. Since any one of these characteristics may be at odds with others,

it is difficult to derive a single value for “attractiveness.” The same problem occurs

with computer software.

“Just as temperature
measurement began
with an index finger
. . . and grew to
sophisticated scales,
tools and
techniques, so too is
software
measurement
maturing . . .”
Shari Pfleeger 



CHAPTER 19 TECHNICAL METRICS FOR SOFTWARE

Yet there is a need to measure and control software complexity. And if a single

value of this quality metric is difficult to derive, it should be possible to develop mea-

sures of different internal program attributes (e.g., effective modularity, functional

independence, and other attributes discussed in Chapters 13 through 16). These mea-

sures and the metrics derived from them can be used as independent indicators of

the quality of analysis and design models. But here again, problems arise. Fenton

[FEN94] notes this when he states:

The danger of attempting to find measures which characterize so many different attributes

is that inevitably the measures have to satisfy conflicting aims. This is counter to the rep-

resentational theory of measurement. 

Although Fenton’s statement is correct, many people argue that technical measure-

ment conducted during the early stages of the software process provides software

engineers with a consistent and objective mechanism for assessing quality.

It is fair to ask, however, just how valid technical metrics are. That is, how closely

aligned are technical metrics to the long-term reliability and quality of a computer-

based system? Fenton [FEN91] addresses this question in the following way:

In spite of the intuitive connections between the internal structure of software products

[technical metrics] and its external product and process attributes, there have actually been

very few scientific attempts to establish specific relationships. There are a number of rea-

sons why this is so; the most commonly cited is the impracticality of conducting relevant

experiments.

Each of the “challenges” noted here is a cause for caution, but it is no reason to dis-

miss technical metrics.2 Measurement is essential if quality is to be achieved.

19.2.2 Measurement Principles

Before we introduce a series of technical metrics that (1) assist in the evaluation of

the analysis and design models, (2) provide an indication of the complexity of pro-

cedural designs and source code, and (3) facilitate the design of more effective test-

ing, it is important to understand basic measurement principles. Roche [ROC94]

suggests a measurement process that can be characterized by five activities:

• Formulation. The derivation of software measures and metrics that are

appropriate for the representation of the software that is being considered.

• Collection. The mechanism used to accumulate data required to derive the

formulated metrics.

• Analysis. The computation of metrics and the application of mathematical tools.
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2 A vast literature on software metrics (e.g., see [FEN94], [ROC94], [ZUS97] for extensive bibliogra-
phies) has been spawned, and criticism of specific metrics (including some of those presented in
this chapter) is common.  However, many of the critiques focus on esoteric issues and miss the
primary objective of measurement in the real world: to help the engineer establish a systematic
and objective way to gain insight into his or her work and to improve product quality as a result.

WebRef
Voluminous information
on technical metrics has
been compiled by Horst
Zuse:
irb.cs.tu-berlin.de/
~zuse/
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• Interpretation. The evaluation of metrics results in an effort to gain insight

into the quality of the representation.

• Feedback. Recommendations derived from the interpretation of technical

metrics transmitted to the software team.

The principles that can be associated with the formulation of technical metrics are

[ROC94]

• The objectives of measurement should be established before data collection

begins.

• Each technical metric should be defined in an unambiguous manner.

• Metrics should be derived based on a theory that is valid for the domain of

application (e.g., metrics for design should draw upon basic design concepts

and principles and attempt to provide an indication of the presence of an

attribute that is deemed desirable).

• Metrics should be tailored to best accommodate specific products and

processes [BAS84].

Although formulation is a critical starting point, collection and analysis are the activ-

ities that drive the measurement process. Roche [ROC94] suggests the following prin-

ciples for these activities:

• Whenever possible, data collection and analysis should be automated.

• Valid statistical techniques should be applied to establish relationships

between internal product attributes and external quality characteristics (e.g.,

is the level of architectural complexity correlated with the number of defects

reported in production use?).

• Interpretative guidelines and recommendations should be established for

each metric.

In addition to these principles, the success of a metrics activity is tied to management

support. Funding, training, and promotion must all be considered if a technical mea-

surement program is to be established and sustained.

19.2.3 The Attributes of Effective Software Metrics

Hundreds of metrics have been proposed for computer software, but not all provide

practical support to the software engineer. Some demand measurement that is too

complex, others are so esoteric that few real world professionals have any hope 

of understanding them, and others violate the basic intuitive notions of what high-

quality software really is.

Ejiogu [EJI91] defines a set of attributes that should be encompassed by effective

software metrics. The derived metric and the measures that lead to it should be

Above all, keep your
early attempts at
technical measurement
simple. Don’t obsess
over the “perfect”
metric because it
doesn’t exist.

What rules
should we

observe when we
establish technical
measures?

?
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• Simple and computable. It should be relatively easy to learn how to derive the

metric, and its computation should not demand inordinate effort or time.

• Empirically and intuitively persuasive. The metric should satisfy the engineer’s

intuitive notions about the product attribute under consideration (e.g., a met-

ric that measures module cohesion should increase in value as the level of

cohesion increases).

• Consistent and objective. The metric should always yield results that are

unambiguous. An independent third party should be able to derive the same

metric value using the same information about the software. 

• Consistent in its use of units and dimensions. The mathematical computation

of the metric should use measures that do not lead to bizarre combinations

of units. For example, multiplying people on the project teams by program-

ming language variables in the program results in a suspicious mix of units

that are not intuitively persuasive.

• Programming language independent. Metrics should be based on the analysis

model, the design model, or the structure of the program itself. They should

not be dependent on the vagaries of programming language syntax or

semantics.

• An effective mechanism for high-quality feedback. That is, the metric should

provide a software engineer with information that can lead to a higher-

quality end product.

Although most software metrics satisfy these attributes, some commonly used met-

rics may fail to satisfy one or two of them. An example is the function point (discussed

in Chapter 4 and again in this chapter). It can be argued3 that the consistent and

objective attribute fails because an independent third party may not be able to derive

the same function point value as a colleague using the same information about the

software. Should we therefore reject the FP measure? The answer is: “Of course not!”

FP provides useful insight and therefore provides distinct value, even if it fails to sat-

isfy one attribute perfectly.

19.3 METRICS FOR THE ANALYSIS MODEL

Technical work in software engineering begins with the creation of the analysis model.

It is at this stage that requirements are derived and that a foundation for design is

established. Therefore, technical metrics that provide insight into the quality of the

analysis model are desirable.
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3 Please note that an equally vigorous counterargument can be made. Such is the nature of soft-
ware metrics.
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Although relatively few analysis and specification metrics have appeared in the

literature, it is possible to adapt metrics derived for project application (Chapter 4)

for use in this context. These metrics examine the analysis model with the intent of

predicting the “size” of the resultant system. It is likely that size and design complexity

will be directly correlated. 

19.3.1 Function-Based Metrics

The function point metric (Chapter 4) can be used effectively as a means for predict-

ing the size of a system that will be derived from the analysis model. To illustrate the

use of the FP metric in this context, we consider a simple analysis model represen-

tation, illustrated in Figure 19.3. Referring to the figure, a data flow diagram (Chap-

ter 12) for a function within the SafeHome software4 is represented. The function

manages user interaction, accepting a user password to activate or deactivate the

system, and allows inquiries on the status of security zones and various security sen-

sors. The function displays a series of prompting messages and sends appropriate

control signals to various components of the security system.

The data flow diagram is evaluated to determine the key measures required for

computation of the function point metric (Chapter 4):

• number of user inputs

• number of user outputs

• number of user inquiries

• number of files

• number of external interfaces

User

SafeHome
user

interaction
function

Messages

System configuration data

Password, sensors . . .

Sensor status

Sensors

Monitoring
& response
subsystem

Alarm
alert

Activate/deactivate

Zone setting

Test sensor

User
Sensor inquiry

Panic button

Activate/deactivate

Zone inquiry

Password

FIGURE 19.3
Part of the
analysis model
for SafeHome
software

4 SafeHome is a home security system that has been used as an example application in earlier
chapters.

To be useful for
technical work,
measures that will
assist technical
decision making (e.g.,
errors found during
unit testing) must be
collected and then
normalized using the
FP metric.



CHAPTER 19 TECHNICAL METRICS FOR SOFTWARE

Three user inputs—password, panic button, and activate/deactivate—are shown

in the figure along with two inquires—zone inquiry and sensor inquiry. One file

(system configuration file) is shown. Two user outputs (messages and sensor

status) and four external interfaces (test sensor, zone setting, activate/deacti-

vate, and alarm alert) are also present. These data, along with the appropriate com-

plexity, are shown in Figure 19.4.

The count total shown in Figure 19.4 must be adjusted using Equation (4-1):

FP = count total � [0.65 + 0.01 � � (Fi)]

where count total is the sum of all FP entries obtained from Figure 19.3 and Fi (i = 1

to 14) are "complexity adjustment values." For the purposes of this example, we

assume that � (Fi) is 46 (a moderately complex product). Therefore,

FP = 50 � [0.65 + (0.01 � 46)] = 56

Based on the projected FP value derived from the analysis model, the project team

can estimate the overall implemented size of the SafeHome user interaction function.

Assume that past data indicates that one FP translates into 60 lines of code (an object-

oriented language is to be used) and that 12 FPs are produced for each person-month

of effort. These historical data provide the project manager with important planning

information that is based on the analysis model rather than preliminary estimates.

Assume further that past projects have found an average of three errors per function

point during analysis and design reviews and four errors per function point during

unit and integration testing. These data can help software engineers assess the com-

pleteness of their review and testing activities.
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FIGURE 19.4 Computing function points for a SafeHome function
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19.3.2 The Bang Metric

Like the function point metric, the bang metric can be used to develop an indication

of the size of the software to be implemented as a consequence of the analysis model.

Developed by DeMarco [DEM82], the bang metric is “an implementation indepen-

dent indication of system size.” To compute the bang metric, the software engineer

must first evaluate a set of primitives—elements of the analysis model that are not

further subdivided at the analysis level. Primitives [DEM82] are determined by eval-

uating the analysis model and developing counts for the following forms:5

Functional primitives (FuP). The number of transformations (bubbles) that

appear at the lowest level of a data flow diagram (Chapter 12).

Data elements (DE). The number of attributes of a data object, data ele-

ments are not composite data and appear within the data dictionary.

Objects (OB). The number of data objects as described in Chapter 12.

Relationships (RE). The number of connections between data objects as

described in Chapter 12.

States (ST). The number of user observable states in the state transition dia-

gram (Chapter 12).

Transitions (TR). The number of state transitions in the state transition dia-

gram (Chapter 12). 

In addition to these six primitives, additional counts are determined for

Modified manual function primitives (FuPM). Functions that lie outside

the system boundary but must be modified to accommodate the new system.

Input data elements (DEI). Those data elements that are input to the system.

Output data elements. (DEO). Those data elements that are output from

the system.

Retained data elements. (DER). Those data elements that are retained

(stored) by the system.

Data tokens (TCi). The data tokens (data items that are not subdivided

within a functional primitive) that exist at the boundary of the ith functional

primitive (evaluated for each primitive).

Relationship connections (REi). The relationships that connect the ith

object in the data model to other objects.

DeMarco [DEM82] suggests that most software can be allocated to one of two domains:

function strong or data strong, depending upon the ratio RE/FuP. Function-strong

5 The acronym noted in parentheses following the primitive is used to denote the count of the par-
ticular primitive, e,g., FuP indicates the number of functional primitives present in an analysis
model.

“Rather than just
musing on what
‘new metric’ might
apply . . . we should
also be asking
ourselves the more
basic question,
‘What will we do
with metrics.’”
Michael Mah and
Larry Putnam 
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applications (often encountered in engineering and scientific applications) empha-

size the transformation of data and do not generally have complex data structures.

Data-strong applications (often encountered in information systems applications)

tend to have complex data models.

RE/FuP < 0.7 implies a function-strong application.

0.8 < RE/FuP < 1.4 implies a hybrid application.

RE/FuP > 1.5 implies a data-strong application.

Because different analysis models will partition the model to greater or lessor degrees

of refinement, DeMarco suggests that an average token count per primitive is

TCavg =  � TCi /FuP

be used to control uniformity of partitioning across many different models within an

application domain. 

To compute the bang metric for function-strong applications, the following algo-

rithm is used:

set initial value of bang = 0;
do while functional primitives remain to be evaluated

Compute token-count around the boundary of primitive i
Compute corrected FuP increment (CFuPI) 
Allocate primitive to class
Assess class and note assessed weight
Multiply CFuPI  by the assessed weight
bang = bang + weighted CFuPI

enddo

The token-count is computed by determining how many separate tokens are “visi-

ble” [DEM82] within the primitive. It is possible that the number of tokens and the

number of data elements will differ, if data elements can be moved from input to out-

put without any internal transformation. The corrected CFuPI is determined from a

table published by DeMarco. A much abbreviated version follows:

TCi CFuPI

2 1.0

5 5.8

10 16.6

15 29.3

20 43.2

The assessed weight noted in the algorithm is determined from 16 different classes

of functional primitives defined by DeMarco. A weight ranging from 0.6 (simple data

routing) to 2.5 (data management functions) is assigned, depending on the class of

the primitive.

For data-strong applications, the bang metric is computed using the following

algorithm:
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set initial value of bang = 0;
do while objects remain to be evaluated in the data model

compute count of relationships for object  i
compute corrected OB increment (COBI)
bang = bang + COBI

enddo

The COBI is determined from a table published by DeMarco. An abbreviated version

follows:

REi COBI

1 1.0

3 4.0

6 9.0

Once the bang metric has been computed, past history can be used to associate it

with size and effort. DeMarco suggests that an organization build its own versions

of the CFuPI and COBI tables using calibration information from completed software

projects. 

19.3.3 Metrics for Specification Quality

Davis and his colleagues [DAV93] propose a list of characteristics that can be used

to assess the quality of the analysis model and the corresponding requirements spec-

ification: specificity (lack of ambiguity), completeness, correctness, understandability,

verifiability, internal and external consistency, achievability, concision, traceability, mod-

ifiability, precision, and reusability. In addition, the authors note that high-quality spec-

ifications are electronically stored, executable or at least interpretable, annotated by

relative importance and stable, versioned, organized, cross-referenced, and speci-

fied at the right level of detail.

Although many of these characteristics appear to be qualitative in nature, Davis

et al. [DAV93] suggest that each can be represented using one or more metrics.6 For

example, we assume that there are nr requirements in a specification, such that

nr = nf + nnf

where nf is the number of functional requirements and nnf is the number of non-

functional (e.g., performance) requirements.

To determine the specificity (lack of ambiguity) of requirements, Davis et al. sug-

gest a metric that is based on the consistency of the reviewers’ interpretation of each

requirement:

Q1 = nui/nr

6 A complete discussion of specification quality metrics is beyond the scope of this chapter. See
[DAV93] for more details.

By measuring
characteristics of the
specification, it is
possible to gain
quantitative insight
into specificity and
completeness.
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where nui is the number of requirements for which all reviewers had identical 

interpretations. The closer the value of Q to 1, the lower is the ambiguity of the 

specification.

The completeness of functional requirements can be determined by computing the

ratio

Q2 = nu/[ni � ns]

where nu is the number of unique function requirements, ni is the number of inputs

(stimuli) defined or implied by the specification, and ns is the number of states spec-

ified. The Q2 ratio measures the percentage of necessary functions that have been

specified for a system. However, it does not address nonfunctional requirements. To

incorporate these into an overall metric for completeness, we must consider the

degree to which requirements have been validated:

Q3 = nc/[nc + nnv]

where nc is the number of requirements that have been validated as correct and nnv

is the number of requirements that have not yet been validated.

19.4 METRICS FOR THE DESIGN MODEL

It is inconceivable that the design of a new aircraft, a new computer chip, or a new

office building would be conducted without defining design measures, determining

metrics for various aspects of design quality, and using them to guide the manner in

which the design evolves. And yet, the design of complex software-based systems

often proceeds with virtually no measurement. The irony of this is that design met-

rics for software are available, but the vast majority of software engineers continue

to be unaware of their existence.

Design metrics for computer software, like all other software metrics, are not per-

fect. Debate continues over their efficacy and the manner in which they should be

applied. Many experts argue that further experimentation is required before design

measures can be used. And yet, design without measurement is an unacceptable

alternative.

In the sections that follow, we examine some of the more common design met-

rics for computer software. Each can provide the designer with improved insight and

all can help the design to evolve to a higher level of quality.  

19.4.1 Architectural Design Metrics

Architectural design metrics focus on characteristics of the program architecture

(Chapter 14) with an emphasis on the architectural structure and the effectiveness of

modules. These metrics are black box in the sense that they do not require any knowl-

edge of the inner workings of a particular software component.
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Card and Glass [CAR90] define three software design complexity measures: struc-

tural complexity, data complexity, and system complexity.

Structural complexity of a module i is defined in the following manner:

S(i) = f 2
out(i) (19-1)

where fout(i) is the fan-out7 of module i.

Data complexity provides an indication of the complexity in the internal interface

for a module i and is defined as

D(i) = v(i)/[ fout(i) +1] (19-2)

where v(i) is the number of input and output variables that are passed to and from

module i.

Finally, system complexity is defined as the sum of structural and data complexity,

specified as

C(i) = S(i) + D(i) (19-3)

As each of these complexity values increases, the overall architectural complexity of

the system also increases. This leads to a greater likelihood that integration and test-

ing effort will also increase.

An earlier high-level architectural design metric proposed by Henry and Kafura

[HEN81] also makes use the fan-in and fan-out. The authors define a complexity met-

ric (applicable to call and return architectures) of the form

HKM = length(i) � [ fin(i) + fout(i)]2 (19-4)  

where length(i) is the number of programming language statements in a module i

and fin(i) is the fan-in of a module i. Henry and Kafura extend the definitions of fan-

in and fan-out presented in this book to include not only the number of module con-

trol connections (module calls) but also the number of data structures from which a

module i retrieves (fan-in) or updates (fan-out) data. To compute HKM during design,

the procedural design may be used to estimate the number of programming language

statements for module i. Like the Card and Glass metrics noted previously, an increase

in the Henry-Kafura metric leads to a greater likelihood that integration and testing

effort will also increase for a module.

Fenton [FEN91] suggests a number of simple morphology (i.e., shape) metrics that

enable different program architectures to be compared using a set of straightforward

dimensions. Referring to Figure 19.5, the following metrics can be defined:

size = n + a

7 Recalling the discussion presented in Chapter 13, fan-out indicates the number of modules imme-
diately subordinate to module i; that is, the number of modules that are directly invoked by mod-
ule i.

Metrics can provide
insight into structural,
data and system
complexity associated
with the architectural
design.

Is there a
way to

assess the
complexity of
certain
architectural
models?
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where n is the number of nodes and a is the number of arcs. For the architecture

shown in Figure 19.5, 

size = 17 + 18 = 35

depth = the longest path from the root (top) node to a leaf node. For the archi-

tecture shown in Figure 19.5, depth = 4.

width = maximum number of nodes at any one level of the architecture. For the

architecture shown in Figure 19.5, width = 6.

arc-to-node ratio, r = a/n, 

which measures the connectivity density of the architecture and may provide a sim-

ple indication of the coupling of the architecture. For the architecture shown in Fig-

ure 19.5, r = 18/17 = 1.06.

The U.S. Air Force Systems Command [USA87] has developed a number of soft-

ware quality indicators that are based on measurable design characteristics of a com-

puter program. Using concepts similar to those proposed in IEEE Std. 982.1-1988

[IEE94], the Air Force uses information obtained from data and architectural design

to derive a design structure quality index (DSQI) that ranges from 0 to 1. The follow-

ing values must be ascertained to compute the DSQI [CHA89]:

S1 = the total number of modules defined in the program architecture.

S2 = the number of modules whose correct function depends on the source of

data input or that produce data to be used elsewhere (in general, control

modules, among others, would not be counted as part of S2).
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S3 = the number of modules whose correct function depends on prior processing.

S4 = the number of database items (includes data objects and all attributes that

define objects).

S5 = the total number of unique database items.

S6 = the number of database segments (different records or individual objects).

S7 = the number of modules with a single entry and exit (exception processing

is not considered to be a multiple exit).

Once values S1 through S7 are determined for a computer program, the following

intermediate values can be computed:

Program structure: D1, where D1 is defined as follows: If the architectural

design was developed using a distinct method (e.g., data flow-oriented

design or object-oriented design), then D1 = 1, otherwise D1 = 0.

Module independence: D2 = 1 � (S2/S1)

Modules not dependent on prior processing: D3 = 1 � (S3/S1)

Database size: D4 = 1 � (S5/S4)

Database compartmentalization:  D5 = 1 � (S6/S4)

Module entrance/exit characteristic:  D6 = 1 � (S7/S1)

With these intermediate values determined, the DSQI is computed in the following

manner:

DSQI   =  � wiDi (19-5)

where i = 1 to 6, wi is the relative weighting of the importance of each of the inter-

mediate values, and � wi = 1 (if all Di are weighted equally, then wi = 0.167).

The value of DSQI for past designs can be determined and compared to a design

that is currently under development. If the DSQI is significantly lower than aver-

age, further design work and review are indicated. Similarly, if major changes are

to be made to an existing design, the effect of those changes on DSQI can be 

calculated.

19.4.2 Component-Level Design Metrics

Component-level design metrics focus on internal characteristics of a software com-

ponent and include measures of the “three Cs”—module cohesion, coupling, and com-

plexity. These measures can help a software engineer to judge the quality of a

component-level design. 

The metrics presented in this section are glass box in the sense that they require

knowledge of the inner working of the module under consideration. Component-level

“Measurement can
be seen as a detour.
This detour is
necessary because
humans mostly are
not able to make
clear and objective
decisions [without
quantitative
support].”
Horst Zuse 
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design metrics may be applied once a procedural design has been developed. Alter-

natively, they may be delayed until source code is available.

Cohesion metrics. Bieman and Ott [BIE94] define a collection of metrics that pro-

vide an indication of the cohesiveness (Chapter 13) of a module. The metrics are

defined in terms of five concepts and measures:

Data slice. Stated simply, a data slice is a backward walk through a module

that looks for data values that affect the module location at which the walk

began. It should be noted that both program slices (which focus on state-

ments and conditions) and data slices can be defined.

Data tokens.  The variables defined for a module can be defined as data

tokens for the module.

Glue tokens. This set of data tokens lies on one or more data slice.

Superglue tokens. These data tokens are common to every data slice in a

module.

Stickiness. The relative stickiness of a glue token is directly proportional to

the number of data slices that it binds.

Bieman and Ott develop metrics for strong functional cohesion (SFC), weak functional

cohesion (WFC), and adhesiveness (the relative degree to which glue tokens bind data

slices together). These metrics can be interpreted in the following manner [BIE94]:

All of these cohesion metrics range in value between 0 and 1. They have a value of 0 when

a procedure has more than one output and exhibits none of the cohesion attribute indicated

by a particular metric. A procedure with no superglue tokens, no tokens that are common

to all data slices, has zero strong functional cohesion—there are no data tokens that con-

tribute to all outputs. A procedure with no glue tokens, that is no tokens common to more

than one data slice (in procedures with more than one data slice), exhibits zero weak func-

tional cohesion and zero adhesiveness—there are no data tokens that contribute to more

than one output. 

Strong functional cohesion and adhesiveness are encountered when the Bieman and

Ott metrics take on a maximum value of 1.

A detailed discussion of the Bieman and Ott metrics is best left to the authors

[BIE94]. However, to illustrate the character of these metrics, consider the metric for

strong functional cohesion:

SFC(i) = SG [SA(i))/(tokens(i)] (19-6)

where SG[SA(i)] denotes superglue tokens—the set of data tokens that lie on all data

slices for a module i. As the ratio of superglue tokens to the total number of tokens

in a module i increases toward a maximum value of 1, the functional cohesiveness

of the module also increases.
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It is possible to
compute measures of
the functional
independence—
coupling and
cohesion—of a
component and to use
these to assess the
quality of the design.
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Coupling metrics. Module coupling provides an indication of the “connectedness”

of a module to other modules, global data, and the outside environment. In Chapter

13, coupling was discussed in qualitative terms.

Dhama [DHA95] has proposed a metric for module coupling that encompasses

data and control flow coupling, global coupling, and environmental coupling. The

measures required to compute module coupling are defined in terms of each of the

three coupling types noted previously.

For data and control flow coupling,

di = number of input data parameters

ci = number of input control parameters

do = number of output data parameters

co = number of output control parameters

For global coupling,

gd = number of global variables used as data

gc = number of global variables used as control

For environmental coupling,

w = number of modules called (fan-out)

r = number of modules calling the module under consideration (fan-in)

Using these measures, a module coupling indicator, mc, is defined in the following way:

mc = k/M

where k = 1, a proportionality constant8 and

M = di + (a � ci) + do + (b � co) + gd + (c � gc) + w + r

where a = b = c = 2.

The higher the value of mc, the lower is the overall module coupling. For exam-

ple, if a module has single input and output data parameters, accesses no global data,

and is called by a single module,

mc = 1/(1 + 0 + 1+ 0 + 0 + + 0 + 1 + 0) = 1/3 = 0.33

We would expect that such a module exhibits low coupling. Hence, a value of mc =

0.33 implies low coupling. Alternatively, if a module has five input and five output

data parameters, an equal number of control parameters, accesses ten items of global

data, has a fan-in of 3 and a fan-out of 4,

mc = 1/[5 + (2 � 5) + 5 + (2 � 5) + 10 + 0 + 3 + 4] = 0.02

and the implied coupling would be high.

8 The author [DHA95] notes that the values of k and a, b, and c (discussed in the next equation)
may be adjusted as more experimental verification occurs.

WebRef
A paper, “A Software
Metric System for Module
Coupling,” can be
downloaded from
www.isse.gmu.edu/
faculty/ofut/rsrch/
abstracts/
mj-coupling.html
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In order to have the coupling metric move upward as the degree of coupling

increases (an important attribute discussed in Section 18.2.3), a revised coupling met-

ric may be defined as

C = 1 � mc

where the degree of coupling increases nonlinearly between a minimum value in the

range 0.66 to a maximum value that approaches 1.0. 

Complexity metrics. A variety of software metrics can be computed to determine

the complexity of program control flow. Many of these are based on the flow graph.

As we discussed in Chapter 17, a graph is a representation composed of nodes and

links (also called edges). When the links (edges) are directed, the flow graph is a directed

graph.

McCabe and Watson [MCC94] identify a number of important uses for complexity

metrics:

Complexity metrics can be used to predict critical information about reliability and

maintainability of software systems from automatic analysis of source code [or pro-

cedural design information]. Complexity metrics also provide feedback during the soft-

ware project to help control the [design activity]. During testing and maintenance, they

provide detailed information about software modules to help pinpoint areas of poten-

tial instability.

The most widely used (and debated) complexity metric for computer software is

cyclomatic complexity, originally developed by Thomas McCabe [MCC76], [MCC89]

and discussed in detail in Section 17.4.2.

The McCabe metric provides a quantitative measure of testing difficulty and an

indication of ultimate reliability. Experimental studies indicate distinct relationships

between the McCabe metric and the number of errors existing in source code, as well

as time required to find and correct such errors.

McCabe also contends that cyclomatic complexity may be used to provide a quan-

titative indication of maximum module size. Collecting data from a number of actual

programming projects, he has found that cyclomatic complexity = 10 appears to be

a practical upper limit for module size. When the cyclomatic complexity of modules

exceeded this number, it became extremely difficult to adequately test a module. See

Chapter 17 for a discussion of cyclomatic complexity as a guide for the design of

white-box test cases.

Zuse ([ZUS90], [ZUS97]) presents an encyclopedic discussion of no fewer that 18

different categories of software complexity metrics. The author presents the basic

definitions for metrics in each category (e.g., there are a number of variations on the

cyclomatic complexity metric) and then analyzes and critiques each. Zuse’s work is

the most comprehensive published to date.
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19.4.3 Interface Design Metrics

Although there is significant literature on the design of human/computer interfaces

(see Chapter 15), relatively little information has been published on metrics that would

provide insight into the quality and usability of the interface.

Sears [SEA93] suggests that layout appropriateness (LA) is a worthwhile design

metric for human/computer interfaces. A typical GUI uses layout entities—graphic

icons, text, menus, windows, and the like—to assist the user in completing tasks. To

accomplish a given task using a GUI, the user must move from one layout entity to

the next. The absolute and relative position of each layout entity, the frequency with

which it is used, and the “cost” of the transition from one layout entity to the next all

contribute to the appropriateness of the interface.

For a specific layout (i.e., a specific GUI design), cost can be assigned to each

sequence of actions according to the following relationship:

cost = � [frequency of transition(k) � cost of transition(k)] (19-7)

where k is a specific transition from one layout entity to the next as a specific task is

accomplished. The summation occurs across all transitions for a particular task or

set of tasks required to accomplish some application function. Cost may be charac-

terized in terms of time, processing delay, or any other reasonable value, such as the

distance that a mouse must travel between layout entities. Layout appropriateness

is defined as

LA = 100 � [(cost of LA � optimal layout)/(cost of proposed layout)] (19-8)

where LA = 100 for an optimal layout. 

To compute the optimal layout for a GUI, interface real estate (the area of the

screen) is divided into a grid. Each square of the grid represents a possible position

for a layout entity. For a grid with N possible positions and K different layout entities

to place, the number of possible layouts is represented in the following manner

[SEA93]:

number of possible layouts = [N!/(K! � (N � K)!] � K! (19-9)

As the number of layout positions increases, the number of possible layouts grows

very large. To find the optimal (lowest cost) layout, Sears [SEA93] proposes a tree

searching algorithm. 

LA is used to assess different proposed GUI layouts and the sensitivity of a particular

layout to changes in task descriptions (i.e., changes in the sequence and/or frequency

of transitions). The interface designer can use the change in layout appropriateness,

∆LA, as a guide in choosing the best GUI layout for a particular application.

It is important to note that the selection of a GUI design can be guided with met-

rics such as LA, but the final arbiter should be user input based on GUI prototypes.

Nielsen and Levy [NIE94] report that “one has a reasonably large chance of suc-

“Beauty—the
adjustment of all
parts proportionately
so that one cannot
add or subtract or
change without
impairing the
harmony of the
whole.”
Leon Alberti
(1404–1472) 

Interface design
metrics are fine, but
above all else, be
absolutely sure that
your end-users like the
interface and are
comfortable with the
interactions required.
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cess if one chooses between interface [designs] based solely on users’ opinions. Users’

average task performance and their subjective satisfaction with a GUI are highly cor-

related.”

19.5 METRICS FOR SOURCE CODE

Halstead's theory of software science [HAL77] is one of "the best known and most

thoroughly studied . . . composite measures of (software) complexity" [CUR80]. Soft-

ware science proposed the first analytical "laws" for computer software.9

Software science assigns quantitative laws to the development of computer soft-

ware, using a set of primitive measures that may be derived after code is generated

or estimated once design is complete. These follow:

n1 = the number of distinct operators that appear in a program.

n2 = the number of distinct operands that appear in a program.

N1 = the total number of operator occurrences.

N2 = the total number of operand occurrences.

Halstead uses these primitive measures to develop expressions for the overall pro-

gram length, potential minimum volume for an algorithm, the actual volume (number

of bits required to specify a program), the program level (a measure of software com-

plexity), the language level (a constant for a given language), and other features such

as development effort, development time, and even the projected number of faults

in the software.

Halstead shows that length N can be estimated

N = n1 log 2 n1 + n2 log 2 n2 (19-10)

and program volume may be defined

V = N log 2 (n1 + n2) (19-11)

It should be noted that V will vary with programming language and represents the

volume of information (in bits) required to specify a program.

Theoretically, a minimum volume must exist for a particular algorithm. Halstead

defines a volume ratio L as the ratio of volume of the most compact form of a pro-

gram to the volume of the actual program. In actuality, L must always be less than 1.

In terms of primitive measures, the volume ratio may be expressed as

L = 2/n1 � n2/N2 (19-12)
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9 It should be noted that Halstead's "laws" have generated substantial controversy and that not
everyone agrees that the underlying theory is correct. However, experimental verification of Hal-
stead's findings have been made for a number of programming languages (e.g., [FEL89]).

“The Human Brain
follows a more rigid
set of rules [in
developing
algorithms] than it
has been aware of.”
Maurice Halstead 

Operators include all
flow of control
constructs,
conditionals, and math
operations. Operands
encompass all program
variables and
constants.
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Halstead's work is amenable to experimental verification and a large body of

research has been conducted to investigate software science. A discussion of this

work is beyond the scope of this text, but it can be said that good agreement has been

found between analytically predicted and experimental results. For further informa-

tion, see [ZUS90], [FEN91], and [ZUS97].

19.6 METRICS FOR TESTING

Although much has been written on software metrics for testing (e.g., [HET93]), the

majority of metrics proposed focus on the process of testing, not the technical char-

acteristics of the tests themselves. In general, testers must rely on analysis, design,

and code metrics to guide them in the design and execution of test cases.

Function-based metrics (Section 19.3.1) can be used as a predictor for overall test-

ing effort. Various project-level characteristics (e.g., testing effort and time, errors

uncovered, number of test cases produced) for past projects can be collected and cor-

related with the number of FP produced by a project team. The team can then pro-

ject “expected values” of these characteristics for the current project.

The bang metric can provide an indication of the number of test cases required by

examining the primitive measures discussed in Section 19.3.2. The number of  func-

tional primitives (FuP), data elements (DE), objects (OB), relationships (RE), states

(ST), and transitions (TR) can be used to project the number and types of black-box

and white-box tests for the software. For example, the number of tests associated

with the human/computer interface can be estimated by (1) examining the number

of transitions (TR) contained in the state transition representation of the HCI and eval-

uating the tests required to exercise each transition; (2) examining the number of

data objects (OB) that move across the interface, and (3) the number of data elements

that are input or output. 

Architectural design metrics provide information on the ease or difficulty associated

with integration testing (Chapter 18) and the need for specialized testing software (e.g.,

stubs and drivers). Cyclomatic complexity (a component-level design metric) lies at

the core of basis path testing, a test case design method presented in Chapter 17. In

addition, cyclomatic complexity can be used to target modules as candidates for exten-

sive unit testing (Chapter 18). Modules with high cyclomatic complexity are more likely

to be error prone than modules whose cyclomatic complexity is lower. For this rea-

son, the tester should expend above average effort to uncover errors in such modules

before they are integrated in a system. Testing effort can also be estimated using met-

rics derived from Halstead measures (Section 19.5). Using the definitions for program

volume, V, and program level, PL, software science effort, e, can be computed as

PL = 1/[(n1/2)•(N2/n2)] (19-13a)

e = V/PL (19-13b)

Testing metrics fall into
two broad categories:
(1) metrics that
attempt to predict the
likely number of tests
required at various
testing levels and 
(2) metrics that focus
on test coverage for a
given component.
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The percentage of overall testing effort to be allocated to a module k can be esti-

mated using the following relationship:

percentage of testing effort (k) = e(k)/ � e(i) (19-14)

where e(k) is computed for module k using Equations (19-13) and the summation in

the denominator of Equation (19-14) is the sum of software science effort across all

modules of the system.

As tests are conducted, three different measures provide an indication of testing

completeness. A measure of the breath of testing provides an indication of how many

requirements (of the total number of requirements) have been tested. This provides

an indication of the completeness of the test plan. Depth of testing is a measure of

the percentage of independent basis paths covered by testing versus the total num-

ber of basis paths in the program. A reasonably accurate estimate of the number of

basis paths can be computed by adding the cyclomatic complexity of all program

modules. Finally, as tests are conducted and error data are collected, fault profiles

may be used to rank and categorize errors uncovered. Priority indicates the severity

of the problem. Fault categories provide a description of an error so that statistical

error analysis can be conducted.

19.7 METRICS FOR MAINTENANCE 

All of the software metrics introduced in this chapter can be used for the develop-

ment of new software and the maintenance of existing software. However, metrics

designed explicitly for maintenance activities have been proposed.

IEEE Std. 982.1-1988 [IEE94] suggests a software maturity index (SMI) that provides

an indication of the stability of a software product (based on changes that occur for

each release of the product). The following information is determined:

MT = the number of modules in the current release

Fc = the number of modules in the current release that have been changed

Fa = the number of modules in the current release that have been added

Fd = the number of modules from the preceding release that were deleted in

the current release

The software maturity index is computed in the following manner:

SMI = [MT � (Fa + Fc + Fd)]/MT (19-15)

As SMI approaches 1.0, the product begins to stabilize. SMI may also be used as met-

ric for planning software maintenance activities. The mean time to produce a release

of a software product can be correlated with SMI and empirical models for mainte-

nance effort can be developed.
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19.8 SUMMARY

Software metrics provide a quantitative way to assess the quality of internal product

attributes, thereby enabling the software engineer to assess quality before the prod-

uct is built. Metrics provide the insight necessary to create effective analysis and

design models, solid code, and thorough tests.

To be useful in a real world context, a software metric must be simple and com-

putable, persuasive, consistent, and objective. It should be programming language

independent and provide effective feedback to the software engineer.

Metrics for the analysis model focus on function, data, and behavior—the three

components of the analysis model. The function point and the bang metric each pro-

vide a quantitative means for evaluating the analysis model. Metrics for design con-

sider architecture, component-level design, and interface design issues. Architectural

design metrics consider the structural aspects of the design model. Component-level

design metrics provide an indication of module quality by establishing indirect mea-

sures for cohesion, coupling, and complexity. Interface design metrics provide an

indication of layout appropriateness for a GUI.

Software science provides an intriguing set of metrics at the source code level.

Using the number of operators and operands present in the code, software science

provides a variety of metrics that can be used to assess program quality.

Few technical metrics have been proposed for direct use in software testing and

maintenance. However, many other technical metrics can be used to guide the test-

ing process and as a mechanism for assessing the maintainability of a computer

program.
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PROBLEMS AND POINTS TO PONDER

19.1. Measurement theory is an advanced topic that has a strong bearing on soft-

ware metrics. Using [ZUS97], [FEN91], [ZUS90], [KYB84] or some other source, write

a brief paper that outlines the main tenets of measurement theory. Individual project:

Develop a presentation on the subject and present it to your class.

19.2. McCall’s quality factors were developed during the 1970s. Almost every aspect

of computing has changed dramatically since the time that they were developed, and

yet, McCall’s factors continue to apply to modern software. Can you draw any con-

clusions based on this fact?

19.3. Why is it that a single, all-encompassing metric cannot be developed for pro-

gram complexity or program quality?

19.4. Review the analysis model you developed as part of Problem 12.13. Using the

guidelines presented in Section 19.3.1, develop an estimate for the number of func-

tion points associated with PHTRS.

19.5. Review the analysis model you developed as part of Problem 12.13. Using the

guidelines presented in Section 19.3.2, develop primitive counts for the bang metric.

Is the PHTRS system function strong or data strong?

19.6. Compute the value of the bang metric using the measures you developed in

Problem 19.5.

19.7. Create a complete design model for a system that is proposed by your instruc-

tor. Compute structural and data complexity using the metrics described in Section

19.4.1. Also compute the Henry-Kafura and morphology metrics for the design model.

19.8. A major information system has 1140 modules. There are 96 modules that per-

form control and coordination functions and 490 modules whose function depends

on prior processing. The system processes approximately 220 data objects that each

have an average of three attributes. There are 140 unique data base items and 90 dif-

ferent database segments. Finally, 600 modules have single entry and exit points.

Compute the DSQI for this system.

19.9. Research Bieman and Ott’s [BIE94] paper and develop a complete example

that illustrates the computation of their cohesion metric. Be sure to indicate how data

slices, data tokens, glue, and superglue tokens are determined.

19.10. Select five modules in an existing computer program. Using Dhama’s met-

ric described in Section 19.4.2, compute the coupling value for each module.

19.11. Develop a software tool that will compute cyclomatic complexity for a pro-

gramming language module. You may choose the language.
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19.12. Develop a software tool that will compute layout appropriateness for a GUI.

The tool should enable you to assign the transition cost between layout entities. (Note:

Recognize that the size of the potential population of layout alternatives grows very

large as the number of possible grid positions grows.)

19.13. Develop a small software tool that will perform a Halstead analysis on pro-

gramming language source code of your choosing. 

19.14. Research the literature and write a paper on the relationship of Halstead's

metric and McCabe's metric on software quality (as measured by error count). Are

the data compelling? Recommend guidelines for the application of these metrics.

19.15. Research the literature for any recent papers on metrics specifically devel-

oped to assist in test case design. Present your findings to the class.

19.16. A legacy system has 940 modules. The latest release required that 90 of these

modules be changed. In addition, 40 new modules were added and 12 old modules

were removed. Compute the software maturity index for the system. 

FURTHER READING AND INFORMATION SOURCES

There are a surprisingly large number of books that are dedicated to software met-

rics, although the majority focus on process and project metrics to the exclusion of

technical metrics. Zuse [ZUS97] has written the most thorough treatment of techni-

cal metrics published to date. 

Books by Card and Glass [CAR90], Zuse [ZUS90], Fenton {FEN91], Ejiogu [EJI91],

Moeller and Paulish (Software Metrics, Chapman and Hall, 1993), and Hetzel [HET93]

all address technical metrics in some detail. Oman and Pfleeger (Applying Software

Metrics, IEEE Computer Society Press, 1997) have edited an anthology of important

papers on software metrics. In addition, the following books are worth examining:

Conte, S.D., H.E. Dunsmore, and V.Y. Shen. Software Engineering Metrics and Models, 

Benjamin/Cummings, 1984.

Fenton, N.E. and S.L. Pfleeger, Software Metrics: A Rigorous and Practical Approach, 2nd ed.,

PWS Publishing Co., 1998.

Grady, R.B. Practical Software Metrics for Project Management and Process Improvement, Pren-

tice-Hall, 1992.

Perlis, A., et al., Software Metrics: An Analysis and Evaluation, MIT Press, 1981.

Sheppard, M., Software Engineering Metrics, McGraw-Hill, 1992. 

The theory of software measurement is presented by Denvir, Herman, and Whitty in an

edited collection of papers  (Proceedings of the International BCS-FACS Workshop: For-

mal Aspects of Measurement, Springer-Verlag, 1992). Shepperd (Foundations of Software

Measurement, Prentice-Hall, 1996) also addresses measurement theory in some detail.
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A comprehensive summary of dozens of useful software metrics is presented in

[IEE94]. In general, a discussion of each metric has been distilled to the essential

“primitives” (measures) required to compute the metric and the appropriate rela-

tionships to effect the computation. An appendix provides discussion and many ref-

erences.

A wide variety of information sources on technical metrics and related subjects is

available on the Internet. An up-to-date list of World Wide Web references that are

relevant to technical metrics can be found at the SEPA Web site:

http://www.mhhe.com/engcs/compsci/pressman/resources/

tech-metrics.mhtml
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P A R T

In this part of Software Engineering: A Practitioner’s Approach, we
consider the technical concepts, methods, and measurements
that are applicable for the analysis, design, and testing of object-

oriented software. In the chapters that follow, we address the fol-
lowing questions:

• What basic concepts and principles are applicable to object-
oriented thinking?

• How do conventional and object-oriented approaches differ?

• How should object-oriented software projects be planned
and managed?

• What is object-oriented analysis and how do its various
models enable a software engineer to understand classes,
their relationships, and behaviors?

• What are the elements of an object-oriented design model?

• What basic concepts and principles are applicable to the
software testing for object-oriented software?

• How do testing strategies and test case design methods
change when object-oriented software is considered?

• What technical metrics are available for assessing the quality
of object-oriented software?

Once these questions are answered, you’ll understand how to ana-
lyze, design, implement, and test software using the object-oriented
paradigm.

OBJECT-ORIENTED
SOFTWARE
ENGINEERING

Four
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We live in a world of objects. These objects exist in nature, in human-
made entities, in business, and in the products that we use. They can
be categorized, described, organized, combined, manipulated, and

created. Therefore, it is no surprise that an object-oriented view would be pro-
posed for the creation of computer software—an abstraction that enables us to
model the world in ways that help us to better understand and navigate it. 

An object-oriented approach to the development of software was first pro-
posed in the late 1960s. However, it took almost 20 years for object technolo-
gies to become widely used. Throughout the 1990s, object-oriented software
engineering became the paradigm of choice for many software product builders
and a growing number of information systems and engineering professionals.
As time passes, object technologies are replacing classical software develop-
ment approaches. An important question is why?

The answer (like many answers to questions about software engineering) is
not a simple one. Some people would argue that software professionals sim-
ply yearned for a “new” approach, but that view is overly simplistic. Object tech-
nologies do lead to a number of inherent benefits that provide advantage at
both the management and technical levels.

20 OBJECT-ORIENTED CONCEPTS
AND PRINCIPLES

What is it? There are many

ways to look at a problem to be

solved using a software-based

solution. One widely used approach to problem

solving takes an object-oriented viewpoint. The

problem domain is characterized as a set of objects

that have specific attributes and behaviors. The

objects are manipulated with a collection of func-

tions (called methods, operations, or services) and

communicate with one another through a mes-

saging protocol. Objects are categorized into

classes and subclasses. 

Who does it? The definition of objects encompasses

a description of attributes, behaviors, operations,

and messages. This activity is performed by a soft-

ware engineer.

Why is it important? An object encapsulates both

data and the processing that is applied to the

data. This important characteristic enables classes

of objects to be built and inherently leads to

libraries of reusable classes and objects. Because

reuse is a critically important attribute of modern

software engineering, the object-oriented para-

digm is attractive to many software development

organizations. In addition, the software compo-

nents derived using the object-oriented paradigm

exhibit design characteristics (e.g., functional inde-

pendence, information hiding) that are associated

with high-quality software.

What are the steps? Object-oriented software engi-

neering follows the same steps as conventional

approaches. Analysis identifies objects and classes

Q U I C K
L O O K
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Object technologies lead to reuse, and reuse (of program components) leads to
faster software development and higher-quality programs. Object-oriented software
is easier to maintain because its structure is inherently decoupled. This leads to fewer
side effects when changes have to be made and less frustration for the software engi-
neer and the customer. In addition, object-oriented systems are easier to adapt and
easier to scale (i.e., large systems can be created by assembling reusable subsys-
tems).

In this chapter we introduce the basic principles and concepts that form a foun-
dation for the understanding of object technologies. Throughout the remainder of
Part Four of this book, we consider methods that form the basis for an engineering
approach to the creation of object-oriented products and systems. 

20.1 THE OBJECT-ORIENTED PARADIGM

For many years, the term object oriented (OO) was used to denote a software devel-

opment approach that used one of a number of object-oriented programming lan-

guages (e.g., Ada95, Java, C++, Eiffel, Smalltalk). Today, the OO paradigm encompasses

a complete view of software engineering. Edward Berard notes this when he states

[BER93]:

The benefits of object-oriented technology are enhanced if it is addressed early-on and

throughout the software engineering process. Those considering object-oriented technol-

ogy must assess its impact on the entire software engineering process. Merely employing

object-oriented programming (OOP) will not yield the best results. Software engineers and

their managers must consider such items as object-oriented requirements analysis (OORA),

object-oriented design (OOD), object-oriented domain analysis (OODA), object-oriented

database systems (OODBMS) and object-oriented computer aided software engineering

(OOCASE).

A reader who is familiar with the conventional approach to software engineering

(presented in Part Three of this book) might react to this statement with a shrug:

“What’s the big deal? We use analysis, design, programming, testing, and related tech-

that are relevant to the problem

domain; design provides the

architecture, interface, and com-

ponent-level detail; implementation (using an

object-oriented language) transforms design into

code; and testing exercises the object-oriented

architecture, interfaces and components.

What is the work product? A set of object oriented

models is produced. These models describe the

requirements, design, code, and test process for

a system or product. 

How do I ensure that I’ve done it right? At each 

stage, object-oriented work products are reviewed

for clarity, correctness, completeness, and consis-

tency with customer requirements and with one

another.

Q U I C K
L O O K

“With objects, it’s
actually easier to
build models [for
complex systems]
than to engage in
sequential
programming.”
David Taylor 
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nologies when we engineer software using the classical methods. Why should OO

be any different?” Indeed, why should OO be any different? In short, it shouldn’t!

In Chapter 2, we discussed a number of different process models for software engi-

neering. Although any one of these models could be adapted for use with OO, the

best choice would recognize that OO systems tend to evolve over time. Therefore,

an evolutionary process model, coupled with an approach that encourages compo-

nent assembly (reuse), is the best paradigm for OO software engineering. Referring

to Figure 20.1, the component-based development process model (Chapter 2) has

been tailored for OO software engineering. 

The OO process moves through an evolutionary spiral that starts with customer

communication. It is here that the problem domain is defined and that basic problem

classes (discussed later in this chapter) are identified. Planning and risk analysis estab-

lish a foundation for the OO project plan. The technical work associated with OO

software engineering follows the iterative path shown in the shaded box. OO soft-

ware engineering emphasizes reuse. Therefore, classes are “looked up” in a library

(of existing OO classes) before they are built. When a class cannot be found in the

library, the software engineer applies object-oriented analysis (OOA), object-oriented

design (OOD), object-oriented programming (OOP), and object-oriented testing (OOT)

to create the class and the objects derived from the class. The new class is then put

into the library so that it may be reused in the future.

The object-oriented view demands an evolutionary approach to software 

engineering. As we will see throughout this and the following chapters, it would be
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Customer
Evaluation

Risk
AnalysisPlanning

Customer
Communication

Identify
candidate

classes

Construct
nth iteration

of system

Look up
classes

in library

Extract
classes

if available

Engineering,
Construction & Release

Engineer
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if unavailable

OO analysis
OO design
OO programming
OO testing

Put new
classes

in library

FIGURE 20.1
The OO
process model

OO systems are
engineered using an
evolutionary process
model. Later in this
chapter, it will be
referred to as a
recursive parallel
model.

WebRef
One of the Web’s most
extensive lists of OO
resources can be found at
mini.net/cetus/
software.html
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exceedingly difficult to define all necessary classes for a major system or product in

a single iteration. As the OO analysis and design models evolve, the need for addi-

tional classes becomes apparent. It is for this reason that the paradigm just described

works best for OO.

20.2 OBJECT-ORIENTED CONCEPTS

Any discussion of object-oriented software engineering must begin by addressing the

term object-oriented. What is an object-oriented viewpoint? Why is a method con-

sidered to be object-oriented? What is an object? Over the years, there have been

many different opinions (e.g., [BER93], [TAY90], [STR88], [BOO86]) about the correct

answers to these questions. In the discussion that follows, we attempt to synthesize

the most common of these.

To understand the object-oriented point of view, consider an example of a real

world object—the thing you are sitting in right now—a chair. Chair is a member (the

term instance is also used) of a much larger class of objects that we call furniture. A

set of generic attributes can be associated with every object in the class furniture.

For example, all furniture has a cost, dimensions, weight, location, and color, among

many possible attributes. These apply whether we are talking about a table or a chair,

a sofa or an armoire. Because chair is a member of furniture, chair inherits all attrib-

utes defined for the class. This concept is illustrated schematically in Figure 20.2.

Class: furniture

Cost
Dimensions
Weight
Location
Color

Object: chair

Cost
Dimensions
Weight
Location
Color

The object inherits
all attributes of the class

FIGURE 20.2
Inheritance
from class to
object

“Object-oriented
programming is not
so much a coding
technique as it is a
code packaging
technique, a way for
code suppliers to
encapsulate
functionality for
delivery to
customers.”
Brad Cox 
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Once the class has been defined, the attributes can be reused when new instances

of the class are created. For example, assume that we were to define a new object

called a chable (a cross between a chair and a table) that is a member of the class

furniture. Chable inherits all of the attributes of furniture.

We have attempted an anecdotal definition of a class by describing its  attributes,

but something is missing. Every object in the class furniture can be manipulated in

a variety of ways. It can be bought and sold, physically modified (e.g., you can saw

off a leg or paint the object purple) or moved from one place to another. Each of these

operations (other terms are services or methods) will modify one or more attributes of

the object. For example, if the attribute location is a composite data item defined as

location = building + floor + room

then an operation named move would modify one or more of the data items (building,

floor, or room) that form the attribute location. To do this, move must have "knowledge"

of these data items. The operation move could be used for a chair or a table, as long

as both are instances of the class furniture. All valid operations (e.g., buy, sell, weigh)

for the class furniture are "connected" to the object definition as shown in Figure

20.3 and are inherited by all instances of the class.

545

Class: furniture

Cost
Dimensions
Weight
Location
Color

Object: chair

Cost
Dimensions
Weight
Location
Color

The object inherits
all attributes and
operations of the class

Buy
Sell
Weigh
Move

Buy
Sell
Weigh
Move

Object: chable

Cost
Dimensions
Weight
Location
Color

Buy
Sell
Weigh
Move

FIGURE 20.3
Inheritance of
operations
from class to
object

XRef
Data modeling notation
can be used to
represent objects and
their attributes. See
Chapter 12 for details.
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The object chair (and all objects in general) encapsulates data (the attribute val-

ues that define the chair), operations (the actions that are applied to change the attrib-

utes of chair), other objects (composite objects can be defined [EVB89]), constants

(set values), and other related information. Encapsulation means that all of this infor-

mation is packaged under one name and can be reused as one specification or pro-

gram component. 

Now that we have introduced a few basic concepts, a more formal definition of

object-oriented will prove more meaningful. Coad and Yourdon [COA91] define the

term this way:

object-oriented = objects + classification + inheritance + communication

Three of these concepts have already been introduced. We postpone a discussion of

communication until later.

20.2.1 Classes and Objects

The fundamental concepts that lead to high-quality design (Chapter 13) apply equally

to systems developed using conventional and object-oriented methods. For this rea-

son, an OO model of computer software must exhibit data and procedural abstrac-

tions that lead to effective modularity. A class is an OO concept that encapsulates the

data and procedural abstractions required to describe the content and behavior of

some real world entity. Taylor {TAY90] uses the notation shown on the right side of

Figure 20.4 to describe a class (and objects derived from a class).

The data abstractions (attributes) that describe the class are enclosed by a “wall”

of procedural abstractions (called operations, methods, or services) that are capable

of manipulating the data in some way. The only way to reach the attributes (and oper-

ate on them) is to go through one of the methods that form the wall. Therefore, the

class encapsulates data (inside the wall) and the processing that manipulates the data

(the methods that make up the wall). This achieves information hiding and reduces

Class name

Attributes:

Operations:

Attributes:

Operations

FIGURE 20.4
An alternative
representation
of an object-
oriented class

An object encapsulates
both data (attributes)
and the functions
(operation, methods,
or services) that
manipulate the data.

“Encapsulation
prevents a program
from becoming so
interdependent that
a small change has
massive ripple
effects.”
Jim Rumbaugh 
et al.
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the impact of side effects associated with change. Since the methods tend to manip-

ulate a limited number of attributes, they are cohesive; and because communication

occurs only through the methods that make up the “wall,” the class tends to be decou-

pled from other elements of a system. All of these design characteristics lead to high-

quality software.

Stated another way, a class is a generalized description (e.g., a template, pattern,

or blueprint) that describes a collection of similar objects. By definition, all objects

that exist within a class inherit its attributes and the operations that are available to

manipulate the attributes. A superclass is a collection of classes, and a subclass is a

specialized instance of a class.

These definitions imply the existence of a class hierarchy in which the attributes

and operations of the superclass are inherited by subclasses that may each add addi-

tional “private” attributes and methods. A class hierarchy for the class furniture is

illustrated in Figure 20.5.

20.2.2 Attributes

We have already seen that attributes are attached to classes and objects, and that

they describe the class or object in some way. A discussion of attributes is presented

by de Champeaux, Lea, and Favre [CHA93]:

Real life entities are often described with words that indicate stable features. Most physi-

cal objects have features such as shape, weight, color, and type of material. People have

features including date of birth, parents, name, and eye color. A feature may be seen as a

binary relation between a class and a certain domain.
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“Chable”DeskChairTable

Subclasses of the
furniture superclass

Furniture (superclass)

Instances of chair

FIGURE 20.5
A class 
hierarchy

One of the first things
to think about when
building an OO system
is how to classify the
objects that are to be
manipulated by the
system.
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The “binary relation” implies that an attribute can take on a value defined by an enu-

merated domain. In most cases, a domain is simply a set of specific values. For exam-

ple, assume that a class automobile has an attribute color. The domain of values for

color is {white, black, silver, gray, blue, red, yellow, green}. In more complex situations, the

domain can be a set of classes. Continuing the example, the class automobile also

has an attribute power train that encompasses the following domain of classes: {16-

valve economy option, 16-valve sport option, 24-valve sport option, 32-valve luxury option}. Each

of the options noted has a set of specific attributes of its own.

The features (values of the domain) can be augmented by assigning a default value

(feature) to an attribute. For example, the power train attribute defaults to 16-valve sport

option. It may also be useful to associate a probability with a particular feature by

assigned {value, probability} pairs. Consider the color attribute for automobile. In

some applications (e.g., manufacturing planning) it might be necessary to assign a

probability to each of the colors (white and black are highly probable as automobile

colors).

20.2.3 Operations, Methods, and Services

An object encapsulates data (represented as a collection of attributes) and the algo-

rithms that process the data. These algorithms are called operations, methods, or

services1 and can be viewed as modules in a conventional sense. 

Each of the operations that is encapsulated by an object provides a representation

of one of the behaviors of the object. For example, the operation GetColor for the

object automobile will extract the color stored in the color attribute. The implication

of the existence of this operation is that the class automobile has been designed to

receive a stimulus [JAC92] (we call the stimulus a message) that requests the color of

the particular instance of a class. Whenever an object receives a stimulus, it initiates

some behavior. This can be as simple as retrieving the color of automobile or as com-

plex as the initiation of a chain of stimuli that are passed among a variety of differ-

ent objects. In the latter case, consider an example in which the initial stimulus received

by object 1 results in the generation of two other stimuli that are sent to object 2 and

object 3. Operations encapsulated by the second and third objects act on the stimuli,

returning necessary information to the first object. Object 1 then uses the returned

information to satisfy the behavior demanded by the initial stimulus.

20.2.4 Messages

Messages are the means by which objects interact. Using the terminology introduced

in the preceding section, a message stimulates some behavior to occur in the receiv-

ing object. The behavior is accomplished when an operation is executed.

1 In the context of this discussion, we use the term operations, but methods and services are equally
popular.

Whenever an object is
stimulated by a
message, it initiates
some behavior by
executing an
operation.

The values assigned to
an object’s attributes
make that object
unique.
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The interaction between messages is illustrated schematically in Figure 20.6. An

operation within a sender object generates a message of the form

Message:   [destination, operation, parameters]

where destination defines the receiver object that is stimulated by the message, oper-

ation refers to the operation that is to receive the message, and parameters provides

information that is required for the operation to be successful. 

As an example of message passing within an OO system, consider the objects

shown in Figure 20.7. Four objects, A, B, C, and D communicate with one another

by passing messages. For example, if object B requires processing associated with

operation op10 of object D, it would send D a message of the form

message:   [D, op10, {data}]

As part of the execution of op10, object D may send a message to object C of the form

message: (C, op08, {data})

Then C finds op08, performs it, and sends an appropriate return value to D. Opera-

tion op10 completes and sends a return value to B.

Cox {COX86] describes the interchange between objects in the following manner:

An object is requested to perform one of its operations by sending it a message telling the

object what to do. The receiver [object] responds to the message by first choosing the oper-

ation that implements the message name, executing  this operation, and then returning

control to the caller.
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Sender object

Attributes:

Operations:

Receiver object

Attributes:

Operations:

message:
[sender, return
value(s)]

message: [receiver, operation, parameters]

FIGURE 20.6
Message 
passing
between
objects

“Messages and
methods
[operations] are two
sides of the same
coin. Methods are
the procedures that
are invoked when
an object receives a
message.”
Greg Voss 
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Messaging ties an object-oriented system together. Messages provide insight into the

behavior of individual objects and the OO system as a whole.

20.2.5 Encapsulation, Inheritance, and Polymorphism

Although the structure and terminology introduced in Sections 20.2.1 through 20.2.4

differentiate OO systems from their conventional counterparts, three characteris-

tics of object-oriented systems make them unique. As we have already noted, the

OO class and the objects spawned from the class encapsulate data and the opera-

tions that work on the data in a single package. This provides a number of impor-

tant benefits:

• The internal implementation details of data and procedures are hidden from

the outside world (information hiding). This reduces the propagation of side

effects when changes occur. 

• Data structures and the operations that manipulate them are merged in a sin-

gle named entity—the class. This facilitates component reuse.

• Interfaces among encapsulated objects are simplified. An object that sends a

message need not be concerned with the details of internal data structures.

Hence, interfacing is simplified and the system coupling tends to be reduced.

Inheritance is one of the key differentiators between conventional and OO sys-

tems. A subclass Y inherits all of the attributes and operations associated with its

superclass, X. This means that all data structures and algorithms originally designed

A

op1
op2

B

op3
op4
op5

C

op6
op7
op8
op9

D

op10
op11

Return value

Return value

Message

FIGURE 20.7
Message 
passing
example

What are the
primary

benefits of an OO
architecture?

?
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and implemented for X are immediately available for Y—no further work need be

done. Reuse has been accomplished directly.

Any change to the data or operations contained within a superclass is immedi-

ately inherited by all subclasses that have inherited from the superclass.2 Therefore,

the class hierarchy becomes a mechanism through which changes (at high levels)

can be immediately propagated through a system.

It is important to note that, at each level of the class hierarchy, new attributes and

operations may be added to those that have been inherited from higher levels in the

hierarchy. In fact, whenever a new class is to be created, the software engineer has

a number of options:

• The class can be designed and built from scratch. That is, inheritance is not

used.

• The class hierarchy can be searched to determine if a class higher in the hier-

archy contains most of the required attributes and operations. The new class

inherits from the higher class and additions may then be added, as required.

• The class hierarchy can be restructured so that the required attributes and

operations can be inherited by the new class.

• Characteristics of an existing class can be overridden and private versions of

attributes or operations are implemented for the new class.

To illustrate how restructuring of the class hierarchy might lead to a desired class,

consider the example shown in Figures 20.8. The class hierarchy illustrated in Figure

20.8A enables us to derive classes X3 and X4 with characteristics 1, 2, 3, 4, 5 and 6

and 1, 2, 3, 4, 5, and 7, respectively.3 Now, suppose that a new class with only char-

acteristics 1, 2, 3, 4, and 8 is desired. To derive this class, called X2b in the example,

the hierarchy may be restructured as shown in Figure 20.8B. It is important to note

that restructuring the hierarchy can be difficult, and for this reason, overriding is some-

times used.

In essence, overriding occurs when attributes and operations are inherited in the

normal manner but are then modified to the specific needs of the new class. As Jacob-

son notes, when overriding is used “inheritance is not transitive” [JAC92].

In some cases, it is tempting to inherit some attributes and operations from one

class and others from another class. This is called multiple inheritance, and it is con-

troversial. In general, multiple inheritance complicates the class hierarchy and cre-

ates potential problems in configuration control (Chapter 9). Because multiple

inheritance sequences are more difficult to trace, changes to the definition of a class

that resides high in the hierarchy may have an unintended impact on classes defined

lower in the architecture.
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2 The terms descendants and ancestors [JAC92] are sometimes used to replace subclass and super-
class, respectively.

3 For the purposes of this example, “characteristics” may be either attributes or operations.

“Whereas an object is
a concrete entity
that exists in time
and space, a class
represents only an
abstraction, the
‘essence’ of an
object, as it were.”
Grady Booch 
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Polymorphism is a characteristic that greatly reduces the effort required to extend

an existing OO system. To understand polymorphism, consider a conventional appli-

cation that must draw four different types of graphs: line graphs, pie charts, his-

tograms, and Kiviat diagrams. Ideally, once data are collected for a particular type of

graph, the graph should draw itself. To accomplish this in a conventional application

(and maintain module cohesion), it would be necessary to develop drawing modules

for each type of graph. Then, within the design for each graph type, control logic sim-

ilar to the following would have to be embedded:

case of graphtype:
if graphtype = linegraph then DrawLineGraph (data);
if graphtype = piechart then DrawPieChart (data);

X1

char1
char2
char3

+ char4 + char5

X2

char1
char2
char3
char4
char5

X3

char1
char2
char3
char4
char5
char6

X4

char1
char2
char3
char4
char5
char7

+ char7+ char6

(A)

FIGURE 20.8
Class 
hierarchy:
original (A),
restructured (B)

X1

char1
char2
char3

+ char4

X2

char1
char2
char3
char4

X2a

char1
char2
char3
char4
char5

X2b

char1
char2
char3
char4
char8

+ char8+ char5

X3

char1
char2
char3
char4
char5
char6

X4

char1
char2
char3
char4
char5
char7

+ char7+ char6

(B)

“The name
[polymorphism]
may be awkward,
but the mechanism
is sheer elegance.”
David Taylor
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if graphtype = histogram then DrawHisto (data);
if graphtype = kiviat then DrawKiviat (data);

end case;

Although this design is reasonably straightforward, adding new graph types could be

tricky. A new drawing module would have to be created for each graph type and then

the control logic would have to be updated for each graph.

To solve this problem, all of the graphs become subclasses of a general class called

graph. Using a concept called overloading [TAY90], each subclass defines an opera-

tion called draw. An object can send a draw message to any one of the objects instan-

tiated from any one of the subclasses. The object receiving the message will invoke

its own draw operation to create the appropriate graph. Therefore, the design is

reduced to

graphtype draw

When a new graph type is to be added to the system, a subclass is created with

its own draw operation. But no changes are required within any object that wants

a graph drawn because the message graphtype draw remains unchanged. To sum-

marize, polymorphism enables a number of different operations to have the 

same name. This in turn decouples objects from one another, making each more

independent. 

20.3 IDENTIFYING THE ELEMENTS OF AN OBJECT MODEL

The elements of an object model—classes and objects, attributes, operations, and

messages—were each defined and discussed in the preceding section. But how do

we go about identifying these elements for an actual problem? The sections that fol-

low present a series of informal guidelines that will assist in the identification of the

elements of the object model.

20.3.1 Identifying Classes and Objects

If you look around a room, there is a set of physical objects that can be easily iden-

tified, classified, and defined (in terms of attributes and operations). But when you

"look around" the problem space of a software application, the objects may be more

difficult to comprehend.

We can begin to identify objects4 by examining the problem statement or (using

the terminology from Chapter 12) by performing a "grammatical parse" on the pro-

cessing narrative for the system to be built. Objects are determined by underlining

each noun or noun clause and entering it in a simple table. Synonyms should be
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4 In reality, OOA actually attempts to define classes from which objects are instantiated. Therefore,
when we isolate potential objects, we also identify members of potential classes.

“The really hard
problem [in OO] is
discovering what are
the ‘right’ objects in
the first place.”
Carl Argila 
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noted. If the object is required to implement a solution, then it is part of the solution

space; otherwise, if an object is necessary only to describe a solution, it is part of the

problem space. What should we look for once all of the nouns have been isolated?

Objects manifest themselves in one of the ways represented in Figure 20.9. Objects

can be

• External entities (e.g., other systems, devices, people) that produce or con-

sume information to be used by a computer-based system.

• Things (e.g, reports, displays, letters, signals) that are part of the information

domain for the problem.

• Occurrences or events5 (e.g., a property transfer or the completion of a series

of robot movements) that occur within the context of system operation.

• Roles (e.g., manager, engineer, salesperson) played by people who interact

with the system.

• Organizational units (e.g., division, group, team) that are relevant to an appli-

cation.

• Places (e.g., manufacturing floor or loading dock) that establish the context of

the problem and the overall function of the system.

• Structures (e.g., sensors, four-wheeled vehicles, or computers) that define a

class of objects or in the extreme, related classes of objects.

5 In this context, the term event connotes any occurrence. It does not necessarily imply control as it
did in Chapter 12.

Class name

Attributes:

Operations:

RolesOccurrences
Organizational unitsThings

External entities
Places

Structures

FIGURE 20.9
How objects
manifest 
themselves

How do I 
pick out

objects as I study
the problem to be
solved?

?
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This categorization is but one of many that have been proposed in the literature. For

example, Budd [BUD96] suggests a taxonomy of classes that includes producers

(sources) and consumers (sinks) of data, data managers, view or observer classes,

and helper classes.

It is also important to note what objects are not. In general, an object should never

have an "imperative procedural name" [CAS89]. For example, if the developers of

software for a medical imaging system defined an object with the name image inver-

sion, they would be making a subtle mistake. The image obtained from the software

could, of course, be an object (it is a thing that is part of the information domain).

Inversion of the image is an operation that is applied to the object. It is likely that

inversion would be defined as an operation for the object image, but it would not be

defined as a  separate object to connote "image inversion." As Cashman [CAS89]

states: "the intent of object-orientation is to encapsulate, but still keep separate, data

and operations on the data."

To illustrate how objects might be defined during the early stages of analysis, we

return to the SafeHome security system example. In Chapter 12, we performed a "gram-

matical parse" on a processing narrative for the SafeHome system. The processing

narrative is reproduced:

SafeHome software enables the homeowner to configure the security system when it is

installed, monitors all sensors connected to the security system, and interacts with the

homeowner through a keypad and function keys contained in the SafeHome control panel

shown in Figure 11.2. 

During installation, the SafeHome control panel is used to "program" and configure the

system. Each sensor is assigned a number and type, a master password is programmed for

arming and disarming the system, and telephone number(s) are input for dialing when a

sensor event occurs.

When a sensor event is sensed by the software, it rings an audible alarm attached to the

system. After a delay time that is specified by the homeowner during system configuration

activities, the software dials a telephone number of a monitoring service, provides infor-

mation about the location, reporting and the nature of the event that has been detected.

The number will be redialed every 20 seconds until telephone connection is obtained.

All interaction with SafeHome is managed by a user-interaction subsystem that reads

input provided through the keypad and function keys, displays prompting messages on the

LCD display, displays system status information on the LCD display. Keyboard interaction

takes the following form . . .

Extracting the nouns, we can propose a number of potential objects:

Potential Object/Class General Classification
homeowner role or external entity
sensor external entity
control panel external entity
installation occurrence
system (alias security system) thing
number, type not objects, attributes of sensor
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PART FOUR OBJECT-ORIENTED SOFTWARE ENGINEERING556

Potential Object/Class General Classification
master password thing
telephone number thing
sensor event occurrence
audible alarm external entity
monitoring service organizational unit or external entity

The list would be continued until all nouns in the processing narrative have been

considered. Note that we call each entry in the list a potential object. We must con-

sider each further before a final decision is made.

Coad and Yourdon [COA91] suggest six selection characteristics that should be

used as an analyst considers each potential object for inclusion in the analysis model:

1. Retained information. The potential object will be useful during analysis only

if information about it must be remembered so that the system can function.

2. Needed services. The potential object must have a set of identifiable opera-

tions that can change the value of its attributes in some way.

3. Multiple attributes. During requirement analysis, the focus should be on

"major" information; an object with a single attribute may, in fact, be useful

during design, but is probably better represented as an attribute of another

object during the analysis activity.

4. Common attributes. A set of attributes can be defined for the potential

object and these attributes apply to all occurrences of the object.

5. Common operations. A set of operations can be defined for the potential

object and these operations apply to all occurrences of the object.

6. Essential requirements. External entities that appear in the problem space

and produce or consume information essential to the operation of any solu-

tion for the system will almost always be defined as objects in the require-

ments model.

To be considered a legitimate object for inclusion in the requirements model, a

potential object should satisfy all (or almost all) of these characteristics. The decision

for inclusion of potential objects in the analysis model is somewhat subjective, and

later evaluation may cause an object to be discarded or reinstated. However, the first

step of OOA must be a definition of objects, and decisions (even subjective ones) must

be made. With this in mind, we apply the selection characteristics to the list of poten-

tial SafeHome objects:

Potential Object/Class Characteristic Number That Applies
homeowner rejected: 1, 2 fail even though 6 applies
sensor accepted: all apply
control panel accepted: all apply
installation rejected
system (alias security system) accepted: all apply

A potential object
should satisfy most or
all of these
characteristics if it is to
be used in the analysis
model.

How do I
know

whether a
potential object is
a good candidate
for use in an OO
system?

?
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number, type rejected: 3 fails, attributes of sensor
master password rejected: 3 fails 
telephone number rejected: 3 fails
sensor event accepted: all apply
audible alarm accepted: 2, 3, 4, 5, 6 apply
monitoring service rejected: 1, 2 fail even though 6 applies

It should be noted that (1) the preceding list is not all-inclusive, additional objects

would have to be added to complete the model; (2) some of the rejected potential

objects will become attributes for those objects that were accepted (e.g., number and

type are attributes of sensor, and master password and telephone number may become

attributes of system); (3) different statements of the problem might cause different

"accept or reject" decisions to be made (e.g., if each homeowner had an individual

password or was identified by voice print, the homeowner object would satisfy char-

acteristics 1 and 2 and would have been accepted). 

20.3.2 Specifying Attributes

Attributes describe an object that has been selected for inclusion in the analysis model.

In essence, it is the attributes that define the object—that clarify what is meant by the

object in the context of the problem space. For example, if we were to build a system

that tracks baseball statistics for professional baseball players, the attributes of the

object player would be quite different than the attributes of the same object when it

is used in the context of the professional baseball pension system. In the former,

attributes such as name, position, batting average, fielding percentage, years played, and games

played might be relevant. For the latter, some of these attributes would be meaning-

ful, but others would be replaced (or augmented) by attributes like average salary, credit

toward full vesting, pension plan options chosen, mailing address, and the like.

To develop a meaningful set of attributes for an object, the analyst can again study

the processing narrative (or statement of scope) for the problem and select those

things that reasonably "belong" to the object. In addition, the following question

should be answered for each object: "What data items (composite and/or elemen-

tary) fully define this object in the context of the problem at hand?"

To illustrate, we consider the system object defined for SafeHome. We noted ear-

lier in the book that the homeowner can configure the security system to reflect sen-

sor information, alarm response information, activation/deactivation information,

identification information, and so forth. Using the content description notation defined

for the data dictionary and presented in Chapter 12, we can represent these com-

posite data items in the following manner:

sensor information = sensor type + sensor number + alarm threshold
alarm response information = delay time + telephone number + alarm type
activation/deactivation information = master password + number of allowable tries + tempo-

rary password
identification information = system ID + verification phone number + system status 
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Each of the data items to the right of the equal sign could be further defined to an ele-

mentary level, but for our purposes, they constitute a reasonable list of attributes for

the system object (shaded portion of Figure 20.10).

20.3.3 Defining Operations

Operations define the behavior of an object and change the object’s attributes in some

way. More specifically, an operation changes one or more attribute values that are

contained within the object. Therefore, an operation must have "knowledge" of the

nature of the object's attributes and must be implemented in a manner that enables

it to manipulate the data structures that have been derived from the attributes.

Although many different types of operations exist, they can generally be divided

into three broad categories: (1) operations that manipulate data in some way (e.g.,

adding, deleting, reformatting, selecting), (2) operations that perform a computa-

tion, and (3) operations that monitor an object for the occurrence of a controlling

event.

As a first iteration at deriving a set of operations for the objects of the analysis

model, the analyst can again study the processing narrative (or statement of scope)

for the problem and select those operations that reasonably belong to the object. To

accomplish this, the grammatical parse is again studied and verbs are isolated. Some

of these verbs will be legitimate operations and can be easily connected to a specific

object. For example, from the SafeHome processing narrative presented earlier in this

chapter, we see that "sensor is assigned a number and type" or that "a master pass-

Object system

System ID
Verification phone number
System status
Sensor table

Sensor type
Sensor number
Alarm threshold

Alarm delay time
Telephone number(s)
Alarm threshold
Master password
Temporary password
Number of tries

Program
Display
Reset
Query
Modify
Call

FIGURE 20.10
The system
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operations
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word is programmed for arming and disarming the system." These two phrases indi-

cate a number of things:

• That an assign operation is relevant for the sensor object.

• That a program operation will be applied to the system object.

• That arm and disarm are operations that apply to system (also that system

status may ultimately be defined (using data dictionary notation) as 

system status = [armed | disarmed]

Upon further investigation, it is likely that the operation program will be divided into

a number of more specific suboperations required to configure the system. For exam-

ple, program implies specifying phone numbers, configuring system characteristics

(e.g., creating the sensor table, entering alarm characteristics), and entering pass-

word(s). But for now, we specify program as a single operation.

In addition to the grammatical parse, we can gain additional insight into other

operations by considering the communication that occurs between objects. Objects

communicate by passing messages to one another. Before continuing with the spec-

ification of operations, we explore this matter in a bit more detail.

20.3.4 Finalizing the Object Definition 

The definition of operations is the last step in completing the specification of an object.

In Section 20.3.3, operations were culled from a grammatical parse of the process-

ing narrative for the system. Additional operations may be determined by consider-

ing the "life history" [COA91] of an object and the messages that are passed among

objects defined for the system.

The generic life history of an object can be defined by recognizing that the object

must be created, modified, manipulated or read in other ways, and possibly deleted.

For the system object, this can be expanded to reflect known activities that occur

during its life (in this case, during the time that SafeHome is operational). Some of the

operations can be ascertained from likely communication between objects. For exam-

ple, sensor event will send a message to system to display the event location and

number; control panel will send system a reset message to update system status; the

audible alarm will send a query message; the control panel will send a modify mes-

sage to change one or more attributes without reconfiguring the entire system object;

sensor event will also send a message to call the phone number(s) contained in the

object. Other messages can be considered and operations derived. The resulting object

definition is shown in Figure 20.10.

A similar approach would be used for each of the objects defined for SafeHome.

After attributes and operations are defined for each of the objects identified to this

point, the beginnings of an OOA model would be created. A more detailed discus-

sion of the analysis model that is created as part of OOA is presented in Chapter 21.
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20.4 MANAGEMENT OF OBJECT-ORIENTED SOFTWARE
PROJECTS

As we discussed in Parts One and Two of this book, modern software project man-

agement can be subdivided into the following activities:

1. Establishing a common process framework for a project.

2. Using the framework and historical metrics to develop effort and time esti-

mates.

3. Establishing deliverables and milestones that will enable progress to be mea-

sured.

4. Defining checkpoints for risk management, quality assurance, and control.

5. Managing the changes that invariably occur as the project progresses.

6. Tracking, monitoring, and controlling progress.

The technical manager who is faced with an object-oriented project applies these six

activities. But, because of the unique nature of object-oriented software, each of these

management activities has a subtly different feel and must be approached using a

somewhat different mind-set.

In the sections that follow, we explore software project management for object-

oriented projects. The fundamental principles of management stay the same, but the

technique must be adapted so that an OO project is properly managed.

20.4.1 The Common Process Framework for OO

A common process framework defines an organization’s approach to software engi-

neering. It identifies the paradigm that is applied to build and maintain software and

the tasks, milestones, and deliverables that will be required. It establishes the degree

of rigor with which different kinds of projects will be approached. The CPF is always

adaptable so it can meet the individual needs of a project team. This is its single most

important characteristic.

As we noted earlier in this chapter, object-oriented software engineering applies

a process model that encourages iterative development. That is, OO software evolves

through a number of cycles. The common process framework that is used to man-

age an OO project must be evolutionary in nature.

Ed Berard [BER93] and Grady Booch [BOO91] among others suggest the use of a

“recursive/parallel model” for object-oriented software development. In essence the

recursive/parallel model works in the following way:

• Do enough analysis to isolate major problem classes and connections.

• Do a little design to determine whether the classes and connections can 

be implemented in a practical way.

XRef
The common process
framework defines
basic software
engineering activities.
It is described in
Chapter 2.

OO projects require as
much or more
management planning
and oversight as
conventional software
projects. Do not
assume that OO
somehow relieves you
of this responsibility.

WebRef
An extensive OO project
management tutorial and
set of pointers can be
found at 
mini.net/cetus/
oo_project_mngt.
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• Extract reusable objects from a library to build a rough prototype.

• Conduct some tests to uncover errors in the prototype.

• Get customer feedback on the prototype.

• Modify the analysis model based on what you’ve learned from the prototype,

from doing design, and from customer feedback.

• Refine the design to accommodate your changes.

• Code special objects (that are not available from the library).

• Assemble a new prototype using objects from the library and the new objects

you’ve created.

• Conduct some tests to uncover errors in the prototype.

• Get customer feedback on the prototype.

This approach continues until the prototype evolves into a production application.

The recursive/parallel model is quite similar to the spiral or evolutionary para-

digm. Progress occurs iteratively. What makes the recursive/parallel model different

is (1) the recognition that analysis and design modeling for OO systems cannot be

accomplished at an even level of abstraction and (2) analysis and design can be

applied to independent system components concurrently. Berard [BER93] describes

the model in the following manner:

• Systematically decompose the problem into highly independent components.

• Reapply the decomposition process to each of the independent components

to decompose each further (the recursive part).

• Conduct this reapplication of decomposition concurrently on all components

(the parallel part).

• Continue this process until completion criteria are attained.

It’s important to note that this decomposition process is discontinued if the ana-

lyst/designer recognizes that the component or subcomponent required is available

in a reuse library.

To control the recursive/parallel process framework, the project manager must

recognize that progress is planned and measured incrementally. That is, project tasks

and the project schedule are tied to each of the “highly independent components,”

and progress is measured for each of these components individually.

Each iteration of the recursive/parallel process requires planning, engineering

(analysis, design, class extraction, prototyping, and testing), and evaluation activi-

ties (Figure 20.11). During planning, activities associated with each of the indepen-

dent program components are planned and scheduled. (Note: With each iteration,

the schedule is adjusted to accommodate changes associated with the preceding iter-

ation.) During early stages of engineering, analysis and design occur iteratively. The
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intent is to isolate all important elements of the OO analysis and design models. As

engineering work proceeds, incremental versions of the software are produced. Dur-

ing evaluation, reviews, customer evaluation, and testing are performed for each

increment, with feedback affecting the next planning activity and subsequent incre-

ment.

20.4.2 OO Project Metrics and Estimation

Conventional software project estimation techniques require estimates of lines-of-

code (LOC) or function points (FP) as the primary driver for estimation. Because an

overriding goal for OO projects should be reuse, LOC estimates make little sense. FP

estimates can be used effectively because the information domain counts that are

required are readily obtainable from the problem statement. FP analysis may provide

value for estimating OO projects, but the FP measure does not provide enough gran-

ularity for the schedule and effort adjustments that are required as we iterate through

the recursive/parallel paradigm.
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Extract

reusable
classes

Customer
evaluationPrototype Test

Review and refinement

Review and refinement

Review and refinement

Review and refinement

Early analysis/design iterations

First
prototype

Next
increment

Design

Analysis Design
Extract

reusable
classes

Customer
evaluationPrototype Test

Analysis Design
Extract

reusable
classes

Customer
evaluationPrototype Test

FIGURE 20.11 Typical process sequence for an OO project
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Lorenz and Kidd [LOR94] suggest the following set of project metrics:6

Number of scenario scripts. A scenario script (analogous to use-cases dis-

cussed in Chapter 11) is a detailed sequence of steps that describe the inter-

action between the user and the application. Each script is organized into

triplets of the form

{initiator, action, participant} 

where initiator is the object that requests some service (that initiates a mes-

sage); action is the result of the request; and participant is the server object

that satisfies the request. The number of scenario scripts is directly correlated

to the size of the application and to the number of test cases that must be

developed to exercise the system once it is constructed.

Number of key classes. Key classes are the “highly independent compo-

nents” [LOR94] that are defined early in OOA. Because key classes are central

to the problem domain, the number of such classes is an indication of the

amount of effort required to develop the software and also an indication of

the potential amount of reuse to be applied during system development.

Number of support classes. Support classes are required to implement the

system but are not immediately related to the problem domain. Examples

might be GUI classes, database access and manipulation classes, and com-

putation classes. In addition, support classes can be developed for each of

the key classes. Support classes are defined iteratively throughout the recur-

sive/parallel process.

The number of support classes is an indication of the amount of effort

required to develop the software and also an indication of the potential

amount of reuse to be applied during system development. 

Average number of support classes per key class. In general, key

classes are known early in the project. Support classes are defined through-

out. If the average number of support classes per key class were known for a

given problem domain, estimating (based on total number of classes) would

be much simplified. Lorenz and Kidd suggest that applications with a GUI

have between two and three times the number of support classes as key

classes. Non-GUI applications have between one and two times the number

of support classes as key classes.

Number of subsystems. A subsystem is an aggregation of classes that sup-

port a function that is visible to the end-user of a system. Once subsystems

are identified, it is easier to lay out a reasonable schedule in which work on

subsystems is partitioned among project staff.
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20.4.3 An OO Estimating and Scheduling Approach

Software project estimation remains more art than science. However, this in no way

precludes the use of a systematic approach. To develop reasonable estimates it is

essential to develop multiple data points. That is, estimates should be derived using

a number of different techniques. Effort and duration estimates used for conventional

software development are applicable to the OO world, but the historical database for

OO projects is relatively small for many organizations. Therefore, it is worthwhile to

supplement conventional software cost estimation with an approach that has been

designed explicitly for OO software. Lorenz and Kidd [LOR94] suggest the following

approach:

1. Develop estimates using effort decomposition, FP analysis, and any other

method that is applicable for conventional applications.

2. Using OOA (Chapter 21), develop scenario scripts (use-cases) and determine

a count. Recognize that the number of scenario scripts may change as the

project progresses.

3. Using OOA, determine the number of key classes.

4. Categorize the type of interface for the application and develop a multiplier

for support classes:

Interface type Multiplier
No GUI 2.0
Text-based user interface 2.25
GUI 2.5
Complex GUI 3.0

Multiply the number of key classes (step 3) by the multiplier to obtain an esti-

mate for the number of support classes.

5. Multiply the total number of classes (key + support) by the average number of

work-units per class. Lorenz and Kidd suggest 15 to 20 person-days per

class.

6. Cross check the class-based estimate by multiplying the average number of

work-units per scenario script.

Scheduling for object-oriented projects is complicated by the iterative nature of the

process framework. Lorenz and Kidd suggest a set of metrics that may assist during

project scheduling:

Number of major iterations. Thinking back to the spiral model (Chapter

2), a major iteration would correspond to one 360º traversal of the spiral. The

recursive/parallel process model would spawn a number of mini-spirals

(localized iterations) that occur as the major iteration progresses. Lorenz and

XRef
A number of software
project estimation
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in Chapter 5.
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Kidd suggest that iterations of between 2.5 and 4 months in length are easi-

est to track and manage.

Number of completed contracts. A contract is “a group of related pub-

lic responsibilities that are provided by subsystems and classes to their

clients” [LOR94]. A contract is an excellent milestone and at least one con-

tract should be associated with each project iteration. A project manager

can use completed contracts as a good indicator of progress on an OO

project.

20.4.4 Tracking Progress for an OO Project

Although the recursive/parallel process model is the best framework for an OO pro-

ject, task parallelism makes project tracking difficult. The project manager can have

difficulty establishing meaningful milestones for an OO project because a number of

different things are happening at once. In general, the following major milestones

can be considered “completed” when the criteria noted have been met.

Technical milestone:  OO analysis completed

• All classes and the class hierarchy have been defined and reviewed.

• Class attributes and operations associated with a class have been defined

and reviewed.

• Class relationships (Chapter 21) have been established and reviewed.

• A behavioral model (Chapter 21) has been created and reviewed.

• Reusable classes have been noted.

Technical milestone:  OO design completed

• The set of subsystems (Chapter 22) has been defined and reviewed.

• Classes are allocated to subsystems and reviewed.

• Task allocation has been established and reviewed.

• Responsibilities and collaborations (Chapter 22) have been identified.

• Attributes and operations have been designed and reviewed.

• The messaging model has been created and reviewed.

Technical milestone:  OO programming completed

• Each new class has been implemented in code from the design model.

• Extracted classes (from a reuse library) have been implemented.

• Prototype or increment has been built.

Technical milestone:  OO testing

• The correctness and completeness of OO analysis and design models has

been reviewed.
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• A class-responsibility-collaboration network (Chapter 23) has been devel-

oped and reviewed.

• Test cases are designed and class-level tests (Chapter 23) have been con-

ducted for each class.

• Test cases are designed and cluster testing (Chapter 23) is completed and the

classes are integrated.

• System level tests have been completed.

Recalling the recursive/parallel process model discussed earlier in this chapter, it is

important to note that each of these milestones may be revisited as different incre-

ments are delivered to the customer. 

20.5 SUMMARY

Object-oriented technologies reflect a natural view of the world. Objects are categorized

into classes and class hierarchies. Each class contains a set of attributes that describe it

and a set of operations that define its behavior. Objects model almost any identifiable

aspect of the problem domain. External entities, things, occurrences, roles, organiza-

tional units, places, and structures can all be represented as objects. As important, objects

(and the classes from which they are derived) encapsulate both data and process. Pro-

cessing operations are part of the object and are initiated by passing the object a mes-

sage. A class definition, once defined, forms the basis for reusability at the modeling,

design, and implementation levels. New objects can be instantiated from a class.

Three important concepts differentiate the OO approach from conventional soft-

ware engineering. Encapsulation packages data and the operations that manipulate

the data into a single named object. Inheritance enables the attributes and opera-

tions of a class to be inherited by all subclasses and the objects that are instantiated

from them. Polymorphism enables a number of different operations to have the same

name, reducing the number of lines of code required to implement a system and facil-

itating changes when they are made. 

Object-oriented products and systems are engineered using an evolutionary model,

sometimes called a recursive/parallel model. OO software evolves iteratively and

must be managed with the recognition that the final product will be developed over

a series of increments. 
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[STR88] Stroustrup, B., "What Is Object-Oriented Programming?" IEEE Software, vol.

5, no. 3, May 1988, pp. 10–20. 

[TAY90] Taylor, D.A., Object-Oriented Technology: A Manager’s Guide, Addison-

Wesley, 1990.

PROBLEMS AND POINTS TO PONDER

20.1. Object-oriented software engineering is rapidly displacing conventional soft-

ware development approaches. Yet, like all technologies, OO has flaws. Using the

Internet and hard-copy sources from your library, write a brief paper summarizing

what critics have to say about OO and why they believe care must be taken when

applying the OO paradigm.

20.2. In this chapter we did not consider the case in which a new object requires an

attribute or operation that is not contained in the class from which it inherited all

other attributes and operations. How do you think this is handled? 

20.3. Do some research and find the real answer to Problem 20.2.

20.4. Using your own words and a few examples, define the terms class, encapsu-

lation, inheritance, and polymorphism.

20.5. Review the objects defined for the SafeHome system. Are there other objects

that you feel should be defined as modeling begins?

20.6. Consider a typical graphical user interface. Define a set of classes (and sub-

classes) for the interface entities that typically appear in the GUI. Be sure to define

appropriate attributes and operations.

20.7. Provide an example of a composite object.
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20.8. You have been assigned the job of engineering new word-processing soft-

ware. A class named document is identified. Define the attributes and operations

that are relevant for document.

20.9. Research two different OO programming languages and show how messages

are implemented in the language syntax. Provide a few examples for each language.

20.10. Provide a concrete example of class hierarchy restructuring as described in

the discussion of Figure 20.8.

20.11. Provide a concrete example of multiple inheritance. Research one or more

papers on this subject and provide the pro and con arguments for multiple inheri-

tance.

20.12. Develop a statement of scope for a system requested by your instructor. Use

the grammatical parse to isolate candidate classes, attributes, and operations for the

system. Apply the selection criteria discussed in Section 20.3.1 to determine whether

the class should be used in the analysis model.

20.13. In your own words, describe why the recursive/parallel process model is

appropriate for OO systems.

20.14. Provide three or four specific examples of the key class and support class

described in Section 20.4.2.

FURTHER READINGS AND INFORMATION SOURCES

The explosion of interest in object-technologies has resulted in the publication of lit-

erally hundreds of books during the past 15 years. Taylor’s abbreviated treatment

[TAY90] remains a classic introduction to the subject. In addition, books by Ambler

(The Object Primer: The Application Developer's Guide to Object-Orientation, SIGS Books,

1998), Gossain and Graham (Object Modeling and Design Strategies, SIGS Books, 1998),

Bahar (Object Technology Made Simple, Simple Software Publishing, 1996), and Singer

(Object Technology Strategies and Tactics, Cambridge University Press, 1996) are worth-

while introductions to object-oriented concepts and methods.

Zamir (Handbook of Object Technology, CRC Press, 1998) has edited a voluminous

treatment that covers every aspect of object technologies. Fayad and Laitnen (Tran-

sition to Object-Oriented Software Development, Wiley, 1998) use case studies to iden-

tify technical, management, and cultural challenges that must be overcome when an

organization makes the transition to object technologies. Gardner et al. (Cognitive

Patterns: Problem-Solving Frameworks for Object Technology, Cambridge University

Press, 1998) provide the reader with a basic introduction to problem-solving concepts

and terminology associated with cognitive patterns and cognitive modeling as they

are applied to OO systems.
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The unique nature of the OO paradigm poses special challenges to project man-

agers. Books by Cockburn (Surviving Object-Oriented Projects: A Manager's Guide, 

Addison-Wesley, 1998), Booch (Object Solutions: Managing the Object-Oriented Pro-

ject, Addison-Wesley, 1995), Goldberg and Rubin (Succeeding with Objects: Decision

Frameworks for Project Management, Addison-Wesley, 1995), and Meyer (Object-Suc-

cess: A Manager’s Guide to Object-Orientation, Prentice-Hall, 1995) consider strategies

for planning, tracking, and controlling OO projects.

Eeles and Sims (Building Business Objects, Wiley, 1998), Carmichael (Developing

Business Objects, SIGS Books, 1998), Fingar (The Blueprint for Business Objects, Cam-

bridge University Press, 1996), and Taylor (Business Engineering with Object Technol-

ogy, Wiley, 1995) address object technology as it is applied in a business context. Their

books address methods for expressing business concepts and requirements directly

as objects and object-oriented applications.

A wide variety of information sources on object technologies and related subjects

is available on the Internet. An up-to-date list of World Wide Web references that are

relevant to OO can be found at the SEPA Web site:

http://www.mhhe.com/engcs/compsci/pressman/resources/

OO-concepts.mhtml
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When a new product or system is to be built, how do we characterize
it in a way that is amenable to object-oriented software engineer-
ing? Are there special questions that we need to ask the customer?

What are the relevant objects? How do they relate to one another? How do
objects behave in the context of the system? How do we specify or model a
problem so that we can create an effective design? 

Each of these questions is answered within the context of object-oriented
analysis (OOA)—the first technical activity that is performed as part of OO soft-
ware engineering. Instead of examining a problem using the classic informa-
tion flow model, OOA introduces a number of new concepts. Coad and Yourdon
[COA91] consider this issue when they write:

OOA—object-oriented analysis—is based upon concepts that we first learned in kinder-

garten: objects and attributes, classes and members, wholes and parts. Why it has

taken us so long to apply these concepts to the analysis and specification of infor-

mation systems is anyone's guess . . .

OOA is grounded in a set of basic principles that were introduced in Chapter 11.
In order to build an analysis model, five basic principles were applied: 
(1) the information domain is modeled; (2) function is described; (3) behavior is

21 OBJECT-ORIENTED ANALYSIS

What is it? Before you can build

an object-oriented system, you

have to define the classes

(objects) that represent the problem to be solved,

the manner in which the classes relate to and

interact with one another, the inner workings

(attributes and operations) of objects, and the com-

munication mechanisms (messages) that allow

them to work together. All of these things are

accomplished during object-oriented analysis

(OOA).

Who does it? The definition of an object-oriented

analysis model encompasses a description of the

static and dynamic characteristics of classes that

describe a system or product. This activity is per-

formed by a software engineer.

Why is it important? You can’t build software (object-

oriented or otherwise) until you have a reason-

able understanding of the system or product. OOA

provides you with a concrete way to represent

your understanding of requirements and then test

that understanding against the customer’s per-

ception of the system to be built.

What are the steps? OOA begins with a description

of use-cases—a scenario-based description of 

how actors (people, machines, other systems) 

interact with the product to be built. Class-

responsibility-collaborator (CRC) modeling trans-

lates the information contained in use-cases into

a representation of classes and their collabora-

tions with other classes. The static and dynamic

characteristics of classes are then modeled using

Q U I C K
L O O K
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represented; (4) data, functional, and behavioral models are partitioned to expose
greater detail; and (5) early models represent the essence of the problem while later
models provide implementation details. These principles form the foundation for the
approach to OOA presented in this chapter.

The intent of OOA is to define all classes that are relevant to the problem to be
solved—the operations and attributes associated with them, the relationships between
them, and behavior they exhibit. To accomplish this, a number of tasks must occur:

1. Basic user requirements must be communicated between the customer and
the software engineer.

2. Classes must be identified (i.e., attributes and methods are defined).

3. A class hierarchy must be specified.

4. Object-to-object relationships (object connections) should be represented.

5. Object behavior must be modeled.

6. Tasks 1 through 5 are reapplied iteratively until the model is complete.

It is important to note that there is no universal agreement on the "concepts" that
serve as a foundation for OOA. But a limited number of key ideas appear repeatedly,
and it is these that we will consider in this chapter.

21.1 OBJECT-ORIENTED ANALYSIS

The objective of object-oriented analysis is to develop a model that describes com-

puter software as it works to satisfy a set of customer-defined requirements. OOA,

like the conventional analysis methods described in Chapter 12, builds a multipart

analysis model to satisfy this objective. The analysis model depicts information, func-

tion, and behavior within the context of the elements of the object model described

in Chapter 20. 

21.1.1 Conventional vs. OO Approaches

Is object-oriented analysis really different from the structured analysis approach that

was presented in Chapter 12? Fichman and Kemerer [FIC92] address the question

head-on:

a unified modeling language (or

some other method).

What is the work product? An

object-oriented analysis model is created. The OO

analysis model is composed of graphical or 

language-based representations that define class

attributes, relationships, and behaviors, as well as

interclass communication and a depiction of class

behavior over time.

How do I ensure that I’ve done it right? At each stage,

the elements of the object-oriented analysis model

are reviewed for clarity, correctness, complete-

ness, and consistency with customer requirements

and with one another.

Q U I C K
L O O K

“A problem well-
stated is a problem
half-solved.”
Charles Kettering 
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We conclude that the object-oriented analysis approach . . . represents a radical change over

process oriented methodologies such as structured analysis, but only an incremental change

over data oriented methodologies such as information engineering. Process-oriented method-

ologies focus attention away from the inherent properties of objects during the modeling

process and lead to a model of the problem domain that is orthogonal to the three essential

principles of object-orientation: encapsulation, classification of objects, and inheritance.

Stated simply, structured analysis (SA) takes a distinct input-process-output view of

requirements. Data are considered separately from the processes that transform the

data. System behavior, although important, tends to play a secondary role in struc-

tured analysis. The structured analysis approach makes heavy use of functional decom-

position (partitioning of the data flow diagram, Chapter 12).

Fichman and Kemerer [FIC92] suggest 11 “modeling dimensions” that may be used

to compare various conventional and object-oriented analysis methods:

1. Identification/classification of entities1

2. General-to-specific and whole-to-part entity relationships

3. Other entity relationships

4. Description of attributes of entities

5. Large-scale model partitioning

6. States and transitions between states

7. Detailed specification for functions

8. Top-down decomposition

9. End-to-end processing sequences

10. Identification of exclusive services

11. Entity communication (via messages or events)

Because many variations exist for structured analysis and dozens of OOA methods (see

Section 21.1.2) have been proposed over the years, it is difficult to develop a general-

ized comparison between the two methods. It can be stated, however, that modeling

dimensions 8 and 9 are always present with SA and never present when OOA is used.

21.1.2 The OOA Landscape

The popularity of object technologies spawned dozens of OOA methods during the

late 1980s and into the 1990s.2 Each of these introduced a process for the analysis

573

1 In this context, entity refers to either a data object (in the structured analysis sense) or an object
(in the OOA sense).

2 A detailed discussion of these methods and their differences is beyond the scope of this book. In
addition, the industry is moving toward a unified method of analysis modeling, making a detailed
discussion of older methods useful for historical purposes only. The interested reader should refer
to Berard [BER99] and Graham [GRA94] for detailed comparisons.

What 
criteria can

be used to
compare
conventional and
OOA methods?

?
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of a product or system, a set of diagrams that evolved out of the process, and a nota-

tion that enabled the software engineer to create the analysis model in a consistent

manner. Among the most widely used were3

The Booch method. The Booch method [BOO94] encompasses both a

“micro development process” and a “macro development process.” The micro

level defines a set of analysis tasks that are reapplied for each step in the

macro process. Hence, an evolutionary approach is maintained.  Booch’s OOA

micro development process identifies classes and objects and the semantics of

classes and objects and defines relationships among classes and objects and

conducts a series of refinements to elaborate the analysis model.

The Rumbaugh method. Rumbaugh [RUM91] and his colleagues devel-

oped the object modeling technique (OMT) for analysis, system design, and

object-level design. The analysis activity creates three models: the object

model (a representation of objects, classes, hierarchies, and relationships),

the dynamic model (a representation of object and system behavior), and the

functional model (a high-level DFD-like representation of information flow

through the system). 

The Jacobson method. Also called OOSE (object-oriented software engi-

neering), the Jacobson method [JAC92] is a simplified version of the propri-

etary objectory method, also developed by Jacobson. This method is

differentiated from others by heavy emphasis on the use-case—a description

or scenario that depicts how the user interacts with the product or system.  

The Coad and Yourdon method. The Coad and Yourdon method [COA91]

is often viewed as one of the easiest OOA methods to learn. Modeling nota-

tion is relatively simple and guidelines for developing the analysis model are

straightforward.  A brief outline of Coad and Yourdon’s OOA process follows:

• Identify objects using “what to look for” criteria.

• Define a generalization/specification structure.

• Define a whole/part structure.

• Identify subjects (representations of subsystem components).

• Define attributes.

• Define services.

The Wirfs-Brock method. Wirfs-Brock, Wilkerson, and Weiner [WIR90] do

not make a clear distinction between analysis and design tasks. Rather a

continuous process that begins with the assessment of a customer specifica-

tion and ends with design is proposed. A brief outline of Wirfs-Brock et al.'s

analysis-related tasks follows: 

3 In general, OOA methods are identified using the name(s) of the developer of the method, even if
the method has been given a unique name or acronym.

“The central activity
of working with
objects is not so
much a matter of
programming as it is
representation.”
David Taylor 
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• Evaluate the customer specification.

• Extract candidate classes from the specification via grammatical parsing.

• Group classes in an attempt to identify superclasses.

• Define responsibilities for each class.

• Assign responsibilities to each class.

• Identify relationships between classes.

• Define collaboration between classes based on responsibilities.

• Build hierarchical representations of classes.

• Construct a collaboration graph for the system.

Although the terminology and process steps for each of these OOA methods dif-

fer, the overall OOA processes are really quite similar. To perform object-oriented

analysis, a software engineer should perform the following generic steps:

1. Elicit customer requirements for the system.

2. Identify scenarios or use-cases.

3. Select classes and objects using basic requirements as a guide.

4. Identify attributes and operations for each system object.

5. Define structures and hierarchies that organize classes.

6. Build an object-relationship model.

7. Build an object-behavior model.

8. Review the OO analysis model against use-cases or scenarios.

These generic steps are considered in greater detail in Sections 21.3 and 21.4.

21.1.3 A Unified Approach to OOA

Over the past decade, Grady Booch, James Rumbaugh, and Ivar Jacobson have col-

laborated to combine the best features of their individual object-oriented analysis

and design methods into a unified method. The result, called the Unified Modeling

Language (UML), has become widely used throughout the industry.4

UML allows a software engineer to express an analysis model using a modeling

notation that is governed by a set of syntactic, semantic, and pragmatic rules. Eriks-

son and Penker [ERI98] explain these rules in the following way:

The syntax tells us how the symbols should look and how the symbols are combined.

The syntax is compared to words in natural language; it is important to know how to spell

them correctly and how to put different words together to form a sentence. The semantic

rules tell us what each symbol means and how it should be interpreted by itself and in the

context of other symbols; they are compared to the meanings of words in a natural language.
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4 Booch, Rumbaugh, and Jacobson have written a set of three definitive books on UML. The inter-
ested reader should see [BOO99], [RUM99], and [JAC99].

A set of generic steps
are applied during
OOA, regardless of the
analysis method that is
chosen.

“UML has unified
some of the existing
OO notations, thus
creating a single
point of reference for
many important
concepts.”
Peter Hruschka 
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The pragmatic rules define the intentions of the symbols through which the purpose of

the model is achieved and becomes understandable for others. This corresponds in natural

language to the rules for constructing sentences that are clear and understandable. 

In UML, a system is represented using five different “views” that describe the system

from distinctly different perspectives. Each view is defined by a set of diagrams. The

following views [ALH98] are present in UML:

User model view. This view represents the system (product) from the

user’s (called actors in UML) perspective. The use-case is the modeling

approach of choice for the user model view. This important analysis repre-

sentation describes a usage scenario from the end-user's perspective and has

been discussed in detail in Chapter 11.5

Structural model view. Data and functionality are viewed from inside 

the system. That is, static structure (classes, objects, and relationships) is

modeled.

Behavioral model view. This part of the analysis model represents the

dynamic or behavioral aspects of the system. It also depicts the interactions

or collaborations between various structural elements described in the user

model and structural model views. 

Implementation model view. The structural and behavioral aspects of the

system are represented as they are to be built.

Environment model view. The structural and behavioral aspects of the

environment in which the system is to be implemented are represented.

In general, UML analysis modeling focuses on the user model and structural model

views of the system. UML design modeling (considered in Chapter 22) addresses the

behavioral model, implementation model, and environmental model views. 

21.2 DOMAIN ANALYSIS

Analysis for object-oriented systems can occur at many different levels of abstrac-

tion. At the business or enterprise level, the techniques associated with OOA can be

coupled with a business process engineering approach (Chapter 10) in an effort to

define classes, objects, relationships, and behaviors that model the entire business.

At the business area level, an object model that describes the workings of a particu-

lar business area (or a category of products or systems) can be defined. At an appli-

cation level, the object model focuses on specific customer requirements as those

requirements affect an application to be built.

OOA at the highest level of abstraction (the enterprise level) is beyond the scope

of this book. Interested readers should see [EEL98], [CAR98], [FIN96], [TAY95], [MAT94],

5 If you have not already done so, please read Section 11.2.4 for a detailed discussion of use-cases.

Like all analysis
approaches,
requirements
elicitation is key. Be
certain that you get
the user model view
right. The rest will
follow.

The objective of
domain analysis is to
define a set of classes
(objects) that are
encountered
throughout an
application domain.
These can then be
reused in many
applications.

WebRef
An extensive tutorial and
listing of UML resources
including tools, papers,
and examples can be
found at
mini.net/cetus/
oo_uml.html
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and [SUL94] for detailed discussions of enterprise-level modeling. OOA at the low-

est level of abstraction falls within the general purview of object-oriented software

engineering and is the focus of all other sections of this chapter. In this section, we

conducted OOA at a middle level of abstraction. This activity, called domain analysis,

is performed when an organization wants to create a library of reusable classes (com-

ponents) that will be broadly applicable to an entire category of applications.

21.2.1 Reuse and Domain Analysis

Object-technologies are leveraged through reuse. Consider a simple example. The

analysis of requirements for a new application indicates that 100 classes are needed.

Two teams are assigned to build the application. Each will design and construct a

final product. Each team is populated by people with the same skill levels and expe-

rience.

Team A does not have access to a class library, and therefore, it must develop all

100 classes from scratch. Team B uses a robust class library and finds that 55 classes

already exist. It is highly likely that

1. Team B will finish the project much sooner than Team A.

2. The cost of Team B’s product will be significantly lower than the cost of Team

A’s product.

3. The product produced by Team B will have fewer delivered defects than

Team A’s product.

Although the margin by which Team B’s work would exceed Team A’s accomplish-

ments is open to debate, few would argue that reuse provides Team B with a sub-

stantial advantage.

But where did the “robust class library” come from? How were the entries in the

library determined to be appropriate for use in new applications? To answer these

questions, the organization that created and maintained the library had to apply

domain analysis.

21.2.2 The Domain Analysis Process

Firesmith [FIR93] describes software domain analysis in the following way:

Software domain analysis is the identification, analysis, and specification of common require-

ments from a specific application domain, typically for reuse on multiple projects within

that application domain . . . [Object-oriented domain analysis is] the identification, analy-

sis, and specification of common, reusable capabilities within a specific application domain,

in terms of common objects, classes, subassemblies, and frameworks . . .

The “specific application domain” can range from avionics to banking, from multi-

media video games to applications within an MRI device. The goal of domain analy-

sis is straightforward: to find or create those classes that are broadly applicable, so

that they may be reused.
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XRef
Reuse is the
cornerstone of
component-based
software engineering, a
topic discussed in 
Chapter 27.

Other benefits derived
from reuse are
consistency and
familiarity. Patterns
within the software
will become more
consistent, leading to
better maintainability.
Be certain to establish
a set of reuse “design
rules” so that these
benefits are achieved.
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Using terminology that was introduced earlier in this book, domain analysis may

be viewed as an umbrella activity for the software process. By this we mean that

domain analysis is an ongoing software engineering activity that is not connected to

any one software project. In a way, the role of a domain analyst is similar to the role

of a master toolsmith in a heavy manufacturing environment. The job of the tool-

smith is to design and build tools that may be used by many people doing similar but

not necessarily the same jobs. The role of the domain analyst is to design and build

reusable components that may be used by many people working on similar but not

necessarily the same applications.

Figure 21.1 [ARA89] illustrates key inputs and outputs for the domain analysis

process. Sources of domain knowledge are surveyed in an attempt to identify objects

that can be reused across the domain. In essence domain analysis is quite similar to

knowledge engineering. The knowledge engineer investigates a specific area of inter-

est in an attempt to extract key facts that may be of use in creating an expert system

or artificial neural network. During domain analysis, object (and class) extraction

occurs.

The domain analysis process can be characterized by a series of activities that

begin with the identification of the domain to be investigated and end with a speci-

fication of the objects and classes that characterize the domain. Berard [BER93] sug-

gests the following activities:

Define the domain to be investigated. To accomplish this, the analyst

must first isolate the business area, system type, or product category of inter-

est. Next, both OO and non-OO “items” must be extracted. OO items include

specifications, designs, and code for existing OO application classes; support

classes (e.g., GUI classes or database access classes); commercial off-the-

shelf (COTS) component libraries that are relevant to the domain; and test

cases. Non-OO items encompass policies, procedures, plans, standards, and

guidelines; parts of existing non-OO applications (including specification,

design, and test information); metrics; and COTS non-OO software.

Categorize the items extracted from the domain. The items are orga-

nized into categories and the general defining characteristics of the category

are defined. A classification scheme for the categories is proposed and nam-

Domain
analysis

Sources of
domain

knowledge

Customer surveys

Expert advice

Current/future requirements

Existing applications

Technical literature

Domain
analysis
model

Functional models

Domain languages

Reuse standards

Class taxonomies

FIGURE 21.1 Input and output for domain analysis

“If an organization is
to make a major
investment in
software reuse, it
needs to know what
components to
consider in the
development of such
a model.”
David Rine 

XRef
A complete domain
analysis strategy must
consider architecture as
well as components. A
detailed discussion of
software architecture is
presented in Chapter
14.
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ing conventions for each item are defined. When appropriate, classification

hierarchies are established.

Collect a representative sample of applications in the domain. To

accomplish this activity, the analyst must ensure that the application in ques-

tion has items that fit into the categories that have already been defined. Berard

[BER93] notes that during the early stages of use of object-technologies, a soft-

ware organization will have few if any OO applications. Therefore, the domain

analyst must “identify the conceptual (as opposed to physical) objects in each

[non-OO] application.”

Analyze each application in the sample. The following steps [BER93] are

followed by the analyst:

• Identify candidate reusable objects.

• Indicate the reasons that the object has been identified for reuse.

• Define adaptations to the object that may also be reusable.

• Estimate the percentage of applications in the domain that might make

reuse of the object.

• Identify the objects by name and use configuration management 

techniques (Chapter 9) to control them. In addition, once the objects

have been defined, the analyst should estimate what percentage 

of a typical application could be constructed using the reusable 

objects.

Develop an analysis model for the objects. The analysis model will

serve as the basis for design and construction of the domain objects.

In addition to these steps, the domain analyst should also create a set of reuse

guidelines and develop an example that illustrates how the domain objects could be

used to create a new application.

Domain analysis is the first technical activity in a broader discipline that some call

domain engineering. When a business, system, or product domain is defined to be

business strategic in the long term, a continuing effort to create a robust reuse library

can be undertaken. The goal is to be able to create software within the domain with

a very high percentage of reusable components. Lower cost, higher quality, and

improved time to market are the arguments in favor of a dedicated domain engi-

neering effort.

21.3 GENERIC COMPONENTS OF THE OO ANALYSIS
MODEL

The object-oriented analysis process conforms to the basic analysis concepts 

and principles discussed in Chapter 11. Although the terminology, notation, and 
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activities differ from conventional methods, OOA (at its kernel) addresses the same

underlying objectives. Rumbaugh et al. [RUM91] discuss this when they state:

Analysis . . . is concerned with devising a precise, concise, understandable, and correct

model of the real world. . . . The purpose of object-oriented analysis is to model the real

world so that it can be understood. To do this, you must examine requirements, analyze

their implications, and restate them rigorously. You must abstract real-world features first,

and defer small details until later.

To develop a “precise, concise, understandable, and correct model of the real world,”

a software engineer must select a notation that implements a set of generic compo-

nents of an OO analysis model. Monarchi and Puhr [MON92] define a set of generic

representational components that appear in all OO analysis models.6 Static compo-

nents are structural in nature and indicate characteristics that hold throughout the

operational life of an application. These characteristics distinguish one object from

other objects. Dynamic components focus on control and are sensitive to timing and

event processing. They define how one object interacts with other objects over time.

The following components are identified [MON92]:

Static view of semantic classes. A taxonomy of typical classes was identi-

fied in Chapter 20. Requirements are assessed and classes are extracted (and

represented) as part of the analysis model. These classes persist throughout

the life of the application and are derived based on the semantics of the cus-

tomer requirements.  

Static view of attributes. Every class must be explicitly described. The

attributes associated with the class provide a description of the class, as well

as a first indication of the operations that are relevant to the class.

Static view of relationships. Objects are “connected” to one another in a

variety of ways. The analysis model must represent these relationships so

that operations (that affect these connections) can be identified and the

design of a messaging approach can be accomplished.

Static view of behaviors. The relationships just noted define a set of

behaviors that accommodate the usage scenario (use-cases) of the system.

These behaviors are implemented by defining a sequence of operations that

achieve them.

Dynamic view of communication. Objects must communicate with one

another and do so based on a series of events that cause transition from one

state of a system to another

Dynamic view of control and time. The nature and timing of events that

cause transitions among states must be described.

6 The authors [MON92] also provide an analysis of 23 early OOA methods and indicate how they
address these components.

Static components do
not change as the
application is executed.
Dynamic components
are influenced by
timing and events.
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key

components of an
OOA model?

?
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De Champeaux, Lea, and Faure [CHA93] define a slightly different view of OOA

representations. Static and dynamic components are identified for object internals

and for interobject representations. A dynamic view of object internals can be char-

acterized as an object life history; that is, the states of the object change over time as

various operations are performed on its attributes.

21.4 THE OOA PROCESS

The OOA process does not begin with a concern for objects. Rather, it begins with

an understanding of the manner in which the system will be used—by people, if the

system is human-interactive; by machines, if the system is involved in process con-

trol; or by other programs, if the system coordinates and controls applications. Once

the scenario of usage has been defined, the modeling of the software begins.

The sections that follow define a series of techniques that may be used to gather

basic customer requirements and then define an analysis model for an object-

oriented system. 

21.4.1 Use-Cases 

As we noted in Chapter 11, use-cases model the system from the end-user’s point of

view. Created during requirements elicitation, use-cases should achieve the follow-

ing objectives:

• To define the functional and operational requirements of the system (product)

by defining a scenario of usage that is agreed upon by the end-user and the

software engineering team.

• To provide a clear and unambiguous description of how the end-user and the

system interact with one another.

• To provide a basis for validation testing.

During OOA, use-cases serve as the basis for the first element of the analysis model. 

Using UML notation, a diagrammatic representation of a use-case, called a use-case

diagram, can be created. Like many elements of the analysis model, the use-case dia-

gram can be represented at many levels of abstraction. The use-case diagram contains

actors and use-cases. Actors are entities that interact with the system. They can be

human users or other machines or systems that have defined interfaces to the software.

To illustrate the development of a use-case diagram, we consider the use-cases

for the SafeHome security system described in Section 11.2.4. Three actors were iden-

tified: the homeowner, sensors, and the monitoring and response subsystem.

For the purpose of this example, only the homeowner is considered.

Figure 21.2A depicts a high-level use-case diagram for the homeowner. Refer-

ring to Figure 21.2A, two use-cases are identified (represented by ovals). Each of the

high-level use-cases may be elaborated with lower-level use-case diagrams. For
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example, Figure 21.2B represents a use-case diagram that elaborates the interacts

function. A complete set of use-case diagrams is created for all actors. A detailed dis-

cussion of use-case modeling using UML is best left to books (e.g., [ERI98], [ALH98])

dedicated to this OOA method.

21.4.2 Class-Responsibility-Collaborator Modeling

Once basic usage scenarios have been developed for the system, it is time to iden-

tify candidate classes and indicate their responsibilities and collaborations. Class-

responsibility-collaborator (CRC) modeling [WIR90] provides a simple means for

identifying and organizing the classes that are relevant to system or product require-

ments. Ambler [AMB95] describes CRC modeling in the following way:

Interacts

SafeHome

Homeowner Configures

Inputs
password

<<uses>>

<<uses>>

<<uses>>

Inquires
zone status

Inquires
sensor status

Presses
panic button

Activates/
deactivates

system 

Validates
password

Query
sensor

(A)

(B)

Homeowner

FIGURE 21.2
(A) High-level
use-case 
diagram, (B)
elaborated
use-case 
diagram
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A CRC model is really a collection of standard index cards that represent classes. The cards

are divided into three sections. Along the top of the card you write the name of the class.

In the body of the card you list the class responsibilities on the left and the collaborators on

the right.

In reality, the CRC model may make use of actual or virtual index cards. The intent is

to develop an organized representation of classes. Responsibilities are the attributes

and operations that are relevant for the class. Stated simply, a responsibility is “any-

thing the class knows or does” [AMB95]. Collaborators are those classes that are

required to provide a class with the information needed to complete a responsibility.

In general, a collaboration implies either a request for information or a request for

some action.

Classes

Basic guidelines for identifying classes and objects were presented in Chapter 20. To

summarize, objects manifest themselves in a variety of forms (Section 20.3.1): exter-

nal entities, things, occurrences, or events; roles; organizational units; places; or

structures. One technique for identifying these in the context of a software problem

is to perform a grammatical parse on the processing narrative for the system. All

nouns become potential objects. However, not every potential object makes the cut.

Six selection characteristics were defined:

1. Retained information. The potential object will be useful during analysis

only if information about it must be remembered so that the system can

function.

2. Needed services. The potential object must have a set of identifiable opera-

tions that can change the value of its attributes in some way.

3. Multiple attributes. During requirements analysis, the focus should be on

"major" information; an object with a single attribute may, in fact, be useful

during design but is probably better represented as an attribute of another

object during the analysis activity.

4. Common attributes. A set of attributes can be defined for the potential

object and these attributes apply to all occurrences of the object.

5. Common operations. A set of operations can be defined for the potential

object and these operations apply to all occurrences of the object.

6. Essential requirements. External entities that appear in the problem space

and produce or consume information that is essential to the operation of any

solution for the system will almost always be defined as objects in the

requirements model.

A potential object should satisfy all six of these selection characteristics if it is to be

considered for inclusion in the CRC model.
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Firesmith [FIR93] extends this taxonomy of class types by suggesting the follow-

ing additions:

Device classes model external entities such as sensors, motors, keyboards.

Property classes represent some important property of the problem 

environment (e.g., credit rating within the context of a mortgage loan 

application).

Interaction classes model interactions that occur among other objects

(e.g., a purchase or a license).

In addition, objects and classes may be categorized by a set of characteristics:

Tangibility. Does the class represent a tangible thing (e.g., a keyboard or

sensor) or does it represent more abstract information (e.g., a predicted 

outcome)?

Inclusiveness. Is the class atomic (i.e., it includes no other classes) or is it

aggregate (it includes at least one nested object)?

Sequentiality. Is the class concurrent (i.e., it has its own thread of control)

or sequential (it is controlled by outside resources)? 

Persistence. Is the class transient (i.e., it is created and removed during pro-

gram operation), temporary (it is created during program operation and

removed once the program terminates), or permanent (it is stored in a 

database)? 

Integrity. Is the class corruptible (i.e., it does not protect its resources from

outside influence) or guarded (i.e., the class enforces controls on access to its

resources)? 

Using these class categories, the “index card” created as part of the CRC model

might be extended to include the type of class and its characteristics (Figure 21.3).

Responsibilities

Basic guidelines for identifying responsibilities (attributes and operations) were also

presented in Chapter 20. To summarize, attributes represent stable features of a class;

that is, information about the class that must be retained to accomplish the objec-

tives of the software specified by the customer. Attributes can often be extracted from

the statement of scope or discerned from an understanding of the nature of the class.

Operations can be extracted by performing a grammatical parse on the processing

narrative for the system. All verbs become candidate operations. Each operation that

is chosen for a class exhibits a behavior of the class.

Wirfs-Brock and her colleagues [WIR90] suggest five guidelines for allocating

responsibilities to classes:

The responsibilities of a
class encompass both
attributes and
operations.

Is there a
way to

categorize
classes, and what
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1. System intelligence should be evenly distributed. Every application

encompasses a certain degree of intelligence; that is, what the system

knows and what it can do. This intelligence can be distributed across

classes in a number of different ways. “Dumb” classes (those that have few

responsibilities) can be modeled to act as servants to a few “smart” classes

(those having many responsibilities. Although this approach makes the flow

of control in a system straightforward, it has a few disadvantages: (1) It con-

centrates all intelligence within a few classes, making changes more diffi-

cult, and (2) it tends to require more classes, hence more development

effort.

Therefore, system intelligence should be evenly distributed across the

classes in an application. Because each object knows about and does only

a few things (that are generally well focused), the cohesiveness of the sys-

tem is improved. In addition, side effects due to change tend to be damp-

ened because system intelligence has been decoupled across many

objects.

To determine whether system intelligence is evenly distributed, the

responsibilities noted on each CRC model index card should be evaluated to

determine if any class has an extraordinarily long list of responsibilities. This

indicates a concentration of intelligence. In addition, the responsibilities for

each class should exhibit the same level of abstraction. For example, among

the operations listed for an aggregate class called checking account a

reviewer notes two responsibilities: balance-the-account and check-off-
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cleared-checks. The first operation (responsibility) implies a complex mathe-

matical and logical procedure. The second is a simple clerical activity. Since

these two operations are not at the same level of abstraction, check-off-

cleared-checks should be placed within the responsibilities of check-entry, a

class that is encompassed by the aggregate class checking account. 

2. Each responsibility should be stated as generally as possible. This

guideline implies that general responsibilities (both attributes and operations)

should reside high in the class hierarchy (because they are generic, they will

apply to all subclasses). In addition, polymorphism (Chapter 20) should be

used in an effort to define operations that generally apply to the superclass

but are implemented differently in each of the subclasses.

3. Information and the behavior related to it should reside within the

same class. This achieves the OO principle that we have called encapsula-

tion (Chapter 20). Data and the processes that manipulate the data should be

packaged as a cohesive unit. 

4. Information about one thing should be localized with a single class,

not distributed across multiple classes. A single class should take on the

responsibility for storing and manipulating a specific type of information. This

responsibility should not, in general, be shared across a number of classes. If

information is distributed, software becomes more difficult to maintain and

more challenging to test.

5. Responsibilities should be shared among related classes, when

appropriate. There are many cases in which a variety of related objects

must all exhibit the same behavior at the same time. As an example, consider

a video game that must display the following objects: player, player-body,

player-arms, player-legs, player-head. Each of these objects has its own

attributes (e.g., position, orientation, color, speed) and all must be updated and

displayed as the user manipulates a joy stick. The responsibilities update and

display must therefore be shared by each of the objects noted. Player knows

when something has changed and update is required. It collaborates with the

other objects to achieve a new position or orientation, but each object con-

trols its own display.

Collaborations

Classes fulfill their responsibilities in one of two ways: (1) A class can use its own

operations to manipulate its own attributes, thereby fulfilling a particular responsi-

bility, or (2) a class can collaborate with other classes.

Wirfs-Brock and her colleagues [WIR90] define collaborations in the following way:

Collaborations represent requests from a client to a server in fulfillment of a client respon-

sibility. A collaboration is the embodiment of the contract between the client and the server.

. . . We say that an object collaborates with another object if, to fulfill a responsibility, it
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needs to send the other object any messages. A single collaboration flows in one direction—

representing a request from the client to the server. From the client’s point of view, each of

its collaborations are associated with a particular responsibility implemented by the server.

Collaborations identify relationships between classes. When a set of classes all col-

laborate to achieve some requirement, they can be organized into a subsystem (a

design issue). 

Collaborations are identified by determining whether a class can fulfill each respon-

sibility itself. If it cannot, then it needs to interact with another class. Hence, a col-

laboration. 

As an example, consider the SafeHome application.7 As part of the activation pro-

cedure (see the use-case for activation in Section 11.2.4), the control panel object

must determine whether any sensors are open. A responsibility named determine-

sensor-status is defined.  If sensors are open control panel must set a status attribute

to “not ready.” Sensor information can be acquired from the sensor object. There-

fore, the responsibility determine-sensor-status can be fulfilled only if control panel

works in collaboration with sensor.

To help in the identification of collaborators, the analyst can examine three dif-

ferent generic relationships between classes [WIR90]: (1) the is-part-of relationship,

(2) the has-knowledge-of relationship, and (3) the depends-upon relationship. By cre-

ating a class-relationship diagram (Section 21.4.4), the analyst develops the con-

nections necessary to identify these relationships. Each of the three generic relations

is considered briefly in the paragraphs that follow.

All classes that are part of an aggregate class are connected to the aggregate class

via an is-part-of relationship. Consider the classes defined for the video game noted

earlier, the class player-body is-part-of player, as are player-arms, player-legs,

and player-head.

When one class must acquire information from another class, the has-knowledge-

of relationship is established. The determine-sensor-status responsibility noted ear-

lier is an example of a has-knowledge-of relationship.

The depends-upon relationship implies that two classes have a dependency that

is not achieved by has-knowledge-of or is-part-of. For example, player-head must

always be connected to player-body (unless the video game is particularly violent),

yet each object could exist without direct knowledge of the other. An attribute of the

player-head object called center-position is determined from the center position of

player-body. This information is obtained via a third object, player, that acquires it

from player-body. Hence, player-head depends-upon player-body.

In all cases, the collaborator class name is recorded on the CRC model index card

next to the responsibility that has spawned the collaboration. Therefore, the index

card contains a list of responsibilities and the corresponding collaborations that enable

the responsibilities to be fulfilled (Figure 21.3).
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When a complete CRC model has been developed, the representatives from the

customer and software engineering organizations can review the model using the

following approach [AMB95]:

1. All participants in the review (of the CRC model) are given a subset of the

CRC model index cards. Cards that collaborate should be separated (i.e., no

reviewer should have two cards that collaborate).

2. All use-case scenarios (and corresponding use-case diagrams) should be

organized into categories.

3. The review leader reads the use-case deliberately. As the review leader

comes to a named object, she passes a token to the person holding the corre-

sponding class index card. For example, a use-case for SafeHome contains

the following narrative:

The homeowner observes the SafeHome control panel to determine if the system is

ready for input. If the system is not ready, the homeowner must physically close

windows/doors so that the ready indicator is present. [A not-ready indicator implies

that a sensor is open, i.e., that a door or window is open.]

When the review leader comes to “control panel,” in the use-case narrative,

the token is passed to the person holding the control panel index card. The

phrase “implies that a sensor is open” requires that the index card contains a

responsibility that will validate this implication (the responsibility determine-

sensor-status accomplishes this). Next to the responsibility on the index card

is the collaborator sensor. The token is then passed to the sensor object. 

4. When the token is passed, the holder of the class card is asked to describe

the responsibilities noted on the card. The group determines whether one (or

more) of the responsibilities satisfies the use-case requirement.

5. If the responsibilities and collaborations noted on the index cards cannot

accommodate the use-case, modifications are made to the cards. This may

include the definition of new classes (and corresponding CRC index cards) or

the specification of new or revised responsibilities or collaborations on exist-

ing cards.

This modus operandi continues until the use-case is finished. When all use-cases (or

use-case diagrams) have been reviewed, OOA continues.

21.4.3 Defining Structures and Hierarchies

Once classes and objects have been identified using the CRC model, the analyst begins

to focus on the structure of the class model and the resultant hierarchies that arise as

classes and subclasses emerge. Using UML notation, a variety of class diagrams can be

created. Generalization/specialization class structures can be created for identified classes.

To illustrate, consider the sensor object defined for SafeHome, shown in Figure

21.4. Here, the generalization class, sensor, is refined into a set of specializations—

What is an
effective

approach for
reviewing a CRC
model?

?
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entry sensor, smoke sensor, and motion sensor. The attributes and operations

noted for the sensor class are inherited by the specializations of the class. We have

created a simple class hierarchy.  

In other cases, an object represented in the initial model might actually be com-

posed of a number of component parts that could themselves be defined as objects.

These aggregate objects can be represented as a composite aggregate [ERI98] and are

defined using the notation represented in Figure 21.5. The diamond implies an assem-

bly relationship. It should be noted that the connecting lines may be augmented with

additional symbols (not shown) to represent cardinality. These are adapted from the

entity/relationship modeling notation discussed in Chapter 12.

589

Attributes

Operations

Sensor

Entry sensor Smoke sensor Motion sensor

FIGURE 21.4
Class diagram
for 
generalization/
specialization

Control panel

Keypad Screen Lite

FIGURE 21.5
Class diagram
for composite
aggregates



PART FOUR OBJECT-ORIENTED SOFTWARE ENGINEERING590

Structure representations provide the analyst with a means for partitioning the

CRC model and representing that partitioning graphically. The expansion of each class

provides needed detail for review and for subsequent design.

21.4.4 Defining Subjects and Subsystems

An analysis model for a complex application may have hundreds of classes and dozens

of structures. For this reason, it is necessary to define a concise representation that

is a digest of the CRC and structure models just described.

When a group of all classes collaborate among themselves to accomplish a set of

cohesive responsibilities, they are often referred to as subsystems or packages (in UML

terminology). Subsystems or packages are abstractions that provide a reference or

pointer to more detail in the analysis model. When viewed from the outside, a sub-

system can be treated as a black box that contains a set of responsibilities and that

has its own (outside) collaborators. A subsystem implements one or more contracts

[WIR90] with its outside collaborators. A contract is a specific list of requests that col-

laborators can make of the subsystem.8

Subsystems can be represented with the context of CRC modeling by creating a

subsystem index card. The subsystem index card indicates the name of the subsys-

tem, the contracts that the subsystem must accommodate, and the classes or (other)

subsystems that support the contract. 

Packages are identical to subsystems in intent and content but are represented

graphically in UML. For example, assume that the control panel for SafeHome is con-

siderably more complex that the one implied by Figure 21.5, containing multiple dis-

play areas, a sophisticated key arrangement, and other features. It might be modeled

as the composite aggregate structure shown in Figure 21.6. If the overall require-

ments model contains dozens of these structures (SafeHome would not), it would be

difficult to absorb the entire representation at one time. By defining a package refer-

ence as shown in the figure, the entire structure can be referenced by a single icon

(the file folder). Package references can be created for any structure that has multi-

ple objects.

At the most abstract level, the OOA model would contain only package references

such as those illustrated at the top of Figure 21.7. Each of the references would be

expanded into a structure. Structures for the control panel and sensor objects (Fig-

ures 21.5 and 21.6) are shown in the figure; structures for system, sensor event

and audible alarm would also be created.

The dashed arrows shown at the top of Figure 21.7 represent dependence rela-

tionships between the packages shown. For example, sensor depends on the status

of the sensor event package. The solid arrows represent composition. In the exam-

ple shown, the system package is composed of the control panel, sensor, and

audible alarm packages. 

8 Recall that classes interact using a client/server philosophy. In this case, the subsystem is the
server and outside collaborators are clients.

A subsystem (UML
package) points to a
more-detailed class
hierarchy.
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21.5 THE OBJECT-RELATIONSHIP MODEL

The CRC modeling approach establishes the first elements of class and object rela-

tionships. The first step in establishing relationships is to understand the responsi-

bilities for each class. The CRC model index card contains a list of responsibilities.

The next step is to define those collaborator classes that help in achieving each respon-

sibility. This establishes the “connection” between classes. 

A relationship exists between any two classes that are connected.9 Therefore, col-

laborators are always related in some way. The most common type of relationship is

binary—a connection exists between two classes. When considered within the con-

text of an OO system, a binary relationship has a specific direction10 that is defined

based on which class plays the role of the client and which acts as a server.
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9 Other terms for relationship are association [RUM91] and connection [COA91].
10 It is important to note that this is a departure from the bidirectional nature of relationships used

in data modeling (Chapter 12).
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Rumbaugh and his colleagues [RUM91] suggest that relationships can be derived

by examining the stative verbs or verb phrases in the statement of scope or use-cases

for the system. Using a grammatical parse, the analyst isolates verbs that indicate

physical location or placement (next to, part of, contained in), communications (trans-

mits to, acquires from), ownership (incorporated by, is composed of), and satisfac-

tion of a condition (manages, coordinates, controls). These provide an indication of

a relationship.

SensorControl panel

6. Control panel

2. System

5. Audible alarm

3. Sensor event

4. Sensor

SafeHome

Motion sensorSmoke sensorEntry sensorLiteDisplay areaKeys

Graphics MessagesLCD displayFKsKeypad

FIGURE 21.7 An analysis model with package references
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The Unified Modeling Language notation for the object-relationship model makes

use of a symbology that has been adapted from the entity-relationship modeling tech-

niques discussed in Chapter 12. In essence, objects are connected to other objects

using named relationships. The cardinality of the connection (see Chapter 12) is spec-

ified and an overall network of relationships is established.

The object relationship model (like the entity relationship model) can be derived

in three steps:

1. Using the CRC index cards, a network of collaborator objects can be

drawn. Figure 21.8 represents the class connections for SafeHome objects.

First the objects are drawn, connected by unlabeled lines (not shown in the

figure) that indicate some relationship exists between the connected objects. 

2. Reviewing the CRC model index card, responsibilities and collabora-

tors are evaluated and each unlabeled connected line is named. To

avoid ambiguity, an arrow head indicates the “direction” of the relationship

(Figure 21.8). 

3. Once the named relationships have been established, each end is

evaluated to determine cardinality (Figure 21.8). Four options exist: 0 to

1, 1 to 1, 0 to many, or 1 to many. For example, the SafeHome system con-

tains a single control panel (the 1:1 cardinality notation indicates this). At

least one sensor must be present for polling by the control panel. However,

there may be many sensors present (the 1:m notation indicates this). One

sensor can recognize from 0 to many sensor events (e.g., smoke is detected

or a break-in has occurred). 

The steps just noted continue until a complete object-relationship model has been

produced. 
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By developing an object-relationship model, the analyst adds still another dimen-

sion to the overall analysis model. Not only are the relationships between objects

identified, but all important message paths are defined (Chapter 20). In our discus-

sion of Figure 21.7, we made reference to the arrows that connected package sym-

bols. These are also message paths. Each arrow implies the interchange of messages

among subsystems in the model.

21.6 THE OBJECT-BEHAVIOR MODEL

The CRC model and the object-relationship model represent static elements of the

OO analysis model. It is now time to make a transition to the dynamic behavior of

the OO system or product. To accomplish this, we must represent the behavior of the

system as a function of specific events and time.

The object-behavior model indicates how an OO system will respond to external

events or stimuli. To create the model, the analyst must perform the following steps:

1. Evaluate all use-cases (Section 21.4.1) to fully understand the sequence of

interaction within the system.

2. Identify events that drive the interaction sequence and understand how these

events relate to specific objects.

3. Create an event trace [RUM91] for each use-case.

4. Build a state transition diagram for the system.

5. Review the object-behavior model to verify accuracy and consistency.

Each of these steps is discussed in the sections that follow.

21.6.1 Event Identification with Use-Cases

As we noted in Section 21.4.1, the use-case represents a sequence of activities that

involves actors and the system. In general, an event occurs whenever an OO system

and an actor (recall that an actor can be a person, a device, or even an external sys-

tem) exchange information. Recalling the discussion presented in Chapter 12, it is

important to note that an event is Boolean. That is, an event is not the information

that has been exchanged but rather the fact that information has been exchanged. 

A use-case is examined for points of information exchange. To illustrate, recon-

sider the use-case for SafeHome described in Section 11.2.4:

1. The homeowner observes the SafeHome control panel (Figure 11.2) to determine if the

system is ready for input. If the system is not ready, the homeowner must physically close

windows/doors so that the ready indicator is present. [A not-ready indicator implies that a

sensor is open, i.e., that a door or window is open.]

2. The homeowner uses the keypad to key in a four-digit password. The password is com-

pared with the valid password stored in the system. If the password is incorrect, the con-

What are 
the steps

required to build
an object-behavior
model?

?
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trol panel will beep once and reset itself for additional input. If the password is correct, the

control panel awaits further action.

3. The homeowner selects and keys in stay or away to activate the system. Stay activates

only perimeter sensors (inside motion detecting sensors are deactivated). Away activates

all sensors.

4. When activation occurs, a red alarm light can be observed by the homeowner.

The underlined portions of the use-case scenario indicate events. An actor should be

identified for each event; the information that is exchanged should be noted; and any

conditions or constraints should be listed.

As an example of a typical event, consider the underlined use-case phrase “home-

owner uses the keypad to key in a four-digit password.” In the context of the OO

analysis model, the object, homeowner, transmits an event to the object control

panel. The event might be called password entered. The information transferred is

the four digits that constitute the password, but this is not an essential part of the

behavioral model. It is important to note that some events have an explicit impact

on the flow of control of the use-case, while others have no direct impact on the flow

of control. For example, the event password entered does not explicitly change the

flow of control of the use-case, but the results of the event compare password (derived

from the interaction “password is compared with the valid password stored in the

system”) will have an explicit impact on the information and control flow of the Safe-

Home software.

Once all events have been identified, they are allocated to the objects involved.

Objects can be responsible for generating events (e.g., homeowner generates the

password entered event) or recognizing events that have occurred elsewhere (e.g.,

control panel recognizes the binary result of the compare password event).

21.6.2 State Representations

In the context of OO systems, two different characterizations of states must be con-

sidered: (1) the state of each object as the system performs its function and (2) the

state of the system as observed from the outside as the system performs its function.

The state of an object takes on both passive and active characteristics [CHA93]. A

passive state is simply the current status of all of an object’s attributes. For example,

the passive state of the aggregate object player (in the video game application dis-

cussed earlier) would include the current position and orientation attributes of player

as well as other features of player that are relevant to the game (e.g., an attribute that

indicates magic wishes remaining). The active state of an object indicates the current sta-

tus of the object as it undergoes a continuing transformation or processing. The object

player might have the following active states: moving, at rest, injured, being cured;

trapped, lost, and so forth. An event (sometimes called a trigger) must occur to force

an object to make a transition from one active state to another. One component of
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an object-behavior model is a simple representation of the active states for each

object and the events (triggers) that cause changes between these active states. Fig-

ure 21.9 illustrates a simple representation of active states for the control panel

object in the SafeHome system.

Each arrow shown in Figure 21.9 represents a transition from one active state of

an object to another. The labels shown for each arrow represent the event that trig-

gers the transition. Although the active state model provides useful insight into the

“life history” of an object, it is possible to specify additional information to provide

more depth in understanding the behavior of an object. In addition to specifying the

event that causes the transition to occur, the analyst can specify a guard and an action

[CHA93]. A guard is a Boolean condition that must be satisfied in order for the tran-

sition to occur. For example, the guard for the transition from the “at rest” state to

the “comparing state” in Figure 21.9 can be determined by examining the use-case:

if (password input = 4 digits) then make transition to comparing state;

In general, the guard for a transition usually depends upon the value of one or more

attributes of an object. In other words, the guard depends on the passive state of the

object.

An action occurs concurrently with the state transition or as a consequence of it

and generally involves one or more operations (responsibilities) of the object. For

example, the action connected to the password entered event (Figure 21.9) is an oper-

ation that accesses a password object and performs a digit-by-digit comparison to

validate the entered password.

Control
panel

Control
panel

Control
panel

Control
panel

 
Password entered

"At rest"

Compare password = incorrect

"Comparing"

Compare password = incorrect

Compare password = correct

"Re-enter"

"Selecting"
Activation successful

FIGURE 21.9
A 
representation
of active state
transitions
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The second type of behavioral representation for OOA considers a state repre-

sentation for the overall product or system. This representation encompasses a sim-

ple event trace model [RUM91] that indicates how events cause transitions from object

to object and a state transition diagram that depicts the processing behavior of each

object.

Once events have been identified for a use-case, the analyst creates a represen-

tation of how events cause flow from one object to another. Called an event trace, this

representation is a shorthand version of the use-case. It represents key objects and

the events that cause behavior to flow from object to object.

Figure 21.10 illustrates a partial event trace for the SafeHome system. Each of the

arrows represents an event (derived from a use-case) and indicates how the event

channels behavior between SafeHome objects. The first event, system ready, is derived

from the external environment and channels behavior to the homeowner object.

The homeowner enters a password. The event initiates beep and “beep sounded” and

indicates how behavior is channeled if the password is invalid. A valid password

results in flow back to homeowner. The remaining events and traces follow the

behavior as the system is activated or deactivated.

Once a complete event trace has been developed, all of the events that cause tran-

sitions between system objects can be collated into a set of input events and output

events (from an object). This can be represented using an event flow diagram [RUM91].

All events that flow into and out of an object are noted as shown in Figure 21.11. A

state transition diagram (Chapter 12) can then be developed to represent the behav-

ior associated with responsibilities for each class.
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UML uses a combination of state diagrams, sequence diagrams, collaboration dia-

grams, and activity diagrams to represent the dynamic behavior of the objects and

classes that have been identified as part of the analysis model. A complete discus-

sion of these graphical representations and the language descriptions that underlie

them is beyond the scope of this book. The interested reader should see [BOO99],

[BEN99], [ALH98], and [ERI98] for additional detail.

21.7 SUMMARY

Object-oriented analysis methods enable a software engineer to model a problem by

representing both static and dynamic characteristics of classes and their relation-

ships as the primary modeling components. Like earlier OO analysis methods, the

Unified Modeling Language builds an analysis model that has the following charac-

teristics: (1) representation of classes and class hierarchies, (2) creation of object-

relationship models, and (3) derivation of object-behavior models. 

Analysis for object-oriented systems occurs at many different levels of abstrac-

tion. At the business or enterprise level, the techniques associated with OOA can be

coupled with a business process engineering approach. This technique is often called

domain analysis. At an application level, the object model focuses on specific cus-

tomer requirements as those requirements affect the application to be built.

The OOA process begins with the definition of use-cases—scenarios that describe

how the OO system is to be used. The class-responsibility-collaborator modeling tech-

nique is then applied to document classes and their attributes and operations. It also

provides an initial view of the collaborations that occur among objects. The next step

in the OOA process is classification of objects and the creation of a class hierarchy.

Subsystems (packages) can be used to encapsulate related objects. The object-

relationship model provides an indication of how classes are connected to one another,

and the object-behavior model indicates the behavior of individual objects and the

overall behavior of the OO system.

Ready for next action
Ready for activation/deactivation

Selects stay/away
Enters password

Control
panel

Homeowner

System
ready

System

Initiates beep
Activate/deactivate sensors
Red light on request

Beep sounded
Sensors activated/deactivated

Red light on

FIGURE 21.11 A partial event flow diagram for SafeHome
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PROBLEMS AND POINTS TO PONDER

21.1. Obtain one or more books dedicated to the Unified Modeling Language and

compare it to structured analysis (Chapter 12) using the modeling dimensions pro-

posed by Fichman and Kemerer [FIC92] in Section 21.1.1.

21.2. Develop a classroom presentation on one static or dynamic modeling diagram

used in UML. Present the diagram in the context of a simple example, but provide

enough detail to demonstrate most important aspects of the diagrammatic form.

21.3. Conduct an abbreviated domain analysis for one of the following areas:

a. A university student record-keeping system.

b. An e-commerce application (e.g., clothes, books, electronic gear).

c. Customer service for a bank.

d. A video game developer.

e. An application area suggested by your instructor.

Be sure to isolate classes that can be used for a number of applications in the domain.

21.4. In your own words describe the difference between static and dynamic views

of an OO system.

21.5. Write a use-case for the SafeHome system discussed in this book. The use-

case should address the scenario required to define a security zone. A security zone

encompasses a set of sensors can be addressed, activated, and deactivated as a set

rather than individually. As many as ten security zones can be defined. Be creative

here but stay within the bounds of the SafeHome control panel as it is defined earlier

in the book.

21.6. Develop a set of use-cases for the PHTRS system introduced in Problem 12.13.

You’ll have to make a number of assumptions about the manner in which a user inter-

acts with this system.

21.7. Develop a set of use-cases for any one of the following applications:

a. Software for a general-purpose personal digital assistant.

b. Software for a video game of your choosing.

c. Software that sits inside a climate control system for a car.

d. Software for a navigation system for a car.

e. A system (product) suggested by your instructor.

Do a few hours of research on the application area and conduct a FAST meeting

(Chapter 11) with your fellow students to develop basic requirements (your instruc-

tor will help you coordinate this).
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21.8. Develop a complete set of CRC model index cards on the product or system

you chose as part of Problem 21.7.

21.9. Conduct a review of the CRC index cards with your colleagues. How many

additional classes, responsibilities, and collaborators were added as a consequence

of the review?

21.10. Develop a class hierarchy for the product or system you chose as part of Prob-

lem 21.7.

21.11. Develop a set of subsystems (packages) for the product or system you chose

as part of Problem 21.7.

21.12. Develop an object-relationship model for the product or system you chose

as part of Problem 21.7.

21.13. Develop an object-behavior model for the product or system you chose as

part of Problem 21.7. Be sure to list all events, provide an event trace, develop an

event flow diagram, and define state diagram for each class.

21.14. In your own words, describe how collaborators for a class are determined.

21.15. What strategy would you propose for defining subsystems for a collection of

classes?

21.16 What role does cardinality play in the development of an object-relationship

model?

21.17. What is the difference between an active and a passive state for an object?

FURTHER READINGS AND INFORMATION SOURCES

Use-cases form the foundation of object-oriented analysis, regardless of the OOA

method that is chosen.  Books by Rosenberg and Scott (Use Case Driven Object Mod-

eling with UML: A Practical Approach, Addison-Wesley, 1999); Schneider, Winters, and

Jacobson (Applying Use Cases: A Practical Guide, Addison-Wesley, 1998); and Texel

and Williams (Use Cases Combined With Booch/OMT/UML: Process and Products, 

Prentice-Hall, 1997) provide worthwhile guidance in the creation and use of this

important requirements elicitation and representation mechanism.

Virtually every recent book published on object-oriented analysis and design empha-

sizes UML. Those serious about applying UML in their work should acquire [BOO99],

[RUM99], and [JAC99]. In addition, the following books are representative of dozens

written on UML technology:

Douglass, B., Real-Time UML: Developing Efficient Objects for Embedded Systems, Addison-

Wesley, 1999. 
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Fowler, M. and K. Scott, UML Distilled, 2nd ed., Addison-Wesley, 2000.

Odell, J.J. and M. Fowler, Advanced Object-Oriented Analysis and Design Using UML, SIGS Books,

1998.

Oestereich, B., Developing Software with UML: Object-Oriented Analysis and Design in Practice,

Addison-Wesley, 1999. 

A wide variety of information sources on object-oriented analysis and related sub-

jects is available on the Internet. An up-to-date list of World Wide Web references

that are relevant to OOA can be found at the SEPA Web site:

http://www.mhhe.com/engcs/compsci/pressman/resources/OOA.mhtml 



603

C H A P T E R

K E Y
C O N C E P T S

component-level
design  . . . . . . . . 621

design
components . . . . 614

design criteria . . 607

design patterns . 624

layers . . . . . . . . . 604

object design . . . 618

OOD methods. . . 608

OOD pyramid . . . 605

OO programming 625

operations . . . . . 619

subsystem
design . . . . . . . . . 612

system design . . 611

UML. . . . . . . . . . . 610

Object-oriented design transforms the analysis model created using
object-oriented analysis (Chapter 21) into a design model that serves
as a blueprint for software construction. Yet, the job of the software

designer can be daunting. Gamma and his colleagues [GAM95] provide a rea-
sonably accurate picture of OOD when they state:

Designing object-oriented software is hard, and designing reusable object-oriented

software is even harder. You must find pertinent objects, factor them into classes at

the right granularity, define class interfaces and inheritance hierarchies, and estab-

lish key relationships among them. Your design should be specific to the problem at

hand but also general enough to address future problems and requirements. You also

want to avoid redesign, or at least minimize it. Experienced object-oriented design-

ers will tell you that a reusable and flexible design is difficult if not impossible to get

"right" the first time. Before a design is finished, they usually try to reuse it several

times, modifying it each time.

Unlike conventional software design methods, OOD results in a design that
achieves a number of different levels of modularity. Major system components
are organized into subsystems, a system-level “module.” Data and the opera-
tions that manipulate the data are encapsulated into objects—a modular form

22 OBJECT-ORIENTED DESIGN

What is it? The design of object-

oriented software requires the def-

inition of a multilayered software

architecture, the specification of subsystems that

perform required functions and provide infra-

structure support, a description of objects (classes)

that form the building blocks of the system, and

a description of the communication mechanisms

that allow data to flow between layers, subsys-

tems, and objects. Object-oriented design accom-

plishes all of these things.

Who does it? OOD is performed by a software 

engineer.

Why is it important? An object-oriented system draws

upon class definitions that are derived from the

analysis model. Some of these definitions will have

to be built from scratch, but many others may be

reused if appropriate design patterns are recog-

nized. OOD establishes a design blueprint that

enables a software engineer to define the OO

architecture in a manner that maximizes reuse,

thereby improving development speed and end-

product quality. 

What are the steps? OOD is divided into two major

activities: system design and object design. Sys-

tem design creates the product architecture, defin-

ing a series of “layers” that accomplish specific

system functions and identifying the classes that

are encapsulated by subsystems that reside at

each layer. In addition, system design considers

the specification of three components: the user

interface, data management functions, and task

Q U I C K
L O O K
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that is the building block of an OO system. In addition, OOD must describe the spe-
cific data organization of attributes and the procedural detail of each individual oper-
ation. These represent data and algorithmic pieces of an OO system and are
contributors to overall modularity.

The unique nature of object-oriented design lies in its ability to build upon four
important software design concepts: abstraction, information hiding, functional inde-
pendence, and modularity (Chapter 13). All design methods strive for software that
exhibits these fundamental characteristics, but only OOD provides a mechanism that
enables the designer to achieve all four without complexity or compromise.

Object-oriented design, object-oriented programming, and object-oriented test-
ing are construction activities for OO systems. In this chapter, we consider the first
step in construction.

22.1 DESIGN FOR OBJECT-ORIENTED SYSTEMS

In Chapter 13, we introduced the concept of a design pyramid for conventional soft-

ware. Four design layers—data, architectural, interface, and component level—were

defined and discussed. For object-oriented systems, we can also define a design pyra-

mid, but the layers are a bit different. Referring to Figure 22.1, the four layers of the

OO design pyramid are

The subsystem layer contains a representation of each of the subsystems

that enable the software to achieve its customer-defined requirements and to

implement the technical infrastructure that supports customer requirements.

The class and object layer contains the class hierarchies that enable the

system to be created using generalizations and increasingly more targeted

specializations. This layer also contains representations of each object.

The message layer contains the design details that enable each object to

communicate with its collaborators. This layer establishes the external and

internal interfaces for the system.

The responsibilities layer contains the data structure and algorithmic

design for all attributes and operations for each object.

management facilities. Object

design focuses on the internal

detail of individual classes, defin-

ing attributes, operations, and message detail.

What is the work product? An OO design model

encompasses software architecture, user interface

description, data management components, task

management facilities, and detailed descriptions

of each class to be used in the system.

How do I ensure that I’ve done it right? At each stage,

the elements of the object-oriented design model

are reviewed for clarity, correctness, complete-

ness, and consistency with customer requirements

and with one another.

Q U I C K
L O O K

“In design, we shape
the system and find
its form . . .”
Ivar Jacobson,
Grady Booch, and
James Rumbaugh 
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The design pyramid focuses exclusively on the design of a specific product or sys-

tem. It should be noted, however, that another “layer” of design exists, and this layer

forms the foundation on which the pyramid rests. The foundation layer focuses on

the design of domain objects (called design patterns later in this chapter). Domain

objects play a key role in building the infrastructure for the OO system by providing

support for human/computer interface activities, task management, and data man-

agement. Domain objects can also be used to flesh out the design of the application

itself.

22.1.1 Conventional vs. OO Approaches

Conventional approaches to software design apply a distinct notation and set of

heuristics to map the analysis model into a design model. Recalling Figure 13.1, each

element of the conventional analysis model maps into one or more layers of the

design model. Like conventional software design, OOD applies data design when

attributes are represented, interface design when a messaging model is developed,

and component-level (procedural) design for the design of operations. It is important

to note that the architecture of an OO design has more to do with the collaborations

among objects than with the flow of control between components of the system.

Although similarity between the conventional and OO design models does exist,

we have chosen to rename the layers of the design pyramid to reflect more accurately

the nature of an OO design. Figure 22.2 illustrates the relationship between the OO

analysis model (Chapter 21) and design model that will be derived from it.1
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1 It is important to note that the derivation is not always straightforward. For further discussion,
see [DAV95].



PART FOUR OBJECT-ORIENTED SOFTWARE ENGINEERING606

The subsystem design is derived by considering overall customer requirements

(represented with use-cases) and the events and states that are externally observ-

able (the object-behavior model). Class and object design is mapped from the descrip-

tion of attributes, operations, and collaborations contained in the CRC model. Message

design is driven by the object-relationship model, and responsibilities design is derived

using the attributes, operations, and collaborations described in the CRC model.

Fichman and Kemerer [FIC92] suggest ten design modeling components that may

be used to compare various conventional and object-oriented design methods:

1. Representation of hierarchy of modules.

2. Specification of data definitions.

3. Specification of procedural logic.

4. Indication of end-to-end processing sequences.

5. Representation of object states and transitions.

6. Definition of classes and hierarchies.

7. Assignment of operations to classes.

8. Detailed definition of operations.

9. Specification of message connections.

10. Identification of exclusive services.

Object-behavior
model

CRC
index
cards

Object-
relationship

model

Use cases

The design modelThe analysis model

Message
design

Responsibilities
design

Class and object
design

Subsystem
design

At
tri
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, operations, collaborators

FIGURE 22.2 Translating an OOA model into an OOD model
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Because many conventional and object-oriented design approaches are available, it

is difficult to develop a generalized comparison between the two methods. It can be

stated, however, that modeling dimensions 5 through 10 are not supported using

structured design (Chapter 14) or its derivatives.

22.1.2 Design Issues

Bertrand Meyer [MEY90] suggests five criteria for judging a design method's ability

to achieve modularity and relates these to object-oriented design:

• Decomposability—the facility with which a design method helps the designer

to decompose a large problem into subproblems that are easier to solve.

• Composability—the degree to which a design method ensures that program

components (modules), once designed and built, can be reused to create

other systems.

• Understandability—the ease with which a program component can be under-

stood without reference to other information or other modules.

• Continuity—the ability to make small changes in a program and have these

changes manifest themselves with corresponding changes in just one or a

very few modules.

• Protection—an architectural characteristic that will reduce the propagation of

side effects if an error does occur in a given module.

From these criteria, Meyer [MEY90] suggests five basic design principles that can be

derived for modular architectures: (1) linguistic modular units, (2) few interfaces, (3)

small interfaces (weak coupling), (4) explicit interfaces, and (5) information 

hiding. 

Modules are defined as linguistic modular units when they "correspond to syntac-

tic units in the language used" [MEY90]. That is, the programming language to be

used should be capable of supporting the modularity defined directly. For example, if

the designer creates a subroutine, any of the older programming languages (e.g.,

FORTRAN, C, Pascal) could implement it as a syntactic unit. But if a package that con-

tains data structures and procedures and identifies them as a single unit were defined,

a language such as Ada (or another object-oriented language) would be necessary

to directly represent this type of component in the language syntax.

To achieve low coupling (a design concept introduced in Chapter 13), the num-

ber of interfaces between modules should be minimized ("few interfaces") and the

amount of information that moves across an interface should be minimized ("small

interfaces"). Whenever components do communicate, they should do so in an obvi-

ous and direct way ("explicit interfaces"). For example, if component X and compo-

nent Y communicate through a global data area (what we called common coupling

in Chapter 13), they violate the principle of explicit interfaces because the commu-

nication between the components is not obvious to an outside observer. Finally, we
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achieve the principle of information hiding when all information about a component

is hidden from outside access, unless that information is specifically defined as pub-

lic information.

The design criteria and principles presented in this section can be applied to any

design method (e.g., we can apply them to structured design). As we will see, how-

ever, the object-oriented design method achieves each of the criteria more efficiently

than other approaches and results in modular architectures that allow us to meet

each of the modularity criteria most effectively.

22.1.3 The OOD Landscape

As we noted in Chapter 21, a wide variety of object-oriented analysis and design

methods were proposed and used during the 1980s and 1990s. These methods estab-

lished the foundation for modern OOD notation, design heuristics, and models. A

brief overview of the most important early OOD methods follows:

The Booch method. As we noted in Chapter 21, the Booch method

[BOO94] encompasses both a “micro development process” and a “macro

development process.” In the design context, macro development encom-

passes an architectural planning activity that clusters similar objects in sepa-

rate architectural partitions, layers objects by level of abstraction, identifies

relevant scenarios, creates a design prototype, and validates the design pro-

totype by applying it to usage scenarios. Micro development defines a set of

“rules” that govern the use of operations and attributes and the domain-spe-

cific policies for memory management, error handling, and other infrastruc-

ture functions; develops scenarios that describe the semantics of the rules

and policies; creates a prototype for each policy; instruments and refines the

prototype; and reviews each policy so that it “broadcasts its architectural

vision” [BOO94].

The Rumbaugh method. The object modeling technique [RUM91] encom-

passes a design activity that encourages design to be conducted at two differ-

ent levels of abstraction. System design focuses on the layout for the

components that are needed to construct a complete product or system. The

analysis model is partitioned into subsystems, which are then allocated  to

processors and tasks. A strategy for implementing data management is

defined and global resources and the control mechanisms required to access

them are identified.

Object design emphasizes the detailed layout of an individual object. Oper-

ations are selected from the analysis model and algorithms are defined for

each operation. Data structures that are appropriate for attributes and algo-

rithms are represented. Classes and class attributes are designed in a manner

that optimizes access to data and improves computational efficiency. A mes-

saging model is created to implement the object relationships (associations).

“There is no reason
why the transition
from requirements to
design should be
any easier in
software engineering
than it is in any
other engineering
discipline. Design is
hard.”
Alan Davis 
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The Jacobson method. The design activity for OOSE (object-oriented soft-

ware engineering) [JAC92] is a simplified version of the proprietary objectory

method, also developed by Jacobson. The design model emphasizes trace-

ability to the OOSE analysis model. First, the idealized analysis model is

adapted to fit the real world environment. Then primary design objects,

called blocks,2 are created and categorized as interface blocks, entity blocks,

and control blocks. Communication between blocks during execution is

defined and the blocks are organized into subsystems.

The Coad and Yourdon method. The Coad and Yourdon method for OOD

[COA91] was developed by studying how “effective object-oriented design-

ers” do their design work. The design approach addresses not only the appli-

cation but also the infrastructure for the application and focuses on the

representation of four major system components: the problem domain com-

ponent, the human interaction component, the task management compo-

nent, and the data management component.

The Wirfs-Brock method. Wirfs-Brock, Wilkerson, and Weiner [WIR90]

define a continuum of technical tasks in which analysis leads seamlessly into

design. Protocols3 for each class are constructed by refining contracts

between objects. Each operation (responsibility) and protocol (interface

design) is designed at a level of detail that will guide implementation. Specifi-

cations for each class (defining private responsibilities and detail for opera-

tions) and each subsystem (identifying all encapsulated classes and the

interaction between subsystems) are developed. 

Although the terminology and process steps for each of these OOD methods dif-

fer, the overall OOD processes are reasonably consistent. To perform object-oriented

design, a software engineer should perform the following generic steps: 

1. Describe each subsystem and allocate it to processors and tasks.

2. Choose a design strategy for implementing data management, interface sup-

port, and task management.

3. Design an appropriate control mechanism for the system.

4. Perform object design by creating a procedural representation for each oper-

ation and data structures for class attributes.

5. Perform message design using collaborations between objects and object

relationships. 

6. Create the messaging model.

7. Review the design model and iterate as required.
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2 A block is the design abstraction that allows for the representation of an aggregate object.

3 A protocol is a formal description of the messages to which a class will respond.

A set of generic steps
are applied during
OOD, regardless of the
design method that is
chosen.

Although it is not
nearly as robust as
UML, the Wirfs-Brock
method has a simple
elegance that makes it
an interesting
alternative approach to
OOD.
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It is important to note that the design steps discussed in this section are iterative.

That is, they may be executed incrementally, along with additional OOA activities,

until a completed design is produced.

22.1.4 A Unified Approach to OOD

In Chapter 21, we noted that Grady Booch, James Rumbaugh, and Ivar Jacobson com-

bined the best features of their individual object-oriented analysis and design meth-

ods into a unified method. The result, called the Unified Modeling Language has become

widely used throughout the industry.4

During analysis modeling (Chapter 21), the user model and structural model views

are represented. These provide insight into the usage scenarios for the system (pro-

viding guidance for behavioral modeling) and establish a foundation for the imple-

mentation and environment model views by identifying and describing the static

structural elements of the system.

UML is organized into two major design activities: system design and object design.

The primary objective of UML system design is to represent the software architecture.

Bennett, McRobb, and Farmer [BEN99] discuss this issue in the following way: 

In terms of object-oriented development, the conceptual architecture is concerned with the

structure of the static class model and the connections between components of the model.

The module architecture describes the way the system is divided into subsystems or mod-

ules and how they communicate by exporting and importing data. The code architecture

defines how the program code is organized into files and directories and grouped into

libraries. The execution architecture focuses on the dynamic aspects of the system and the

communication between components as tasks and operations execute.

The definition of the “subsystems” noted by Bennett et al. is a primary concern dur-

ing UML system design. 

UML object design focuses on a description of objects and their interactions with

one another. A detailed specification of attribute data structures and a procedural

design of all operations are created during object design. The visibility5 for all class

attributes is defined and interfaces between objects are elaborated to define the details

of a complete messaging model.

System and object design in UML are extended to consider the design of user interfaces,

data management with the system to be built, and task management for the subsystems

that have been specified. User interface design in UML draws on the same concepts and

principles discussed in Chapter 15. The user model view drives the user interface design

process, providing a scenario that is elaborated iteratively to become a set of interface classes.6

4 Booch, Rumbaugh, and Jacobson have written a set of three definitive books on UML. The inter-
ested reader should see [BOO99], [RUM99], and [JAC99].

5 Visibility indicates whether an attribute is public (available across all instantiations of the class),
private (available only for the class that specifies it), or protected (an attribute that may be used
by the class that specifies it and its subclasses).

6 Today, most interface classes are part of a library of reusable software components. This expe-
dites the design and implementation of GUIs. 

System design focuses
on software
architecture and the
definition of
subsystems. Object
design describes
objects at a level of
detail that can be
implemented in a
programming
language.

WebRef
An extensive tutorial and
listing of UML resources
including tools, papers,
and examples can be
found at
mini.net/cetus/
oo_uml.html
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Data management design establishes a set of classes and collaborations that allow the 

system (product) to manage persistent data (e.g., files and databases). Task manage-

ment design establishes the infrastructure that organizes subsystems into tasks 

and then manages task concurrency. The process flow for design is illustrated in 

Figure 22.3.7

Throughout the UML design process, the user model view and structure model

view are elaborated into the design representation outlined above. This elaboration

activity is discussed in the sections that follow.

22.2 THE SYSTEM DESIGN PROCESS

System design develops the architectural detail required to build a system or prod-

uct. The system design process encompasses the following activities:

• Partition the analysis model into subsystems.

• Identify concurrency that is dictated by the problem.

• Allocate subsystems to processors and tasks.

• Develop a design for the user interface.

• Choose a basic strategy for implementing data management.

• Identify global resources and the control mechanisms required to access them.
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7 Recall that OOA is an iterative activity. It is entirely possible that the analysis model will be
revised as a consequence of design work.
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• Design an appropriate control mechanism for the system, including task

management.

• Consider how boundary conditions should be handled.

• Review and consider trade-offs.

In the sections that follow, design activities related to each of these steps are con-

sidered in more detail.

22.2.1 Partitioning the Analysis Model

One of the fundamental analysis principles (Chapter 11) is partitioning. In OO system

design, we partition the analysis model to define cohesive collections of classes, rela-

tionships, and behavior. These design elements are packaged as a subsystem.

In general, all of the elements of a subsystem share some property in common.

They all may be involved in accomplishing the same function; they may reside within

the same product hardware, or they may manage the same class of resources. Sub-

systems are characterized by their responsibilities; that is, a subsystem can be iden-

tified by the services that it provides [RUM91]. When used in the OO system design

context, a service is a collection of operations that perform a specific function (e.g.,

managing word-processor files, producing a three-dimensional rendering, translat-

ing an analog video signal into a compressed digital image).

As subsystems are defined (and designed), they should conform to the following

design criteria:

• The subsystem should have a well-defined interface through which all com-

munication with the rest of the system occurs.

• With the exception of a small number of “communication classes,” the

classes within a subsystem should collaborate only with other classes within

the subsystem.

• The number of subsystems should be kept low.

• A subsystem can be partitioned internally to help reduce complexity.

When two subsystems communicate with one another, they can establish a

client/server link or a peer-to-peer link [RUM91]. In a client/server link, each of the

subsystems takes on one of the roles implied by client and server. Service flows from

server to client in only one direction. In a peer-to-peer link, services may flow in either

direction. 

When a system is partitioned into subsystems, another design activity, called lay-

ering, also occurs. Each layer [BUS96] of an OO system contains one or more sub-

systems and represents a different level of abstraction of the functionality required

to accomplish system functions. In most cases, the levels of abstraction are deter-

mined by the degree to which the processing associated with a subsystem is visible

to an end-user.

The concepts of
coupling and cohesion
(Chapter 13) can be
applied at the
subsystem level. Strive
to achieve good
functional
independence as you
design subsystems.

What 
criteria 

guide us in the
design of
subsystems?

?
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For example, a four-layer architecture might might include (1) a presentation layer

(the subsystems associated with the user interface), (2) an application layer (the sub-

systems that perform the processing associated with the application), (3) a data for-

matting layer (the subsystems that prepare the data for processing), and (4) a database

layer (the subsystems associated with data management). Each layer moves deeper

into the system, representing increasingly more environment-specific processing.

Buschmann and his colleagues [BUS96] suggest the following design approach for

layering:

1. Establish layering criteria. That is, decide how subsystems will be grouped in

a layered architecture.

2. Determine the number of layers. Too many introduce unnecessary complex-

ity; too few may harm functional independence.

3. Name the layers and allocate subsystems (with their encapsulated classes) to

a layer. Be certain that communication between subsystems (classes) on one

layer and other subsystems (classes) at another layer follow the design phi-

losophy for the architecture.8

4. Design interfaces for each layer.

5. Refine the subsystems to establish the class structure for each layer.

6. Define the messaging model for communication between layers.

7. Review the layer design to ensure that coupling between layers is minimized

(a client/server protocol can help accomplish this).

8. Iterate to refine the layered design.

22.2.2 Concurrency and Subsystem Allocation

The dynamic aspect of the object-behavior model provides an indication of concur-

rency among classes (or subsystems). If classes (or subsystems) are not active at the

same time, there is no need for concurrent processing. This means that the classes

(or subsystems) can be implemented on the same processor hardware. On the other

hand, if classes (or subsystems) must act on events asynchronously and at the same

time, they are viewed as concurrent. When subsystems are concurrent, two alloca-

tion options exist: (1) Allocate each subsystem to an independent processor or (2)

allocate the subsystems to the same processor and provide concurrency support

through operating system features.

Concurrent tasks are defined [RUM91] by examining the state diagram for each

object. If the flow of events and transitions indicates that only a single object is active

at any one time, a thread of control has been established. The thread of control 

613

8 In a closed architecture, messages from one layer may be sent only to the adjacent lower layer. In
an open architecture, messages may be sent to any lower layer.
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continues even when one object sends a message to another object, as long as the

first object waits for a response. If, however, the first object continues processing after

sending a message, the thread of control splits.

Tasks in an OO system are designed by isolating threads of control. For exam-

ple, while the SafeHome security system is monitoring its sensors, it can also be

dialing the central monitoring station for verification of connection. Since the

objects involved in both of these behaviors are active at the same time, each rep-

resents a separate thread of control and each can be defined as a separate task.

If the monitoring and dialing activities occur sequentially, a single task could be

implemented.

To determine which of the processor allocation options is appropriate, the designer

must consider performance requirements, costs, and the overhead imposed by inter-

processor communication.

22.2.3 The Task Management Component

Coad and Yourdon [COA91] suggest the following strategy for the design of the objects

that manage concurrent tasks:

• The characteristics of the task are determined.

• A coordinator task and associated objects are defined.

• The coordinator and other tasks are integrated.

The characteristics of a task are determined by understanding how the task is initi-

ated. Event-driven and clock-driven tasks are the most commonly encountered. Both

are activated by an interrupt, but the former receives an interrupt from some outside

source (e.g., another processor, a sensor) while that latter is governed by a system

clock. 

In addition to the manner in which a task is initiated, the priority and criticality of

the task must also be determined. High-priority tasks must have immediate access

to system resources. High-criticality tasks must continue to operate even if resource

availability is reduced or the system is operating in a degraded state.

Once the characteristics of the task have been determined, object attributes and

operations required to achieve coordination and communication with other tasks are

defined. The basic task template (for a task object) takes the form [COA91]

Task name—the name of the object

Description—a narrative describing the purpose of the object

Priority—task priority (e.g., low, medium, high)

Services—a list of operations that are responsibilities of the object

Coordinates by—the manner in which object behavior is invoked

Communicates via—input and output data values relevant to the task

This template description can then be translated into the standard design model

(incorporating representation of attributes and operations) for the task object(s).

“Discipline and
focused awareness 
. . . contribute to the
act of creation.”
John Poppy 
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22.2.4 The User Interface Component

Although the user interface component is implemented within the context of the prob-

lem domain, the interface itself represents a critically important subsystem for most

modern applications. The OO analysis model (Chapter 21) contains usage scenarios

(called use-cases) and a description of the roles that users play (called actors) as they

interact with the system. These serve as input to the user interface design process.

Once the actor and its usage scenario are defined, a command hierarchy is identi-

fied. The command hierarchy defines major system menu categories (the menu bar or

tool palette) and all subfunctions that are available within the context of a major sys-

tem menu category (the menu windows). The command hierarchy is refined iteratively

until every use-case can be implemented by navigating the hierarchy of functions.

Because a wide variety of user interface development environments already exist,

the design of GUI elements is not necessary. Reusable classes (with appropriate attri-

butes and operations) already exist for windows, icons, mouse operations, and a wide

variety of other interaction functions. The implementer need only instantiate objects

that have appropriate characteristics for the problem domain.

22.2.5 The  Data Management Component

Data management encompasses two distinct areas of concern: (1) the management

of data that are critical to the application itself and (2) the creation of an infrastruc-

ture for storage and retrieval of objects. In general, data management is designed in

a layered fashion. The idea is to isolate the low-level requirements for manipulating

data structures from the higher-level requirements for handling system attributes.

Within the system context, a database management system is often used as a com-

mon data store for all subsystems. The objects required to manipulate the database

are members of reusable classes that are identified using domain analysis (Chapter 21)

or are supplied directly by the database vendor. A detailed discussion of database

design for OO systems is beyond the scope of this book.9

The design of the data management component includes the design of the attri-

butes and operations required to manage objects. The relevant attributes are appended

to every object in the problem domain and provide information that answers the ques-

tion, “How do I store myself?” Coad and Yourdon [COA91] suggest the creation of an

object-server class “with services to (a) tell each object to save itself and (b) retrieve

stored objects for use by other design components.” 

As an example of data management for the sensor object discussed as part of the

SafeHome security system, the design could specify a flat file called “sensor.” Each

record would correspond to a named instance of sensor and would contain the val-

ues of each sensor attribute for that named instance. Operations within the object-

server class would enable a specific object to be stored and retrieved when it is needed
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9 Interested readers should refer to [BRO91], [TAY92], or [RAO94].
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by the system. For more complex objects, it might be necessary to specify a relational

database or an object-oriented database to accomplish the same function.

22.2.6 The Resource Management Component

A variety of different resources are available to an OO system or product; and in many

instances, subsystems compete for these resources at the same time. Global system

resources can be external entities (e.g., a disk drive, processor, or communication

line) or abstractions (e.g., a database, an object). Regardless of the nature of the

resource, the software engineer should design a control mechanism for it. Rumbaugh

and his colleagues [RUM91] suggest that each resource should be owned by a

“guardian object.” The guardian object is the gatekeeper for the resource, controlling

access to it and moderating conflicting requests for it. 

22.2.7 Intersubsystem Communication

Once each subsystem has been specified, it is necessary to define the collaborations

that exist between the subsystems. The model that we use for object-to-object col-

laboration can be extended to subsystems as a whole. Figure 22.4 illustrates a col-

laboration model. As we noted earlier in this chapter, communication can occur by

establishing a client/server link or a peer-to-peer link. Referring to the figure, we

must specify the contract that exists between subsystems. Recall that a contract pro-

vides an indication of the ways in which one subsystem can interact with another. 

The following design steps can be applied to specify a contract for a subsystem

[WIR90]:

1. List each request that can be made by collaborators of the subsys-

tem. Organize the requests by subsystem and define them within one or

more appropriate contracts. Be sure to note contracts that are inherited from

superclasses.
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2. For each contract, note the operations (both inherited and private)

that are required to implement the responsibilities implied by the

contract. Be sure to associate the operations with specific classes that reside

within a subsystem.

3. Considering one contract at a time, create a table of the form shown

in Figure 22.5. For each contract, the following entries are made in the

table:

Type—the type of contract (i.e., client/server or peer-to-peer).

Collaborators—the names of the subsystems that are parties to the con-

tract.

Class—the names of the classes (contained within a subsystem) that sup-

port services implied by the contract.

Operation—the names of the operations (within the class) that implement

the services.

Message format—the message format required to implement the interac-

tion between collaborators.

Draft an appropriate message description for each interaction between the

subsystems.

4. If the modes of interaction between subsystems are complex, a sub-

system-collaboration diagram, illustrated in Figure 22.6 is created.

The collaboration graph is similar in form to the event flow diagram dis-

cussed in Chapter 21. Each subsystem is represented along with its interac-

tions with other subsystems. The contracts that are invoked during an

interaction are noted as shown. The details of the interaction are determined

by looking up the contract in the subsystem collaboration table (Figure 22.5)
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FIGURE 22.5 Subsystem collaboration table
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PART FOUR OBJECT-ORIENTED SOFTWARE ENGINEERING618

22.3 THE OBJECT DESIGN PROCESS

Borrowing from a metaphor that was introduced earlier in this book, the OO system

design might be viewed as the floor plan of a house. The floor plan specifies the pur-

pose of each room and the architectural features that connect the rooms to one

another and to the outside environment. It is now time to provide the details that are

required to build each room. In the context of OOD, object design focuses on the

“rooms.” 

Bennett and his colleagues [BEN99] discuss object design in the following way:

Object design is concerned with the detailed design of the objects and their interactions. It is

completed within the overall architecture defined during system design and according to

agreed design guidelines and protocols. Object design is particularly concerned with the spec-

ification of attribute types, how operations function, and how objects are linked to other objects.

It is at this stage that the basic concepts and principles associated with component-

level design (Chapter 16) come into play. Local data structures are defined (for attri-

butes) and algorithms (for operations) are designed.

22.3.1 Object Descriptions

A design description of an object (an instance of a class or subclass) can take one of

two forms [GOL83]: (1) a protocol description that establishes the interface of an object

by defining each message that the object can receive and the related operation that

the object performs when it receives the message or (2) an implementation descrip-

tion that shows implementation details for each operation implied by a message that

is passed to an object. Implementation details include information about the object's

private part; that is, internal details about the data structures that describe the object’s

attributes and procedural details that describe operations.

Request for status
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Request for system status
Specification of type of alarm

Periodic status check

Control
panel
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The protocol description is nothing more than a set of messages and a corre-

sponding comment for each message. For example, a portion of the protocol descrip-

tion for the object motion sensor (described earlier) might be

MESSAGE (motion.sensor) -->  read: RETURNS sensor.ID, sensor.status;

This describes the message required to read the sensor. Similarly,

MESSAGE (motion.sensor) --> set: SENDS sensor.ID, sensor.status;

sets or resets the status of the sensor.

For a large system with many messages, it is often possible to create message cat-

egories. For example, message categories for the SafeHome system object might

include system configuration messages, monitoring messages, event messages, and

so forth.

An implementation description of an object provides the internal ("hidden") details

that are required for implementation but are not necessary for invocation. That is,

the designer of the object must provide an implementation description and must

therefore create the internal details of the object. However, another designer or imple-

menter who uses the object or other instances of the object requires only the proto-

col description but not the implementation description. 

An implementation description is composed of the following information: (1) a

specification of the object's name and reference to class; (2) a specification of private

data structure with indication of data items and types; (3) a procedural description of

each operation or, alternatively, pointers to such procedural descriptions. The imple-

mentation description must contain sufficient information to provide for proper han-

dling of all messages described in the protocol description.

Cox [COX85] characterizes the difference between the information contained in

the protocol description and that contained in the implementation description in terms

of "users" and "suppliers" of services. A user of the service provided by an object must

be familiar with the protocol for invoking the service; that is, for specifying what is

desired. The supplier of the service (the object itself) must be concerned with how

the service is to be supplied to the user; that is, with implementation details. 

22.3.2 Designing Algorithms and Data Structures

A variety of representations contained in the analysis model and the system design pro-

vide a specification for all operations and attributes. Algorithms and data structures are

designed using an approach that differs little from the data design and component-level

design approaches discussed for conventional software engineering.

An algorithm is created to implement the specification for each operation. In many

cases, the algorithm is a simple computational or procedural sequence that can be

implemented as a self-contained software module. However, if the specification of

the operation is complex, it may be necessary to modularize the operation. Conven-

tional component-level design techniques can be used to accomplish this.
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Data structures are designed concurrently with algorithms. Since operations invari-

ably manipulate the attributes of a class, the design of the data structures that best

reflect the attributes will have a strong bearing on the algorithmic design of the cor-

responding operations.

Although many different types of operations exist, they can generally be divided

into three broad categories: (1) operations that manipulate data in some way (e.g.,

adding, deleting, reformatting, selecting), (2) operations that perform a computa-

tion, and (3) operations that monitor an object for the occurrence of a controlling

event. 

For example, the SafeHome processing narrative contains the sentence fragments:

"sensor is assigned a number and type" and "a master password is programmed for

arming and disarming the system." These two phrases indicate a number of things:

• That an assign operation is relevant for the sensor object.

• That a program operation will be applied to the system object.

• That arm and disarm are operations that apply to system (also that system

status may ultimately be defined (using data dictionary notation) as 

system status = [armed | disarmed]

The operation program is allocated during OOA, but during object design it will be

refined into a number of more specific operations that are required to configure the

system. For example, after discussions with product engineering, the analyst, and

possibly the marketing department, the designer might elaborate the original pro-

cessing narrative and write the following for program (potential operations—verbs—

are underlined):

Program enables the SafeHome user to configure the system once it has been installed. The

user can (1) install phone numbers; (2) define delay times for alarms; (3) build a sensor table

that contains each sensor ID, its type, and location; and (4) load a master password. 

Therefore, the designer has refined the single operation program and replaced it

with the operations: install, define, build, and load. Each of these new operations

becomes part of the system object, has knowledge of the internal data structures

that implement the object's attributes, and is invoked by sending the object messages

of the form

MESSAGE (system) --> install: SENDS telephone.number;

This implies that, to provide the system with an emergency phone number, an install

message will be sent to system.

Verbs connote actions or occurrences. In the context of object design formaliza-

tion, we consider not only verbs but also descriptive verb phrases and predicates

(e.g., "is equal to") as potential operations. The grammatical parse is applied recur-

sively until each operation has been refined to its most-detailed level.

An operation is refined
in much the same way
that we refine a
function in
conventional design.
Write a processing
narrative, do a
grammatical parse,
and isolate new
operations at a lower
level of abstraction.

Is there a
way to

categorize
operations
(methods)?

?
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Once the basic object model is created, optimization should occur. Rumbaugh and

his colleagues [RUM91] suggest three major thrusts for OOD design optimization:

• Review the object-relationship model to ensure that the implemented design

leads to efficient utilization of resources and ease of implementation. Add

redundancy where necessary.

• Revise attribute data structures and corresponding operation algorithms to

enhance efficient processing.

• Create new attributes to save derived information, thereby avoiding recom-

putation.

A detailed discussion of OO design optimization is beyond the scope of this book.

The interested reader should refer to [RUM91] and [CHA93]. For a discussion of how

these concepts translate into the UML process, the reader should examine [JAC99]

and [RUM99].

22.3.3 Program Components and Interfaces

An important aspect of software design quality is modularity; that is, the specification

of program components (modules) that are combined to form a complete program.

The object-oriented approach defines the object as a program component that is itself

linked to other components (e.g., private data, operations). But defining objects and

operations is not enough. During design, we must also identify the interfaces between

objects and the overall structure (considered in an architectural sense) of the objects.

Although a program component is a design abstraction, it should be represented

in the context of the programming language used for implementation. To accom-

modate OOD, the programming language to be used for implementation should be

capable of creating the following program component (modeled after Ada):

PACKAGE  program-component-name IS 
TYPE specification of data objects 

•
• 
• 

PROC specification of related operations . . . 
PRIVATE 

data structure details for objects 
PACKAGE BODY program-component-name IS 

PROC operation.1 (interface description) IS 
• 
• 
• 

END 
PROC operation.n (interface description) IS 

• 
• 
• 

END 
END program-component-name

621



PART FOUR OBJECT-ORIENTED SOFTWARE ENGINEERING622

Referring to the Ada-like PDL (program design language) just shown, a program

component is specified by indicating both data objects and operations. The specifi-

cation part of the component indicates all data objects (declared with the TYPE state-

ment) and the operations (PROC for procedure) that act on them. The private part

(PRIVATE) of the component provides otherwise hidden details of data structure and

processing. In the context of our earlier discussion, the PACKAGE is conceptually sim-

ilar to objects discussed throughout this chapter.

The first program component to be identified should be the highest-level module

from which all processing originates and all data structures evolve. Referring once

again to the SafeHome example, we can define the highest-level program component

as

PROCEDURE SafeHome software

The SafeHome software component can be coupled with a preliminary design for the

following packages (objects): 

PACKAGE system IS 
TYPE system data 
PROC install, define, build, load 
PROC display, reset, query, modify, call 
PRIVATE 

PACKAGE BODY system IS 
PRIVATE

system.id IS STRING LENGTH (8);
verification phone.number, telephone.number, ... 
IS STRING LENGTH (8);
sensor.table DEFINED

sensor.type IS STRING LENGTH (2), 
sensor.number, alarm.threshold IS NUMERIC;

PROC install RECEIVES (telephone.number)
{design detail for operation install}

•
•
•

END system  
PACKAGE sensor IS 

TYPE sensor data 
PROC read, set, test
PRIVATE 

PACKAGE BODY sensor IS 
PRIVATE

sensor.id IS STRING LENGTH (8);
sensor.status IS STRING LENGTH (8);
alarm.characteristics DEFINED

threshold, signal type, signal level IS NUMERIC, 
hardware.interface DEFINED

type, a/d.characteristics, timing.data IS NUMERIC,
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END sensor
•
•
•

END SafeHome software

Data objects and corresponding operations are specified for each of the program

components for SafeHome software. The final step in the object design process com-

pletes all information required to fully implement data structure and types contained

in the PRIVATE portion of the package and all procedural detail contained in the PACK-

AGE BODY.

To illustrate the detail design of a program component, we reconsider the sensor

package described earlier. The data structures for sensor attributes have already

been defined. Therefore, the first step is to define the interfaces for each of the oper-

ations attached to sensor:

PROC read (sensor.id, sensor.status: OUT);

PROC set (alarm.characteristics, hardware.interface: IN)

PROC test (sensor.id, sensor.status, alarm.characteristics: OUT);

The next step requires stepwise refinement of each operation associated with the

sensor package. To illustrate the refinement, we develop a processing narrative (an

informal strategy) for read:

When the sensor object receives a read message, the read process is invoked. The process

determines the interface and signal type, polls the sensor interface, converts A/D charac-

teristics into an internal signal level, and compares the internal signal level to a threshold

value. If the threshold is exceeded, the sensor status is set to "event." Otherwise, the sen-

sor status is set to "no event." If an error is sensed while polling the sensor, the sensor sta-

tus is set to "error."

Given the processing narrative, a PDL description of the read process can be devel-

oped:

PROC read (sensor.id, sensor.status: OUT);
raw.signal IS BIT STRING
IF (hardware.interface.type = "s" & alarm.characteristics.signal.type = "B"
THEN

GET (sensor, exception: sensor.status := error) raw.signal;
CONVERT raw.signal TO internal.signal.level;
IF internal.signal.level > threshold 

THEN sensor.status := "event";
ELSE sensor.status := "no event";

ENDIF
ELSE {processing for other types of s interfaces would be specified}
ENDIF
RETURN sensor.id, sensor.status;

END read
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The PDL representation of the read operation can be translated into the appropriate

implementation language. The functions GET and CONVERT are assumed to be avail-

able as part of a run-time library.

22.4 DESIGN PATTERNS

The best designers in any field have an uncanny ability to see patterns that charac-

terize a problem and corresponding patterns that can be combined to create a solu-

tion. Gamma and his colleagues [GAM95] discuss this when they state:

[Y]ou’ll find recurring patterns of classes and communicating objects in many object-

oriented systems. These patterns solve specific design problems and make object-oriented

design more flexible, elegant, and ultimately reusable. They help designers reuse suc-

cessful designs by basing new designs on prior experience. A designer who is familiar

with such patterns can apply them immediately to design problems without having to

rediscover them.

Throughout the OOD process, a software engineer should look for every opportunity

to reuse existing design patterns (when they meet the needs of the design) rather

than creating new ones.

22.4.1 Describing a Design Pattern

Mature engineering disciplines make use of thousands of design patterns. For exam-

ple, a mechanical engineer uses a two-step, keyed shaft as a design pattern. Inher-

ent in the pattern are attributes (the diameters of the shaft, the dimensions of the

keyway, etc.) and operations (e.g., shaft rotation, shaft connection). An electrical engi-

neer uses an integrated circuit (an extremely complex design pattern) to solve a spe-

cific element of a new problem. All design patterns can be described by specifying

the following information [GAM95]:

• the name of the pattern

• the intent of the pattern

• the “design forces” that motivate the pattern

• the solution that mitigates these forces

• the classes that are required to implement the solution

• the responsibilities and collaboration among solution classes

• guidance that leads to effective implementation

• example source code or source code templates

• cross-references to related design patterns

The design pattern name is itself an abstraction that conveys significant meaning

once the applicability and intent are understood. Design forces describe the data, func-

tional, or behavioral requirements associated with part of the software for which the

XRef
Patterns exist at the
architecture and the
component levels. For
further discussion, see
Chapter 14.

“[Patterns] constitute
a ‘grass roots’ effort
to build on the
collective experience
of skilled designers
and software
engineers.”
Frank Buschmann
et al.

WebRef
An excellent paper
entitled “Non-Software
Examples of Software
Design Patterns” provides
insight:
www.agcs.com/
patterns/papers/
patexamples.htm
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pattern is to be applied. In addition forces define the constraints that may restrict the

manner in which the design is to be derived. In essence, design forces describe the

environment and conditions that must exist to make the design pattern applicable.

The pattern characteristics (classes, responsibilities, and collaborations) indicate the

attributes of the design that may be adjusted to enable the pattern to accommodate

a variety of problems. These attributes represent characteristics of the design that

can be searched (e.g., via a database) so that an appropriate pattern can be found.

Finally, guidance associated with the use of a design pattern provides an indication

of the ramifications of design decisions.

The names of objects and subsystems (potential design patterns) should be cho-

sen with care. As we discuss in Chapter 27, one of the key technical problems in soft-

ware reuse is simply the inability to find existing reusable patterns when hundreds

or thousands of candidate patterns exist. The search for the “right” pattern is aided

immeasurably by a meaningful pattern name along with a set of characteristics that

help in classifying the object [PRE95].

22.4.2 Using Patterns in Design

In an object-oriented system, design patterns10 can be used by applying two differ-

ent mechanisms: inheritance and composition. Inheritance is a fundamental OO con-

cept and was described in detail in Chapter 20. Using inheritance, an existing design

pattern becomes a template for a new subclass. The attributes and operations that

exist in the pattern become part of the subclass.

Composition is a concept that leads to aggregate objects. That is, a problem may

require objects that have complex functionality (in the extreme, a subsystem accom-

plishes this). The complex object can be assembled by selecting a set of design pat-

terns and composing the appropriate object (or subsystem). Each design pattern is

treated as a black box, and communication among the patterns occurs only via well-

defined interfaces.

Gamma and his colleagues [GAM95] suggest that object composition should be

favored over inheritance when both options exist. Rather than creating large and

sometimes unmanageable class hierarchies (the consequence of the overuse of inher-

itance), composition favors small class hierarchies and objects that remain focused

on one objective. Composition uses existing design patterns (reusable components)

in an unaltered form.

22.5 OBJECT-ORIENTED PROGRAMMING

Although all areas of object technologies have received significant attention within

the software community, no subject has produced more books, more discussion, and
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“A design pattern
becomes an
AntiPattern when it
creates more
problems than it
solves.”
William Brown
et al. 

10 Buschmann [BUS96] and Gamma et al. [GAM95] among many others have written catalogs of
design patterns for use in OO systems. 

WebRef
The Portland Pattern
Repository publishes an
evolving collection of
design patterns at:
c2.com/ppr

Good design always
strives for simplicity.
Therefore, opt for
composition when it
leads to simpler
inheritance structures.
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more debate than object-oriented programming (OOP). Hundreds of books have been

written on C++ and Java programming, and hundreds more are dedicated to less

widely used OO languages. 

The software engineering viewpoint stresses OOA and OOD and considers OOP

(coding) an important, but secondary, activity that is an outgrowth of analysis and

design. The reason for this is simple. As the complexity of systems increases, the

design architecture of the end product has a significantly stronger influence on its

success than the programming language that has been used. And yet, “language wars”

continue to rage.

The details of OOP are best left to books dedicated to the subject. The interested

reader should refer to one or more of the OOP books noted in the Further Readings

and Information Sources section at the end of this chapter.

22.6 SUMMARY

Object-oriented design translates the OOA model of the real world into an 

implementation-specific model that can be realized in software. The OOD process

can be described as a pyramid composed of four layers. The foundation layer focuses

on the design of subsystems that implement major system functions. The class layer

specifies the overall object architecture and the hierarchy of classes required to imple-

ment a system. The message layer indicates how collaboration between objects will

be realized, and the responsibilities layer identifies the attributes and operations that

characterize each class.

Like OOA, there are many different OOD methods. UML is an attempt to provide

a single approach to OOD that is applicable in all application domains. UML and other

methods approach the design process through two levels of abstraction—design of

subsystems (architecture) and design of individual objects.

During system design, the architecture of the object-oriented system is devel-

oped. In addition to developing subsystems, their interactions, and their place-

ment in architectural layers, system design considers the user interaction

component, a task management component, and a data management compo-

nent. These subsystem components provide a design infrastructure that enables

the application to operate effectively. The object design process focuses on the

description of data structures that implement class attributes, algorithms that

implement operations, and messages that enable collaborations and object rela-

tionships. 

Design patterns allow the designer to create the system architecture by integrat-

ing reusable components. Object-oriented programming extends the design model

into the executable domain. An OO programming language is used to translate the

classes, attributes, operations, and messages into a form that can be executed by a

machine.
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PROBLEMS AND POINTS TO PONDER

22.1. The design pyramid for OOD differs somewhat from the pyramid described for

conventional software design (Chapter 13). Discuss the differences and similarities

of the two pyramids.

22.2. How do OOD and structured design differ? What aspects of these two design

methods are the same?

22.3. Review the five criteria for effective OO modularity discussed in Section 22.1.2.

Using the design approach described later in the chapter, demonstrate how these five

criteria are achieved.

22.4. Using outside references on UML, prepare a one-hour tutorial for your class.

Be sure to show all important diagrammatic modeling conventions used in UML.

22.5. Select an older OOD method presented in Section 22.1.3 and prepare a one-

hour tutorial for your class. Be sure to show all important diagrammatic modeling

conventions that the authors suggest.

22.6. Discuss how the use-case can serve as an important source of information for

design.

22.7. Research a GUI development environment and show how the user interaction

component is implemented in the real world. What design patterns are offered and

how are they used?

22.8. Task management for OO systems can be quite complex. Do some research

of OOD methods for real-time systems (e.g., [BIH92] or [DOU99]) and determine how

task management is achieved in that context.

22.9. Discuss how the data management component is implemented in a typical

OO development environment.

22.10. Write a two- or three-page paper on object-oriented databases and discuss

how they might be used to develop the data management component. 

22.11. How does a designer recognize tasks that must be concurrent?

22.12. Apply the OOD approach discussed in this chapter to flesh out the design for

the SafeHome system. Define all relevant subsystems and develop object designs for

important classes.

22.13. Apply OOD approach discussed in this chapter to the PHTRS system described

in Problem 12.13. 

22.14. Describe a video game and apply OOD approach discussed in this chapter

to represent its design. 
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22.15. You are responsible for the development of an electronic mail (e-mail) sys-

tem to be implemented on a PC network. The e-mail system will enable users to cre-

ate letters to be mailed to another user, general distribution, or a specific address list.

Letters can be read, copied, stored, and the like. The e-mail system will use existing

word-processing capability to create letters. Using this description as a starting point,

derive a set of requirements and apply OOD techniques to create a top-level design

for the e-mail system. 

22.16. A small island nation has decided to build an air traffic control (ATC) system

for its one airport. The system is specified as follows: 

All aircraft landing at the airport must have a transponder that transmits aircraft type and

flight data in high-density packed format to the ATC ground station. The ATC ground sta-

tion can query an aircraft for specific information. When the ATC ground station receives

data, it is unpacked and stored in an aircraft database. A computer graphics display is cre-

ated from the stored information and displayed for an air traffic controller. The display is

updated every 2 seconds. All information is analyzed to determine if "dangerous situations"

are present. The air traffic controller can query the database for specific information about

any plane displayed on the screen. 

Using OOD, create a design for the ATC system. Do not attempt to implement it!

FURTHER READINGS AND INFORMATION SOURCES

In addition to the many references in this chapter, books by Gossain and Graham

(Object Modeling and Design Strategies, SIGS Books, 1998); Meyer (Object-Oriented

Software Construction, 2nd ed., Prentice-Hall, 1997); Reil (Object-Oriented Design

Through Heuristics, Addison-Wesley, 1996); and Walden and Nerson (Seamless Object-

Oriented Software Architecture: Analysis and Design of Reliable Systems, Prentice-Hall,

1995) cover OOD in considerable detail.  Fowler (Refactoring: Improving the Design of

Existing Code, Addison-Wesley, 1999) addresses the use of object-oriented techniques

to redesign and rebuild old programs to improve their design quality. 

Many recent books published on object-oriented design emphasize UML. Those

serious about applying UML in their work should acquire [BOO99], [RUM99], and

[JAC99]. In addition, many of the books referenced in the Further Reading and Infor-

mation Sources section of Chapter 21 also address design in considerable detail.

The use of design patterns for the development of object-oriented software has

important implications for component-based software engineering, reusability in gen-

eral, and the overall quality of resultant systems. In addition to [BUS96] and [GAM95],

many recent books are dedicated to the subject:

Ambler, S.W., Process Patterns: Building Large-Scale Systems Using Object Technology, Cam-

bridge University Press, 1999.

Coplien, J.O. and D.C. Schmidt, Pattern Languages of Program Design, Addison-Wesley, 1995.
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Fowler, M., Analysis Patterns: Reusable Object Models, Addison-Wesley, 1996.

Larman, C., Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design,

Prentice-Hall, 1997. 

Martin, R.C., et al., Pattern Languages of Program Design 3, Addison-Wesley, 1997.

Rising, L. and J. Coplien (eds.), The Patterns Handbook: Techniques, Strategies, and Applica-

tions, SIGS Books, 1998.

Pree, W., Design Patterns for Object-Oriented Software Development, Addison-Wesley, 1995. 

Vlissides, J., Pattern Hatching: Design Patterns Applied, Addison-Wesley, 1998.

Vlissides, J.M., J.O. Coplien, and N. Kerth, Pattern Languages of Program Design 2, Addison-

Wesley, 1996.

Hundreds of books have been published on object-oriented programming. A sam-

pling of OOP language-specific books follows:

C++: Cohoon, J.P., C++ Program Design: An Introduction to Programming and Object-Oriented 

Design, McGraw Hill, 1998.

Barclay, K. and J. Savage, Object-Oriented Design with C++, Prentice-Hall, 1997.

Eiffel: Thomas, P. and R. Weedon, Object-Oriented Programming in Eiffel, Addison-Wesley, 

1997.

Jezequel, J.M., Object-Oriented Software Engineering with Eiffel, Addison-Wesley, 1996. 

Java: Coad, P., M. Mayfield, and J. Kern, Java Design: Building Better Apps and Applets, 2nd ed., 

Prentice-Hall, 1998. 

Lewis, J. and  W. Loftus, Java Software Solutions: Foundations of Program, Addison-

Wesley, 1997.

Smalltalk: Sharp, A., Smalltalk by Example: The Developer's Guide, McGraw-Hill, 1997. 

LaLonde, W.R. and J.R. Pugh, Programming in Smalltalk, Prentice-Hall, 1995.

Books that cover OOD topics using two or more OO programming languages provide
insight and comparison of language features. Titles include:

Drake, C., Object-Oriented Programming With C++ and Smalltalk, Prentice-Hall, 1998. 

Joyner, I., Objects Unencapsulated: Java, Eiffel and C++, Prentice-Hall, 1999. 

Zeigler, B.P., Objects and Systems: Principled Design with Implementations in C++ and Java,

Springer-Verlag, 1997.

A wide variety of information sources on object-oriented design and related sub-

jects is available on the Internet. An up-to-date list of World Wide Web references

that are relevant to OOD can be found at the SEPA Web site:

http://www.mhhe.com/engcs/compsci/pressman/resources/OOD.mhtml
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The objective of testing, stated simply, is to find the greatest possible num-
ber of errors with a manageable amount of effort applied over a realistic
time span. Although this fundamental objective remains unchanged for

object-oriented software, the nature of OO programs changes both testing strat-
egy and testing tactics. 

It might be argued that, as OOA and OOD mature, greater reuse of design
patterns will mitigate the need for heavy testing of OO systems. Exactly the
opposite is true. Binder [BIN94b] discusses this when he states:

[E]ach reuse is a new context of usage and retesting is prudent. It seems likely that

more, not less, testing will be needed to obtain high reliability in object-oriented 

systems. 

The testing of OO systems presents a new set of challenges to the software
engineer. The definition of testing must be broadened to include error discov-
ery techniques (formal technical reviews) applied to OOA and OOD models.
The completeness and consistency of OO representations must be assessed as
they are built. Unit testing loses much of its meaning, and integration strate-
gies change significantly. In summary, both testing strategies and testing tac-
tics must account for the unique characteristics of OO software.

23 OBJECT-ORIENTED TESTING

What is it? The architecture of

object-oriented software results in

a series of layered subsystems

that encapsulate collaborating classes. Each of

these system elements (subsystems and classes)

perform functions that help to achieve system

requirements. It is necessary to test an OO system

at a variety of different levels in an effort to

uncover errors that may occur as classes collab-

orate with one another and subsystems commu-

nicate across architectural layers. 

Who does it? Object-oriented testing is performed by

software engineers and testing specialists.

Why is it important? You have to execute the pro-

gram before it gets to the customer with the spe-

cific intent of removing all errors, so that the cus-

tomer will not experience the frustration associ-

ated with a poor-quality product. In order to find

the highest possible number of errors, tests must

be conducted systematically and test cases must

be designed using disciplined techniques. 

What are the steps? OO testing is strategically simi-

lar to the testing of conventional systems, but it is

tactically different. Because the OO analysis and

design models are similar in structure and con-

tent to the resultant OO program, “testing” begins

with the review of these models. Once code has

been generated, OO testing begins “in the small”

with class testing. A series of tests are designed

that exercise class operations and examine

Q U I C K
L O O K
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23.1 BROADENING THE VIEW OF TESTING

The construction of object-oriented software begins with the creation of analysis and

design models (Chapters 21 and 22). Because of the evolutionary nature of the OO

software engineering paradigm, these models begin as relatively informal represen-

tations of system requirements and evolve into detailed models of classes, class con-

nections and relationships, system design and allocation, and object design

(incorporating a model of object connectivity via messaging). At each stage, the mod-

els can be tested in an attempt to uncover errors prior to their propagation to the next

iteration.

It can be argued that the review of OO analysis and design models is especially

useful because the same semantic constructs (e.g., classes, attributes, operations,

messages) appear at the analysis, design, and code levels. Therefore, a problem in

the definition of class attributes that is uncovered during analysis will circumvent side

effects that might occur if the problem were not discovered until design or code (or

even the next iteration of analysis). 

For example, consider a class in which a number of attributes are defined during

the first iteration of OOA. An extraneous attribute is appended to the class (due to a

misunderstanding of the problem domain). Two operations are then specified to

manipulate the attribute. A review is conducted and a domain expert points out the

error. By eliminating the extraneous attribute at this stage, the following problems

and unnecessary effort may be avoided during analysis:

1. Special subclasses may have been generated to accommodate the unneces-

sary attribute or exceptions to it. Work involved in the creation of unneces-

sary subclasses has been avoided.

2. A misinterpretation of the class definition may lead to incorrect or extraneous

class relationships.

whether errors exist as one class

collaborates with other classes.

As classes are integrated to form

a subsystem, thread-based, use-based, and clus-

ter testing, along with fault-based approaches,

are applied to fully exercise collaborating classes.

Finally, use-cases (developed as part of the OO

analysis model) are used to uncover errors at the

software validation level. 

What is the work product? A set of test cases to exer-

cise classes, their collaborations, and behaviors is

designed and documented; expected results

defined; and actual results recorded.

How do I ensure that I’ve done it right? When you

begin testing, change your point of view. Try hard

to “break” the software!  Design test cases in a dis-

ciplined fashion and review the test cases you do

create for thoroughness.

Q U I C K
L O O K

“Because of their
ability to detect and
correct defects in
upstream work
products, technical
reviews are at least
as important in
controlling cost and
schedule as testing.”
Steve McConnell 
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3. The behavior of the system or its classes may be improperly characterized to

accommodate the extraneous attribute.

If the error is not uncovered during analysis and propagated further, the following

problems could occur (and will have been avoided because of the earlier review) dur-

ing design:

1. Improper allocation of the class to subsystem and/or tasks may occur during

system design.

2. Unnecessary design work may be expended to create the procedural design

for the operations that address the extraneous attribute.

3. The messaging model will be incorrect (because messages must be designed

for the operations that are extraneous).

If the error remains undetected during design and passes into the coding activity, con-

siderable effort will be expended to generate code that implements an unnecessary

attribute, two unnecessary operations, messages that drive interobject communica-

tion, and many other related issues. In addition, testing of the class will absorb more

time than necessary. Once the problem is finally uncovered, modification of the sys-

tem must be carried out with the ever-present potential for side effects that are caused

by change.

During later stages of their development, OOA and OOD models provide substantial

information about the structure and behavior of the system. For this reason, these

models should be subjected to rigorous review prior to the generation of code. 

All object-oriented models should be tested (in this context, the term testing is used

to incorporate formal technical reviews) for correctness, completeness, and consis-

tency [MGR94] within the context of the model’s syntax, semantics, and pragmatics

[LIN94].

23.2 TESTING OOA AND OOD MODELS

Analysis and design models cannot be tested in the conventional sense, because they

cannot be executed. However, formal technical reviews (Chapter 8) can be used to

examine the correctness and consistency of both analysis and design models.

23.2.1 Correctness of OOA and OOD Models

The notation and syntax used to represent analysis and design models will be tied to

the specific analysis and design method that is chosen for the project. Hence, syn-

tactic correctness is judged on proper use of the symbology; each model is reviewed

to ensure that proper modeling conventions have been maintained. 

During analysis and design, semantic correctness must be judged based on the

model’s conformance to the real world problem domain. If the model accurately
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reflects the real world (to a level of detail that is appropriate to the stage of develop-

ment at which the model is reviewed), then it is semantically correct. To determine

whether the model does, in fact, reflect the real world, it should be presented to prob-

lem domain experts, who will examine the class definitions and hierarchy for omis-

sions and ambiguity. Class relationships (instance connections) are evaluated to

determine whether they accurately reflect real world object connections.1

23.2.2 Consistency of OOA and OOD Models

The consistency of OOA and OOD models may be judged by “considering the rela-

tionships among entities in the model. An inconsistent model has representations in

one part that are not correctly reflected in other portions of the model” [MGR94].

To assess consistency, each class and its connections to other classes should be

examined. The class-responsibility-collaboration model and an object-relationship

diagram can be used to facilitate this activity. As we noted in Chapter 21, the CRC

model is composed on CRC index cards. Each CRC card lists the class name, its respon-

sibilities (operations), and its collaborators (other classes to which it sends messages

and on which it depends for the accomplishment of its responsibilities). The collab-

orations imply a series of relationships (i.e., connections)  between classes of the OO

system. The object-relationship model provides a graphic representation of the con-

nections between classes.  All of this information can be obtained from the OOA

model (Chapter 21).

To evaluate the class model the following steps have been recommended [MGR94]:

1. Revisit the CRC model and the object-relationship model. Cross check

to ensure that all collaborations implied by the OOA model are properly 

represented.

2. Inspect the description of each CRC index card to determine if a dele-

gated responsibility is part of the collaborator’s definition. For exam-

ple, consider a class defined for a point-of-sale checkout system, called credit

sale. This class has a CRC index card illustrated in Figure 23.1. For this collec-

tion of classes and collaborations, we ask whether a responsibility (e.g., read

credit card) is accomplished if delegated to the named collaborator (credit

card). That is, does the class credit card have an operation that enables it to

be read? In this case the answer is, “Yes.” The object-relationship is traversed

to ensure that all such connections are valid.

3. Invert the connection to ensure that each collaborator that is asked for

service is receiving requests from a reasonable source. For example, if the

credit card class receives a request for purchase amount from the credit sale

class, there would be a problem. Credit card does not know the purchase amount.

1 Use-cases can be invaluable in tracking analysis and design models against real world usage sce-
narios for the OO system.

OOA Models

XRef
Additional suggestions
for conducting a CRC
model review are
presented in Chapter
21.

What steps
should we

take to review
the class model?

?
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4. Using the inverted connections examined in step 3, determine

whether other classes might be required and whether responsibili-

ties are properly grouped among the classes.

5. Determine whether widely requested responsibilities might be com-

bined into a single responsibility. For example, read credit card and get

authorization occur in every situation. They might be combined into a validate

credit request responsibility that incorporates getting the credit card number

and gaining authorization.

6. Steps 1 through 5 are applied iteratively to each class and through

each evolution of the OOA model.

Once the OOD model (Chapter 22) is created, reviews of the system design and

the object design should also be conducted. The system design depicts the overall

product architecture, the subsystems that compose the product, the manner in which

subsystems are allocated to processors, the allocation of classes to subsystems, and

the design of the user interface. The object model presents the details of each class

and the messaging activities that are necessary to implement collaborations between

classes.

The system design is reviewed by examining the object-behavior model developed

during OOA and mapping required system behavior against the subsystems designed

to accomplish this behavior. Concurrency and task allocation are also reviewed within

the context of system behavior. The behavioral states of the system are evaluated to

determine which exist concurrently. Use-case scenarios are used to  exercise the user

interface design. 
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Class name: Credit sale

Class type: Transaction event

Class characteristics: Nontangible, atomic, sequential, permanent, guarded

Responsibilities:                                             Collaborators:

Read credit card
Get authorization
Post purchase amount

Generate bill

Credit card
Credit authority
Product ticket
Sales ledger
Audit file
Bill

FIGURE 23.1 An example CRC index card used for review

OOD Model
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The object model should be tested against the object-relationship network to ensure

that all design objects contain the necessary attributes and operations to implement

the collaborations defined for each CRC index card. In addition, the detailed specifi-

cation of operation details (i.e., the algorithms that implement the operations) are

reviewed using conventional inspection techniques.

23.3 OBJECT-ORIENTED TESTING STRATEGIES

The classical strategy for testing computer software begins with “testing in the small”

and works outward toward “testing in the large.” Stated in the jargon of software test-

ing (Chapter 18), we begin with unit testing, then progress toward integration test-

ing, and culminate with validation and system testing. In conventional applications,

unit testing focuses on the smallest compilable program unit—the subprogram (e.g.,

module, subroutine, procedure, component). Once each of these units has been tested

individually, it is integrated into a program structure while a series of regression tests

are run to uncover errors due to interfacing between the modules and side effects

caused by the addition of new units. Finally, the system as a whole is tested to ensure

that errors in requirements are uncovered.

23.3.1 Unit Testing in the OO Context

When object-oriented software is considered, the concept of the unit changes. Encap-

sulation drives the definition of classes and objects. This means that each class and

each instance of a class (object) packages attributes (data) and the operations (also

known as methods or services) that manipulate these data. Rather than testing an

individual module, the smallest testable unit is the encapsulated class or object.

Because a class can contain a number of different operations and a particular oper-

ation may exist as part of a number of different classes, the meaning of unit testing

changes dramatically.

We can no longer test a single operation in isolation (the conventional view of unit

testing) but rather as part of a class. To illustrate, consider a class hierarchy in which

an operation X is defined for the superclass and is inherited by a number of subclasses.

Each subclass uses operation X, but it is applied within the context of the private

attributes and operations that have been defined for the subclass. Because the con-

text in which operation X is used varies in subtle ways, it is necessary to test opera-

tion X in the context of each of the subclasses. This means that testing operation X

in a vacuum (the traditional unit testing approach) is ineffective in the object-oriented

context.

Class testing for OO software is the equivalent of unit testing for conventional soft-

ware.2 Unlike unit testing of conventional software, which tends to focus on the algo-

rithmic detail of a module and the data that flow across the module interface, class

Class testing for OO
software is equivalent
to module unit testing
for conventional
software. It is not
advisable to test
operations in isolation.

2 Test case design methods for OO classes are discussed in Sections 23.4 through 23.6.

“The best tester isn’t
the one who finds
the most bugs . . .
The best tester is the
one who gets the
most bugs fixed.”
Cem Kaner et al. 
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testing for OO software is driven by the operations encapsulated by the class and the

state behavior of the class.

23.3.2 Integration Testing in the OO Context

Because object-oriented software does not have a hierarchical control structure, con-

ventional top-down and bottom-up integration strategies have little meaning. In addi-

tion, integrating operations one at a time into a class (the conventional incremental

integration approach) is often impossible because of the “direct and indirect interac-

tions of the components that make up the class” [BER93].

There are two different strategies for integration testing of OO systems [BIN94a].

The first, thread-based testing, integrates the set of classes required to respond to one

input or event for the system. Each thread is integrated and tested individually. Regres-

sion testing is applied to ensure that no side effects occur. The second integration

approach, use-based testing, begins the construction of the system by testing those

classes (called independent classes) that use very few (if any) of server classes. After

the independent classes are tested, the next layer of classes, called dependent classes,

that use the independent classes are tested. This sequence of testing layers of depen-

dent classes continues until the entire system is constructed. Unlike conventional

integration, the use of drivers and stubs (Chapter 18) as replacement operations is to

be avoided, when possible.

Cluster testing [MGR94] is one step in the integration testing of OO software.

Here, a cluster of collaborating classes (determined by examining the CRC and

object-relationship model) is exercised by designing test cases that attempt to

uncover errors in the collaborations. 

23.3.3 Validation Testing in an OO Context

At the validation or system level, the details of class connections disappear. Like con-

ventional validation, the validation of OO software focuses on user-visible actions

and user-recognizable output from the system. To assist in the derivation of valida-

tion tests, the tester should draw upon the use-cases (Chapter 20) that are part of the

analysis model. The use-case provides a scenario that has a high likelihood of uncov-

ered errors in user interaction requirements.

Conventional black-box testing methods can be used to drive validations tests. In

addition, test cases may be derived from the object-behavior model and from event

flow diagram created as part of OOA.

23.4 TEST CASE DESIGN FOR OO SOFTWARE

Test case design methods for OO software are still evolving. However, an overall

approach to OO test case design has been defined by Berard [BER93]:

1. Each test case should be uniquely identified and explicitly associated with the

class to be tested.
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2. The purpose of the test should be stated.

3. A list of testing steps should be developed for each test and should contain

[BER93]:

a. A list of specified states for the object that is to be tested.

b. A list of messages and operations that will be exercised as a consequence

of the test.

c. A list of exceptions that may occur as the object is tested.

d. A list of external conditions (i.e., changes in the environment external to

the software that must exist in order to properly conduct the test).

e. Supplementary information that will aid in understanding or implementing

the test.

Unlike conventional test case design, which is driven by an input-process-output view

of software or the algorithmic detail of individual modules, object-oriented testing

focuses on designing appropriate sequences of operations to exercise the states of a

class.

23.4.1 The Test Case Design Implications of OO Concepts

As we have already seen, the OO class is the target for test case design. Because

attributes and operations are encapsulated, testing operations outside of the class is

generally unproductive. Although encapsulation is an essential design concept for

OO, it can create a minor obstacle when testing. As Binder [BIN94a] notes, “Testing

requires reporting on the concrete and abstract state of an object.” Yet, encapsula-

tion can make this information somewhat difficult to obtain. Unless built-in opera-

tions are provided to report the values for class attributes, a snapshot of the state of

an object may be difficult to acquire.

Inheritance also leads to additional challenges for the test case designer. We have

already noted that each new context of usage requires retesting, even though reuse

has been achieved. In addition, multiple inheritance3 complicates testing further by

increasing the number of contexts for which testing is required [BIN94a]. If subclasses

instantiated from a superclass are used within the same problem domain, it is likely

that the set of test cases derived for the superclass can be used when testing the sub-

class. However, if the subclass is used in an entirely different context, the superclass

test cases will have little applicability and a new set of tests must be designed.

23.4.2 Applicability of Conventional Test Case Design Methods

The white-box testing methods described in Chapter 17 can be applied to the oper-

ations defined for a class. Basis path, loop testing, or data flow techniques can help

to ensure that every statement in an operation has been tested. However, the con-

3 An OOD concept that should be used with extreme care.

WebRef
An excellent collection of
papers, resources, and a
bibliography on OO
testing can be found at
www.rbsc.com
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cise structure of many class operations causes some to argue that the effort applied

to white-box testing might be better redirected to tests at a class level. 

Black-box testing methods are as appropriate for OO systems as they are for sys-

tems developed using conventional software engineering methods. As we noted ear-

lier in this chapter, use-cases can provide useful input in the design of black-box and

state-based tests [AMB95].

23.4.3 Fault-Based Testing4

The object of fault-based testing within an OO system is to design tests that have a high

likelihood of uncovering plausible faults. Because the product or system must con-

form to customer requirements, the preliminary planning required to perform fault-

based testing begins with the analysis model. The tester looks for plausible faults (i.e.,

aspects of the implementation of the system that may result in defects). To determine

whether these faults exist, test cases are designed to exercise the design or code. 

Consider a simple example.5 Software engineers often make errors at the bound-

aries of a problem. For example, when testing a SQRT operation that returns errors

for negative numbers, we know to try the boundaries: a negative number close to

zero and zero itself. "Zero itself" checks whether the programmer made a mistake

like

if (x > 0) calculate_the_square_root();

instead of the correct

if (x >= 0) calculate_the_square_root();

As another example, consider a Boolean expression:

if (a && !b || c)

Multicondition testing and related techniques probe for certain plausible faults in this

expression, such as

&& should be ||

! was left out where it was needed

There should be parentheses around !b || c

For each plausible fault, we design test cases that will force the incorrect expression

to fail. In the previous expression, (a=0, b=0, c=0) will make the expression as given

evaluate false. If the && should have been ||, the code has done the wrong thing and

might branch to the wrong path.
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4 Sections 23.4.3 through 23.4.7 have been adapted from an article by Brian Marick posted on the
Internet newsgroup comp.testing. This adaptation is included with the permission of the author.
For further discussion of these topics, see [MAR94].

5 The code presented in this and the following sections uses C++ syntax. For further information,
see any good book on C++.

Because fault-based
testing occurs at a
detailed level, it is best
reserved for operations
and classes that are
critical or suspect.

The strategy is to
hypothesize a set of
plausible faults and
then derive tests to
prove the hypothesis.
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Of course, the effectiveness of these techniques depends on how testers perceive

a "plausible fault." If real faults in an OO system are perceived to be "implausible,"

then this approach is really no better than any random testing technique. However,

if the analysis and design models can provide insight into what is likely to go wrong,

then fault-based testing can find significant numbers of errors with relatively low

expenditures of effort. 

Integration testing looks for plausible faults in operation calls or message connec-

tions. Three types of faults are encountered in this context: unexpected result, wrong

operation/message used, incorrect invocation.  To determine plausible faults as func-

tions (operations) are invoked, the behavior of the operation must be examined. 

Integration testing applies to attributes as well as to operations. The "behaviors"

of an object are defined by the values that its attributes are assigned. Testing should

exercise the attributes to determine whether proper values occur for distinct types of

object behavior.

It is important to note that integration testing attempts to find errors in the client

object, not the server. Stated in conventional terms, the focus of integration testing

is to determine whether errors exist in the calling code, not the called code.  The oper-

ation call is used as a clue, a way to find test requirements that exercise the calling

code.

23.4.4 The Impact of OO Programming on Testing

There are several ways object-oriented programming can have an impact on testing.

Depending on the approach to OOP, 

• Some types of faults become less plausible (not worth testing for).

• Some types of faults become more plausible (worth testing now).

• Some new types of faults appear.

When an operation is invoked, it may be hard to tell exactly what code gets exer-

cised. That is, the operation may belong to one of many classes. Also, it can be hard

to determine the exact type or class of a parameter. When the code accesses it, it may

get an unexpected value. The difference can be understood by considering a con-

ventional function call: 

x = func (y);

For conventional software, the tester need consider all behaviors attributed to func

and nothing more. In an OO context, the tester must consider the behaviors of

base::func(), of derived::func(), and so on.  Each time func is invoked, the tester must

consider the union of all distinct behaviors. This is easier if good OO design practices

are followed and the difference between superclasses and subclasses (in C++ jargon,

these are called base classes and derived classes) are limited. The testing approach for

base and derived classes is essentially the same.  The difference is one of bookkeeping.  

“If you want and
expect a program to
work, you will be
more likely to see a
working program—
you will miss
failures.”
Cem Kaner et al. 
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?
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Testing OO class operations is analogous to testing code that takes a function

parameter and then invokes it. Inheritance is a convenient way of producing poly-

morphic operations. At the call site, what matters is not the inheritance, but the poly-

morphism. Inheritance does make the search for test requirements more

straightforward.

By virtue of OO software architecture and construction, are some types of faults

more plausible for an OO system and others less plausible? The answer is, “Yes.” For

example, because OO operations are generally smaller, more time tends to be spent

on integration because there are more opportunities for integration faults. Therefore,

integration faults become more plausible.

23.4.5 Test Cases and the Class Hierarchy

As noted earlier in this chapter, inheritance does not obviate the need for thorough

testing of all derived classes. In fact, it can actually complicate the testing process.

Consider the following situation. A class base contains operations inherited and

redefined. A class derived redefines redefined to serve in a local context. There is lit-

tle doubt the derived::redefined() has to be tested because it represents a new design

and new code.  But does derived::inherited() have to be retested?

If derived::inherited() calls redefined and the behavior of redefined has changed,

derived::inherited() may mishandle the new behavior. Therefore, it needs new tests even

though the design and code have not changed. It is important to note, however, that

only a subset of all tests for derived::inherited() may have to be conducted. If part of the

design and code for inherited does not depend on redefined (i.e., that does not call it

nor call any code that indirectly calls it), that code need not be retested in the derived

class.

Base::redefined() and derived::redefined() are two different operations with different

specifications and implementations. Each would have a set of test requirements

derived from the specification and implementation. Those test requirements probe

for plausible faults: integration faults, condition faults, boundary faults, and so forth.

But the operations are likely to be similar. Their sets of test requirements will over-

lap. The better the OO design, the greater is the overlap. New tests need to be derived

only for those derived::redefined() requirements that are not satisfied by the base::rede-

fined() tests.

To summarize, the base::redefined() tests are applied to objects of class derived.

Test inputs may be appropriate for both base and derived classes, but the expected

results may differ in the derived class.

23.4.6 Scenario-Based Test Design

Fault-based testing misses two main types of errors: (1) incorrect specifications and

(2) interactions among subsystems. When errors associated with incorrect specifica-

tion occur, the product doesn't do what the customer wants. It might do the wrong

641

Even though a base
class has been
thoroughly tested, you
will still have to test all
classes derived from it.



PART FOUR OBJECT-ORIENTED SOFTWARE ENGINEERING642

thing or it might omit important functionality. But in either circumstance, quality (con-

formance to requirements) suffers. Errors associated with subsystem interaction occur

when the behavior of one subsystem creates circumstances (e.g., events, data flow)

that cause another subsystem to fail.

Scenario-based testing concentrates on what the user does, not what the product

does. This means capturing the tasks (via use-cases) that the user has to perform,

then applying them and their variants as tests.

Scenarios uncover interaction errors. But to accomplish this, test cases must be

more complex and more realistic than fault-based tests.  Scenario-based testing tends

to exercise multiple subsystems in a single test (users do not limit themselves to the

use of one subsystem at a time).

As an example, consider the design of scenario-based tests for a text editor. Use

cases follow:

Use-Case: Fix the Final Draft

Background: It's not unusual to print the "final" draft, read it, and discover some annoy-

ing errors that weren't obvious from the on-screen image. This use-case describes the

sequence of events that occurs when this happens.

1. Print the entire document.

2. Move around in the document, changing certain pages.

3. As each page is changed, it's printed.

4. Sometimes a series of pages is printed.

This scenario describes two things: a test and specific user needs. The user needs are

obvious: (1) a method for printing single pages and (2) a method for printing a range

of pages. As far as testing goes, there is a need to test editing after printing (as well

as the reverse). The tester hopes to discover that the printing function causes errors

in the editing function; that is, that the two software functions are not properly inde-

pendent.

Use-Case: Print a New Copy

Background: Someone asks the user for a fresh copy of the document. It must be printed.

1. Open the document.

2. Print it.

3. Close the document.

Again, the testing approach is relatively obvious. Except that this document didn't

appear out of nowhere. It was created in an earlier task. Does that task affect this

one?

In many modern editors, documents remember how they were last printed.  By

default, they print the same way next time. After the Fix the Final Draft scenario, just

selecting "Print" in the menu and clicking the "Print" button in the dialog box will

cause the last corrected page to print again. So, according to the editor, the correct

scenario should look like this:

Scenario-based testing
will uncover errors that
occur when any actor
interacts with the OO
software.

Although scenario-
based testing has
merit, you will get a
higher return on time
invested by reviewing
use-cases when they
are developed during
OOA.
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Use-Case: Print a New Copy

1. Open the document.

2. Select "Print" in the menu.

3. Check if you're printing a page range; if so, click to print the entire document.

4. Click on the Print button.

5. Close the document.

But this scenario indicates a potential specification error. The editor does not do what

the user reasonably expects it to do. Customers will often overlook the check noted

in step 3 above. They will then be annoyed when they trot off to the printer and find

one page when they wanted 100. Annoyed customers signal specification bugs.

A test case designer might miss this dependency in test design, but it is likely that

the problem would surface during testing. The tester would then have to contend

with the probable response, "That's the way it's supposed to work!"

23.4.7 Testing Surface Structure and Deep Structure

Surface structure refers to the externally observable structure of an OO program. That

is, the structure that is immediately obvious to an end-user. Rather than performing

functions, the users of many OO systems may be given objects to manipulate in some

way. But whatever the interface, tests are still based on user tasks. Capturing these

tasks involves understanding, watching, and talking with representative users (and

as many nonrepresentative users as are worth considering).

There will surely be some difference in detail.  For example, in a conventional sys-

tem with a command-oriented interface, the user might use the list of all commands

as a testing checklist. If no test scenarios existed to exercise a command, testing has

likely overlooked some user tasks (or the interface has useless commands). In a object-

based interface, the tester might use the list of all objects as a testing checklist.

The best tests are derived when the designer looks at the system in a new or uncon-

ventional way. For example, if the system or product has a command-based inter-

face, more thorough tests will be derived if the test case designer pretends that

operations are independent of objects. Ask questions like, “Might the user want to

use this operation—which applies only to the Scanner object—while working with

the printer?" Whatever the interface style, test case design that exercises the surface

structure should use both objects and operations as clues leading to overlooked tasks. 

Deep structure refers to the internal technical details of an OO program. That is,

the structure that is understood by examining the design and/or code. Deep struc-

ture testing is designed to exercise dependencies, behaviors, and communication

mechanisms that have been established as part of the system and object design (Chap-

ter 22) of OO software. 

The analysis and design models are used as the basis for deep structure testing.

For example, the object-relationship diagram or the subsystem collaboration diagram

depicts collaborations between objects and subsystems that may not be externally
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visible. The test case design then asks: “Have we captured (as a test) some task that

exercises the collaboration noted on the object-relationship diagram or the subsys-

tem collaboration diagram?  If not, why not?”

Design representations of class hierarchy provide insight into inheritance struc-

ture. Inheritance structure is used in fault-based testing. Consider a situation in which

an operation named caller has only one argument and that argument is a reference

to a base class. What might happen when caller is passed a derived class? What are

the differences in behavior that could affect caller? The answers to these questions

might lead to the design of specialized tests.

23.5 TESTING METHODS APPLICABLE AT THE CLASS LEVEL

In Chapter 17, we noted that software testing begins “in the small” and slowly pro-

gresses toward testing “in the large.” Testing in the small focuses on a single class

and the methods that are encapsulated by the class. Random testing and partition-

ing are methods that can be used to exercise a class during OO testing [KIR94].

23.5.1 Random Testing for OO Classes

To provide brief illustrations of these methods, consider a banking application in

which an account class has the following operations: open, setup, deposit, withdraw,

balance, summarize, creditLimit, and close [KIR94]. Each of these operations may be

applied for account, but certain constraints (e.g., the account must be opened before

other operations can be applied and closed after all operations are completed) are

implied by the nature of the problem. Even with these constraints, there are many

permutations of the operations. The minimum behavioral life history of an instance

of account includes the following operations:

open•setup•deposit•withdraw•close

This represents the minimum test sequence for account. However, a wide variety of

other behaviors may occur within this sequence:

open•setup•deposit•[deposit|withdraw|balance|summarize|creditLimit]n•withdraw•close

A variety of different operation sequences can be generated randomly. For example:

Test case r1:  open•setup•deposit•deposit•balance•summarize•withdraw•close

Test case r2:  open•setup•deposit•withdraw•deposit•balance•creditLimit•withdraw•close

These and other random order tests are conducted to exercise different class instance

life histories.

23.5.2 Partition Testing at the Class Level

Partition testing reduces the number of test cases required to exercise the class in

much the same manner as equivalence partitioning (Chapter 17) for conventional

The number of possible
permutations for
random testing can
grow quite large. A
strategy similar to
orthogonal array
testing (Chapter 17)
can be used to
improve testing
efficiency.
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software. Input and output are categorized and test cases are designed to exercise

each category. But how are the partitioning categories derived?

State-based partitioning categorizes class operations based on their ability to change

the state of the class. Again considering the account class, state operations include

deposit and withdraw, whereas nonstate operations include balance, summarize, and

creditLimit. Tests are designed in a way that exercises operations that change state

and those that do not change state separately. Therefore,

Test case p1: open•setup•deposit•deposit•withdraw•withdraw•close

Test case p2: open•setup•deposit•summarize•creditLimit•withdraw•close

Test case p1 changes state, while test case p2 exercises operations that do not change

state (other than those in the minimum test sequence).

Attribute-based partitioning categorizes class operations based on the attributes

that they use. For the account class, the attributes balance and creditLimit can be used

to define partitions. Operations are divided into three partitions: (1) operations that

use creditLimit, (2) operations that modify creditLimit, and (3) operations that do not use

or modify creditLimit. Test sequences are then designed for each partition.

Category-based partitioning categorizes class operations based on the generic func-

tion that each performs. For example, operations in the account class can be cate-

gorized in initialization operations (open, setup), computational operations (deposit,

withdraw). queries (balance, summarize, creditLimit) and termination operations (close). 

23.6 INTERCLASS TEST CASE DESIGN

Test case design becomes more complicated as integration of the OO system begins.

It is at this stage that testing of collaborations between classes must begin. To illus-

trate “interclass test case generation” [KIR94], we expand the banking example intro-

duced in Section 23.5 to include the classes and collaborations noted in Figure 23.2.

The direction of the arrows in the figure indicates the direction of messages and the

labeling indicates the operations that are invoked as a consequence of the collabo-

rations implied by the messages. 

Like the testing of individual classes, class collaboration testing can be accom-

plished by applying random and partitioning methods, as well as scenario-based test-

ing and behavioral testing.

23.6.1 Multiple Class Testing

Kirani and Tsai [KIR94] suggest the following sequence of steps to generate multiple

class random test cases:

1. For each client class, use the list of class operations to generate a series of

random test sequences. The operations will send messages to other server

classes.
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2. For each message that is generated, determine the collaborator class and the

corresponding operation in the server object.

3. For each operation in the server object (that has been invoked by messages

sent from the client object), determine the messages that it transmits.

4. For each of the messages, determine the next level of operations that are

invoked and incorporate these into the test sequence.

To illustrate [KIR94], consider a sequence of operations for the bank class relative to

an ATM class (Figure 23.2):

verifyAcct•verifyPIN•[[verifyPolicy•withdrawReq]|depositReq|acctInfoREQ]n

A random test case for the bank class might be

test case r3 = verifyAcct•verifyPIN•depositReq

In order to consider the collaborators involved in this test, the messages associated

with each of the operations noted in test case r3 is considered. Bank must collabo-

rate with ValidationInfo to execute the verifyAcct and verifyPIN. Bank must collab-

orate with account to execute depositReq. Hence, a new test case that exercises these

collaborations is

test case r4 = verifyAcctBank[validAcctValidationInfo]•verifyPINBank•

[validPinValidationInfo]•depositReq• [depositaccount]

cardinserted
password
deposit

withdraw
accntStatus
terminate

verifyStatus
depositStatus
dispenseCash
print AccntStat
read CardInfo
getCashAmnt

verifyAcct
verifyPIN

verifyPolicy
withdrawReq
depositReq

acctInfo

openAcct
initialDeposit

authorizeCard
deauthorize
closeAcct

validPIN
validAcct

creditLimit
accntType
balance
withdraw
deposit
close

ATM
user

interface
ATM

Cashier Account Validation
info

Bank

FIGURE 23.2 Class collaboration diagram for banking application [KIR94]
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The approach for multiple class partition testing is similar to the approach used

for partition testing of individual classes. A single class is partitioned as discussed in

Section 23.4.5. However, the test sequence is expanded to include those operations

that are invoked via messages to collaborating classes. An alternative approach par-

titions tests based on the interfaces to a particular class. Referring to Figure 23.2, the

bank class receives messages from the ATM and cashier classes. The methods

within bank can therefore be tested by partitioning them into those that serve ATM

and those that serve cashier. State-based partitioning (Section 23.4.9) can be used

to refine the partitions further.

23.6.2 Tests Derived from Behavior Models

In Chapter 21, we discussed the use of the state transition diagram as a model that rep-

resents the dynamic behavior of a class. The STD for a class can be used to help derive

a sequence of tests that will exercise the dynamic behavior of the class (and those

classes that collaborate with it). Figure 23.3 [KIR94] illustrates an STD for the account

class discussed earlier.6 Referring to the figure, initial transitions move through the

empty acct and setup acct states. The majority of all behavior for instances of the class

occurs while in the working acct state. A final withdrawal and close cause the account

class to make transitions to the nonworking acct and dead acct states, respectively.

647

Empty
acct

Empty
acct

Empty
acct

Set up
acct

Empty
acct

Working
acct

Empty
acct

Nonworking
acct

Empty
acct

Dead
acct close

balance
credit

accntInfo

withdrawal (final)

withdraw

deposit

deposit (initial)

setup Accntopen

6 UML symbology is used for the STD shown in Figure 23.3. It differs slightly from the symbology
used for STDs in Part Three of this book.
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The tests to be designed should achieve all state coverage [KIR94]. That is, the

operation sequences should cause the account class to make transition through all

allowable states:

test case s1: open•setupAccnt•deposit (initial)•withdraw (final)•close

It should be noted that this sequence is identical to the minimum test sequence dis-

cussed in Section 23.5.1.  Adding additional test sequences to the minimum sequence,

test case s2: open•setupAccnt•deposit(initial)•deposit•balance•credit•withdraw (final)•close

test case s3: open•setupAccnt•deposit(initial)•deposit•withdraw•accntInfo•withdraw (final)•close

Still more test cases could be derived to ensure that all behaviors for the class have

been adequately exercised. In situations in which the class behavior results in a col-

laboration with one or more classes, multiple STDs are used to track the behavioral

flow of the system.

The state model can be traversed in a “breadth-first” [MGR94] manner. In this con-

text, breadth first implies that a test case exercise a single transition and that when a

new transition is to be tested only previously tested transitions are used.

Consider the credit card object discussed in Section 23.2.2. The initial state of

credit card is undefined (i.e., no credit card number has been provided). Upon read-

ing the credit card during a sale, the object takes on a defined state; that is, the

attributes card number and expiration date, along with bank specific identifiers are

defined. The credit card is submitted when it is sent for authorization and it is

approved when authorization is received. The transition of credit card from one

state to another can be tested by deriving test cases that cause the transition to

occur. A breadth-first approach to this type of testing would not exercise submit-

ted before it exercised undefined and defined. If it did, it would make use of transi-

tions that had not been previously tested and would therefore violate the breadth-first

criterion.

23.7 SUMMARY

The overall objective of object-oriented testing—to find the maximum number of

errors with a minimum amount of effort—is identical to the objective of conventional

software testing. But the strategy and tactics for OO testing differ significantly. The

view of testing broadens to include the review of both the analysis and design model.

In addition, the focus of testing moves away from the procedural component (the

module) and toward the class.

Because the OO analysis and design models and the resulting source code are

semantically coupled, testing (in the form of formal technical reviews) begins during

these engineering activities. For this reason, the review of CRC, object-relationship,

and object-behavior models can be viewed as first stage testing.
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Once OOP has been accomplished, unit testing is applied for each class. The design

of tests for a class uses a variety of methods: fault-based testing, random testing, and

partition testing. Each of these methods exercises the operations encapsulated by the

class. Test sequences are designed to ensure that relevant operations are exercised.

The state of the class, represented by the values of its attributes, is examined to deter-

mine if errors exist. 

Integration testing can be accomplished using a thread-based or use-based strat-

egy. Thread-based testing integrates the set of classes that collaborate to respond to

one input or event. Use-based testing constructs the system in layers, beginning with

those classes that do not use server classes. Integration test case design methods

can also use random and partition tests. In addition, scenario-based testing and tests

derived from behavioral models can be used to test a class and its collaborators. A

test sequence tracks the flow of operations across class collaborations. 

OO system validation testing is black-box oriented and can be accomplished by

applying the same black-box methods discussed for conventional software. How-

ever, scenario-based testing dominates the validation of OO systems, making the

use-case a primary driver for validation testing.
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PROBLEMS AND POINTS TO PONDER

23.1. In your own words, describe why the class is the smallest reasonable unit for

testing within an OO system.
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23.2. Why do we have to retest subclasses that are instantiated from an existing

class, if the existing class has already been thoroughly tested? Can we use the test

cases designed for the existing class?

23.3. Why should “testing” begin with the OOA and OOD activities?

23.4. Derive a set of CRC index cards for SafeHome and conduct the steps noted in

Section 23.2.2 to determine if inconsistencies exist.

23.5. What is the difference between thread-based and use-based strategies for inte-

gration testing? How does cluster testing fit in?

23.6. Apply random testing and partitioning to three classes defined in the design

for the SafeHome system that you produced for Problem 22.12. Produce test cases

that indicate the operation sequences that will be invoked.

23.7. Apply multiple class testing and tests derived from the behavioral model to

the SafeHome design.

23.8. Derive tests using methods noted in Problems 23.6 and 23.7 for the PHTRS

system described in Problem 12.13. 

23.9. Derive tests using methods noted in Problems 23.6 and 23.7 for the video game

considered in Problem 22.14.

23.10. Derive tests using methods noted in Problems 23.6 and 23.7 for the e-mail

system considered in Problem 22.15.

23.11. Derive tests using methods noted in Problems 23.6 and 23.7 for the ATC sys-

tem considered in Problem 22.16.

23.12. Derive four additional tests using each of the methods noted in Problems

23.6 and 23.7 for the banking application presented in Sections 23.5 and 23.6.

FURTHER READINGS AND INFORMATION SOURCES

The literature for object-oriented testing is relatively sparse, although it has expanded

somewhat in recent years. Binder (Testing Object-Oriented Systems: Models, Patterns,

and Tools, Addison-Wesley, 2000) has written the most comprehensive treatment of

the subject published to date. Siegel and Muller (Object Oriented Software Testing: A

Hierarchical Approach, Wiley, 1996) proposed a practical testing strategy for OO sys-

tems. Marick (The Craft of Software Testing: Subsystem Testing Including Object-Based

and Object-Oriented Testing, Prentice-Hall, 1995) covers testing for both conventional

and OO software. 

Anthologies of important papers on OO testing have been edited by Kung et al.

(Testing Object-Oriented Software, IEEE Computer Society, 1998) and Braude (Object

Oriented Analysis, Design and Testing: Selected Readings, IEEE Computer Society, 1998).
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These IEEE tutorials provide an interesting historical perspective on development in

OO testing.

Jorgensen (Software Testing: A Craftsman’s Approach, CRC Press, 1995) and McGre-

gor and Sykes (Object-Oriented Software Development, Van Nostrand-Reinhold, 1992)

present chapters dedicated to the topic. Beizer (Black-Box Testing, Wiley, 1995) dis-

cusses a variety of test case design methods that are appropriate in an OO context.

Binder (Testing Object-Oriented Systems, Addison-Wesley, 1996) and Marick [MAR94]

present detailed treatments of OO testing. In addition, many of the sources noted for

Chapter 17 are generally applicable to OO testing.

A wide variety of information sources on object-oriented testing and related sub-

jects is available on the Internet. An up-to-date list of World Wide Web references

that are relevant to OO testing can be found at the SEPA Web site:

http://www.mhhe.com/engcs/compsci/pressman/resources/OOT.mhtml
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Early in this book we noted that measurement and metrics are key com-
ponents of any engineering discipline—and object-oriented software engi-
neering is no exception. Sadly, the use of metrics for OO systems has

progressed much more slowly than the use of other OO methods. Ed Berard
[BER95] notes the irony of measurement when he states: 

Software people seem to have a love-hate relationship with metrics. On one hand,

they despise and distrust anything that sounds or looks like a measurement. They

are quick to point out the "flaws" in the arguments of anyone who talks about mea-

suring software products, software processes, and (especially) software people. On

the other hand, these same people seem to have no problems identifying which pro-

gramming language is the best, the stupid things that managers do to "ruin" projects,

and who's methodology works in what situations.

The “love-hate relationship” that Berard notes is real. And yet, as OO sys-
tems become more pervasive, it is essential that software engineers have quan-
titative measurements for assessing the quality of designs at both the
architectural and component levels. These measures enable an engineer to
assess the software early in the process, making changes that will reduce com-
plexity and improve the long-term viability of the end product.

24 TECHNICAL METRICS FOR 
OBJECT-ORIENTED SYSTEMS

What is it? Building OO software

has been an engineering activ-

ity that relies more on collective

wisdom, folklore, and qualitative guidance than

on quantitative evaluation. OO metrics have been

introduced to help a software engineer use quan-

titative analysis to assess the quality of the design

before a system is built. The focus of OO metrics is

on the class—the fundamental building block of

the OO architecture.

Who does it? Software engineers use OO metrics to

help them build higher-quality software.

Why is it important? As we stated in the Quick Look

for Chapter 19, qualitative assessment of computer

software must be complemented with quantita-

tive analysis. A software engineer needs objec-

tive criteria to help guide the design of the OO

architecture, the classes and subsystems that pop-

ulate the architecture, and the operations and

attributes that constitute a class. The tester needs

quantitative guidance that will help in the selec-

tion of test cases and their targets. Technical met-

rics provide a basis from which analysis, design,

and testing can be conducted more objectively

and assessed more quantitatively.

What are the steps? The first step in the measurement

process is to derive the software measures and met-

rics that are appropriate for the representation of

software that is being considered. Next, data

required to derive the formulated metrics are 

Q U I C K
L O O K
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24.1 THE INTENT OF OBJECT-ORIENTED METRICS

The primary objectives for object-oriented metrics are no different than those for met-

rics derived for conventional software:

• to better understand the quality of the product

• to assess the effectiveness of the process

• to improve the quality of work performed at a project level

Each of these objectives is important, but for the software engineer, product quality must

be paramount. But how do we measure the quality of an OO system? What character-

istics of the design model can be assessed to determine whether the system will be easy

to implement, amenable to test, simple to modify, and most important, acceptable to

end-users? These questions are addressed throughout the remainder of this chapter.

24.2 THE DISTINGUISHING CHARACTERISTICS OF 
OBJECT-ORIENTED METRICS

Metrics for any engineered product are governed by the unique characteristics of the

product. For example, it would be meaningless to compute miles per gallon for an

electric automobile. The metric is sound for conventional (i.e., gasoline powered)

cars but it does not apply when the mode of propulsion changes radically. Object-

oriented software is fundamentally different than software developed using conven-

tional methods. For this reason, the metrics for OO systems must be tuned to the

characteristics that distinguish OO from conventional software.

Berard [BER95] defines five characteristics that lead to specialized metrics: local-

ization, encapsulation, information hiding, inheritance, and object abstraction tech-

niques. Each of these characteristics is discussed briefly in the sections that follow.1

collected. Once computed, appro-

priate metrics are analyzed based

on pre-established guidelines and

past data. The results of the analysis are interpreted

to gain insight into the quality of the software, and

the results of the interpretation lead to modifica-

tion of work products arising out of analysis, design,

code, or test.

What is the work product? Software metrics that 

are computed using data collected from the

analysis and design models, source code, and test

cases.

How do I ensure that I’ve done it right? You should

establish the objectives of measurement before

the data collection begins, defining each OO met-

ric in an unambiguous manner. Define only a few

metrics and then use them to gain insight into the

quality of a software engineering work product.  

Q U I C K
L O O K

1 This discussion has been adapted from [BER95].
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24.2.1 Localization

Localization is a characteristic of software that indicates the manner in which infor-

mation is concentrated within a program. For example, conventional methods for

functional decomposition localize information around functions, which are typically

implemented as procedural modules. Data-driven methods localize information

around specific data structures. In the OO context, information is concentrated by

encapsulating both data and process within the bounds of a class or object.

Because conventional software emphasizes function as a localization mechanism,

software metrics have focused on the internal structure or complexity of functions

(e.g., module length, cohesion or cyclomatic complexity) or the manner in which

functions connect to one another (e.g., module coupling).

Since the class is the basic unit of an OO system, localization is based on objects.

Therefore, metrics should apply to the class (object) as a complete entity. In addition,

the relationship between operations (functions) and classes is not necessarily one to

one. Therefore, metrics that reflect the manner in which classes collaborate must be

capable of accommodating one-to-many and many-to-one relationships.

24.2.2 Encapsulation

Berard [BER95] defines encapsulation as “the packaging (or binding together) of a

collection of items. Low-level examples of encapsulation [for conventional software]

include records and arrays, [and] subprograms (e.g., procedures, functions, subrou-

tines, and paragraphs) are mid-level mechanisms for encapsulation.” 

For OO systems, encapsulation encompasses the responsibilities of a class, includ-

ing its attributes (and other classes for aggregate objects) and operations, and the

states of the class, as defined by specific attribute values.

Encapsulation influences metrics by changing the focus of measurement from a

single module to a package of data (attributes) and processing modules (operations).

In addition encapsulation encourages measurement at a higher level of abstraction.

For example, later in this chapter metrics associated with the number of operations

per class will be introduced. Contrast this level of abstraction to conventional met-

rics that focus on counts of Boolean conditions (cyclomatic complexity) or line of

code counts. 

24.2.3 Information Hiding

Information hiding suppresses (or hides) the operational details of a program com-

ponent. Only the information necessary to access the component is provided to those

other components that wish to access it.

A well-designed OO system should encourage information hiding. Therefore, met-

rics that provide an indication of the degree to which hiding has been achieved should

provide an indication of the quality of the OO design.
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24.2.4 Inheritance

Inheritance is a mechanism that enables the responsibilities of one object to be prop-

agated to other objects. Inheritance occurs throughout all levels of a class hierarchy.

In general, conventional software does not support this characteristic.

Because inheritance is a pivotal characteristic in many OO systems, many OO met-

rics focus on it. Examples (discussed later in this chapter) include number of children

(number of immediate instances of a class), number of parents (number of immedi-

ate generalizations), and class hierarchy nesting level (depth of a class in an inheri-

tance hierarchy).

24.2.5 Abstraction

Abstraction is a mechanism that enables the designer to focus on the essential details

of a program component (either data or process) with little concern for lower-level

details. As Berard states: “Abstraction is a relative concept. As we move to higher

levels of abstraction we ignore more and more details, i.e., we provide a more gen-

eral view of a concept or item. As we move to lower levels of abstraction, we intro-

duce more details, i.e., we provide a more specific view of a concept or item.”

Because a class is an abstraction that can be viewed at many different levels of

detail and in a number of different ways (e.g., as a list of operations, as a sequence

of states, as a series of collaborations), OO metrics represent abstractions in terms

of measures of a class (e.g., number of instances per class per application, number

or parameterized classes per application, and ratio of parameterized classes to non-

parameterized classes).

24.3 METRICS FOR THE OO DESIGN MODEL

There is much about object-oriented design that is subjective—an experienced designer

“knows” how to characterize an OO system so that it will effectively implement cus-

tomer requirements. But, as an OO design model grows in size and complexity, a

more objective view of the characteristics of the design can benefit both the experi-

enced designer (who gains additional insight) and the novice (who obtains an indi-

cation of quality that would otherwise be unavailable).

In a detailed treatment of software metrics for OO systems, Whitmire [WHI97]

describes nine distinct and measurable characteristics of an OO design:

Size. Size is defined in terms of four views: population, volume, length, and

functionality. Population is measured by taking a static count of OO entities

such as classes or operations. Volume measures are identical to population

measures but are collected dynamically—at a given instant of time. Length is

a measure of a chain of interconnected design elements (e.g., the depth of an

inheritance tree is a measure of length). Functionality metrics provide an indi-

rect indication of the value delivered to the customer by an OO application. 

What
characteristics

can be measured
when we assess
an OO design?

?
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Complexity. Like size, there are many differing views of software complex-

ity [ZUS97]. Whitmire views complexity in terms of structural characteristics

by examining how classes of an OO design are interrelated to one another.

Coupling. The physical connections between elements of the OO design

(e.g., the number of collaborations between classes or the number of mes-

sages passed between objects) represent coupling within an OO system.

Sufficiency. Whitmire defines sufficiency as “the degree to which an

abstraction possesses the features required of it, or the degree to which a

design component possesses features in its abstraction, from the point of

view of the current application.” Stated another way, we ask: “What prop-

erties does this abstraction (class) need to possess to be useful to me?”

[WHI97]. In essence, a design component (e.g., a class) is sufficient if it

fully reflects all properties of the application domain object that it is mod-

eling—that is, that the abstraction (class) possesses the features required

of it.

Completeness. The only difference between completeness and sufficiency

is “the feature set against which we compare the abstraction or design com-

ponent [WHI97].” Sufficiency compares the abstraction from the point of view

of the current application. Completeness considers multiple points of view,

asking the question: “What properties are required to fully represent the

problem domain object?” Because the criterion for completeness considers

different points of view, it has an indirect implication about the degree to

which the abstraction or design component can be reused.

Cohesion. Like its counterpart in conventional software, an OO component

should be designed in a manner that has all operations working together to

achieve a single, well-defined purpose. The cohesiveness of a class is deter-

mined by examining the degree to which “the set of properties it possesses is

part of the problem or design domain” [WHI97].

Primitiveness. A characteristic that is similar to simplicity, primitiveness

(applied to both operations and classes) is the degree to which an operation

is atomic—that is, the operation cannot be constructed out of a sequence of

other operations contained within a class. A class that exhibits a high degree

of primitiveness encapsulates only primitive operations.

Similarity. The degree to which two or more classes are similar in terms of

their structure, function, behavior, or purpose is indicated by this measure.

Volatility. As we have seen earlier in this book, design changes can occur

when requirements are modified or when modifications occur in other parts

of an application, resulting in mandatory adaptation of the design component

in question. Volatility of an OO design component measures the likelihood

that a change will occur.
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decisions for which I
had to rely on
folklore and myth
can now be made
using quantitative
data.”
Scott Whitmire 

WebRef
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Whitmire’s derivation of metrics for these design characteristics is beyond the

scope of this book. Interested readers should see [WHI97] for more detail.

In reality, technical metrics for OO systems can be applied not only to the design

model, but also the analysis model. In the sections that follow, we explore metrics

that provide an indication of quality at the OO class level and the operation level. In

addition, metrics applicable for project management and testing are also explored.

24.4 CLASS-ORIENTED METRICS

The class is the fundamental unit of an OO system. Therefore, measures and metrics

for an individual class, the class hierarchy, and class collaborations will be invalu-

able to a software engineer who must assess design quality. In earlier chapters, we

saw that the class encapsulates operations (processing) and attributes (data). The

class is often the “parent” for subclasses (sometimes called children) that inherit its

attributes and operations. The class often collaborates with other classes. Each of

these characteristics can be used as the basis for measurement.2

24.4.1 The CK Metrics Suite

One of the most widely referenced sets of OO software metrics has been proposed

by Chidamber and Kemerer [CHI94]. Often referred to as the CK metrics suite, the

authors have proposed six class-based design metrics for OO systems.3

Weighted methods per class (WMC). Assume that n methods of complexity c1,

c2, . . ., cn are defined for a class C. The specific complexity metric that is chosen (e.g.,

cyclomatic complexity) should be normalized so that nominal complexity for a method

takes on a value of 1.0.

WMC = � ci

for i = 1 to n. The number of methods and their complexity are reasonable indica-

tors of the amount of effort required to implement and test a class. In addition, the

larger the number of methods, the more complex is the inheritance tree (all sub-

classes inherit the methods of their parents). Finally, as the number of methods grows

for a given class,  it is likely to become more and more application specific, thereby

limiting potential reuse. For all of these reasons, WMC should be kept as low as is

reasonable.

2 It should be noted that the validity of some of the metrics discussed in this chapter is currently
debated in the technical literature. Those who champion measurement theory demand a degree
of formalism that some of the OO metrics do not provide. However, it is reasonable to state that
all of the metrics noted provide useful insight for the software engineer.

3 Chidamber, Darcy,  and Kemerer use the term methods rather than operations. Their usage of the
term is reflected in this section.

The number of
methods and their
complexity are directly
correlated to the effort
required to test a class.
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Although it would seem relatively straightforward to develop a count for the num-

ber of methods in a class, the problem is actually more complex than it seems.

Churcher and Shepperd [CHU95] discuss this issue when they write:

In order to count methods, we must answer the fundamental question ”Does a method

belong only to the class which defines it, or does it also belong to every class which

inherits it directly or indirectly?” Questions such as this may seem trivial since the run-

time system will ultimately resolve them. However, the implications for metrics may be

significant.

One possibility is to restrict counting to the current class, ignoring inherited members.

The motivation for this would be that inherited members have already been counted in the

classes where they are defined, so the class increment is the best measure of its function-

ality—what it does reflects its reason for existing.  In order to understand what a class does,

the most important source of information is its own operations. If a class cannot respond

to a message (i.e., it lacks a corresponding method of its own) then it will pass the mes-

sage on to its parent(s).

At the other extreme, counting could include all methods defined in the current class,

together with all inherited methods. This approach emphasizes the importance of the state

space, rather than the class increment, in understanding a class.

Between these extremes lie a number of other possibilities. For example, one could

restrict counting to the current class and members inherited directly from parent(s). This

approach would be based on the argument that the specialization of parent classes is the

most directly relevant to the behavior of a child class.

Like most counting conventions in software metrics, any of the approaches just out-

lined is acceptable, as long as the counting approach is applied consistently when-

ever metrics are collected.

Depth of the inheritance tree (DIT). This metric is “the maximum length from

the node to the root of the tree” [CHI94]. Referring to Figure 24.1, the value of DIT for

the class-hierarchy shown is 4. As DIT grows, it is likely that lower-level classes will

inherit many methods. This leads to potential difficulties when attempting to predict

the behavior of a class. A deep class hierarchy (DIT is large) also leads to greater

design complexity. On the positive side, large DIT values imply that many methods

may be reused.

Number of children (NOC). The subclasses that are immediately subordinate

to a class in the class hierarchy are termed its children. Referring to Figure 24.1,

class C2 has three children—subclasses C21, C22, and C23. As the number of chil-

dren grows, reuse increases but also, as NOC increases, the abstraction repre-

sented by the parent class can be diluted. That is, some of the children may not

really be appropriate members of the parent class. As NOC increases, the amount

of testing (required to exercise each child in its operational context) will also

increase.
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Inheritance is an
extremely powerful
feature that can get
you into trouble, if you
use it without care.
Use DIT and other
related metrics to give
yourself a reading on
the complexity of class
hierarchies.
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Coupling between object classes (CBO). The CRC model (Chapter 21) may be

used to determine the value for CBO. In essence, CBO is the number of collabora-

tions listed for a class on its CRC index card. As CBO increases, it is likely that the

reusability of a class will decrease. High values of CBO also complicate modifications

and the testing that ensues when modifications are made. In general, the CBO val-

ues for each class should be kept as low as is reasonable. This is consistent with the

general guideline to reduce coupling in conventional software.

Response for a class (RFC).  The response set of a class is “a set of methods that

can potentially be executed in response to a message received by an object of that

class” [CHI94]. RFC is the number of methods in the response set. As RFC increases,

the effort required for testing also increases because the test sequence (Chapter 23)

grows. It also follows that, as RFC increases, the overall design complexity of the class

increases.

Lack of cohesion in methods (LCOM). Each method within a class, C, accesses

one or more attributes (also called instance variables). LCOM is the number of meth-

ods that access one or more of the same attributes.4 If no methods access the same

C

C1

C11

C2

C22C21 C23

C211

FIGURE 24.1
A class 
hierarchy

4 The formal definition is a bit more complex. See [CHI94] for details.

The concepts of
coupling and cohesion
apply to both
conventional and OO
software. Keep class
coupling low and class
and operation
cohesion high.
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attributes, then LCOM = 0. To illustrate the case where LCOM ≠ 0, consider a class

with six methods. Four of the methods have one or more attributes in common (i.e.,

they access common attributes). Therefore, LCOM = 4. If LCOM is high, methods may

be coupled to one another via attributes. This increases the complexity of the class

design. In general, high values for LCOM imply that the class might be better designed

by breaking it into two or more separate classes. Although there are cases in which

a high value for LCOM is justifiable, it is desirable to keep cohesion high; that is, keep

LCOM low.

24.4.2 Metrics Proposed by Lorenz and Kidd

In their book on OO metrics, Lorenz and Kidd [LOR94] divide class-based metrics

into four broad categories: size, inheritance, internals, and externals. Size-oriented

metrics for the OO class focus on counts of attributes and operations for an individ-

ual class and average values for the OO system as a whole. Inheritance-based met-

rics focus on the manner in which operations are reused through the class hierarchy.

Metrics for class internals look at cohesion (Section 24.4.1) and code-oriented issues,

and external metrics examine coupling and reuse. A sampling of metrics proposed

by Lorenz and Kidd follows:5

Class size (CS). The overall size of a class can be measured by determining the fol-

lowing measures:

• The total number of operations (both inherited and private instance opera-

tions) that are encapsulated within the class.

• The number of attributes (both inherited and private instance attributes) that

are encapsulated by the class.

The WMC metric proposed by Chidamber and Kemerer (Section 24.4.1) is also a

weighted measure of class size. As we noted earlier, large values for CS indicate that

a class may have too much responsibility. This will reduce the reusability of the class

and complicate implementation and testing. In general, inherited or public opera-

tions and attributes should be weighted more heavily in determining class size [LOR94].

Private operations and attributes enable specialization and are more localized in the

design. Averages for the number of class attributes and operations may also be com-

puted. The lower the average values for size, the more likely that classes within the

system can be reused widely.

Number of operations overridden by a subclass (NOO). There are instances when

a subclass replaces an operation inherited from its superclass with a specialized version
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5 For a complete discussion, see [LOR94].

During review of the
OOA model, the CRC
index cards will
provide a reasonable
indication of expected
values for CS. If you
encounter a class with
a large responsibility
count during OOA,
consider partitioning it.

“Object-oriented
measures are an
integral part of
object technology
and of good
software
engineering.”
Brian Henderson-
Sellers 
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for its own use. This is called overriding. Large values for NOO generally indicate a design

problem. As Lorenz and Kidd point out: 

Since a subclass should be a specialization of its superclasses, it should primarily extend

the services [operations] of the superclasses. This should result in unique new method

names.

If NOO is large, the designer has violated the abstraction implied by the superclass.

This results in a weak class hierarchy and OO software that can be difficult to test

and modify.

Number of operations added by a subclass (NOA). Subclasses are specialized

by adding private operations and attributes. As the value for NOA increases, the sub-

class drifts away from the abstraction implied by the superclass. In general, as the

depth of the class hierarchy increases (DIT becomes large), the value for NOA at lower

levels in the hierarchy should go down.

Specialization index (SI). The specialization index provides a rough indication of

the degree of specialization for each of the subclasses in an OO system. Specializa-

tion can be achieved by adding or deleting operations or by overriding. 

SI = [NOO � level]/Mtotal

where level is the level in the class hierarchy at which the class resides and Mtotal is

the total number of methods for the class. The higher is the value of SI, the more likely

the class hierarchy has classes that do not conform to the superclass abstraction.

24.4.3 The MOOD Metrics Suite

Harrison, Counsell, and Nithi [HAR98] propose a set of metrics for object-oriented

design that provide quantitative indicators for OO design characteristics. A sampling

of MOOD metrics follows:

Method inheritance factor (MIF). The degree to which the class architecture of

an OO system makes use of inheritance for both methods (operations) and attributes

is defined as

MIF = � Mi(Ci)/� Ma(Ci)

where the summation occurs over i = 1 to TC. TC is defined as the total number of

classes in the architecture, Ci is a class within the architecture, and 

Ma(Ci) = Md(Ci) + Mi(Ci) 

where

“Analyzing OO
software in order to
evaluate its quality
is becoming
increasingly
important as the
paradigm continues
to increase in
popularity.”
Rachel Harrison,
et al. 
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Ma(Ci) = the number of methods that can be invoked in association with Ci.

Md(Ci) ) = the number of methods declared in the class Ci.

Mi(Ci) = the number of methods inherited (and not overridden) in Ci.

The value of MIF (the attribute inheritance factor, AIF, is defined in an analogous man-

ner) provides an indication of the impact of inheritance on the OO software.

Coupling factor (CF). Earlier in this chapter we noted that coupling is an indica-

tion of the connections between elements of the OO design. The MOOD metrics suite

defines coupling in the following way:

CF =  ∑i ∑j is_client (Ci, Cj)]/(TC2 � TC)

where the summations occur over i = 1 to TC and j = 1 to TC. The function

is_client = 1, if and only if a relationship exists between the client class, Cc, and

the server class, Cs, and Cc ≠ Cs

= 0, otherwise

Although many factors affect software complexity, understandability, and maintain-

ability, it is reasonable to conclude that, as the value for CF increases, the complex-

ity of the OO software will also increase and understandability, maintainability, and

the potential for reuse may suffer as a result.

Polymorphism factor (PF). Harrison and her colleagues [HAR98] define PF as “the

number of methods that redefine inherited methods, divided by the maximum num-

ber of possible distinct polymorphic situations . . . [t]hus, PF is an indirect measure

of the relative amount of dynamic binding in a system.” The MOOD metrics suite

defines PF in the following manner:

MIF =  �i Mo(Ci)/�i [Mn(Ci) � DC(Ci)]

where the summations occur over i = 1 to TC and

Md(Ci) = Mn(Ci) + Mo(Ci)

Also,

Mn(Ci) = the number of new methods.

Mo(Ci) = the number of overriding methods.

DC(Ci) = the descendants count (the number of descendant classes of a base class).

Harrison and her colleagues [HAR98] present a detailed analysis of MIF, CF, and PF

along with other metrics and examine their validity for use in the assessment of design

quality.
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24.5 OPERATION-ORIENTED METRICS

Because the class is the dominant unit in OO systems, fewer metrics have been pro-

posed for operations that reside within a class. Churcher and Shepperd [CHU95] dis-

cuss this when they state:

Results of recent studies indicate that methods tend to be small, both in terms of number

of statements and in logical complexity [WIL93], suggesting that connectivity structure of

a system may be more important than the content of individual modules.

However, some insights can be gained by examining average characteristics for meth-

ods (operations). Three simple metrics, proposed by Lorenz and Kidd [LOR94], are

noted next:

Average operation size (OSavg). Although lines of code could be used as an indi-

cator  for operation size, the LOC measure suffers from all the problems discussed in

Chapter 4. For this reason, the number of messages sent by the operation provides

an alternative for operation size. As the number of messages sent by a single oper-

ation increases, it is likely that responsibilities have not been well-allocated within

a class.

Operation complexity (OC). The complexity of an operation can be computed

using any of the complexity metrics (Chapter 19) proposed for conventional software

[ZUS90]. Because operations should be limited to a specific responsibility, the designer

should strive to keep OC as low as possible.

Average number of parameters per operation (NPavg). The larger the number

of operation parameters, the more complex the collaboration between objects. In

general, NPavg should be kept as low as possible. 

24.6 METRICS FOR OBJECT-ORIENTED TESTING

The design metrics noted in Sections 24.4 and 24.5 provide an indication of design

quality. They also provide a general indication of the amount of testing effort required

to exercise an OO system.

Binder [BIN94] suggests a broad array of design metrics that have a direct influ-

ence on the “testability” of an OO system. The metrics are organized into categories

that reflect important design characteristics.

Encapsulation

Lack of cohesion in methods (LCOM).6 The higher the value of LCOM, the more

states must be tested to ensure that methods do not generate side effects.

6 See Section 24.4.1 for a description of LCOM.

XRef
Metrics that can be
applied at the
component level can
also be applied to
operations. See
Chapter 19 for details.



CHAPTER 24 TECHNICAL METRICS FOR OBJECT-ORIENTED SYSTEMS

Percent public and protected (PAP). Public attributes are inherited from other

classes and therefore visible to those classes. Protected attributes are a special-

ization and private to a specific subclass. This metric indicates the percentage of

class attributes that are public. High values for PAP increase the likelihood of side

effects among classes. Tests must be designed to ensure that such side effects are

uncovered.

Public access to data members (PAD). This metric indicates the number of classes

(or methods) that can access another class’s attributes, a violation of encapsulation.

High values for PAD lead to the potential for side effects among classes. Tests must

be designed to ensure that such side effects are uncovered.

Inheritance

Number of root classes (NOR). This metric is a count of the distinct class hierar-

chies that are described in the design model. Test suites for each root class and the

corresponding class hierarchy must be developed. As NOR increases, testing effort

also increases.

Fan-in (FIN). When used in the OO context, fan-in is an indication of multiple inher-

itance. FIN > 1 indicates that a class inherits its attributes and operations from more

than one root class. FIN > 1 should be avoided when possible.

Number of children (NOC) and depth of the inheritance tree (DIT).7 As we

discussed in Chapter 23, superclass methods will have to be retested for each sub-

class.

In addition to these metrics, Binder [BIN94] defines metrics for class complexity

and polymorphism. The metrics defined for class complexity include three CK met-

rics (Section 24.4.1): weighted methods per class, coupling between object classes,

and response for a class. In addition, metrics associated with method counts are

defined. The metrics associated with polymorphism are highly specialized. A discus-

sion of them is best left to Binder.

24.7 METRICS FOR OBJECT-ORIENTED PROJECTS

As we discovered in Part Two of this book, the job of the project manager is to plan,

coordinate, track, and control a software project. In Chapter 20, we discussed some

of the special issues associated with management of OO projects. But what about

measurement? Are there specialized OO metrics that can be used by the project man-

ager to provide additional insight into progress?8 The answer, of course, is, “Yes.”
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8 A worthwhile discussion of the CK metrics suite (Section 24.4.1) for use in management decision-

making can be found in [CHI98].

OO testing can be
quite complex. Metrics
can assist you in
targeting testing
resources at threads,
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clusters that
are”suspect” based on
measured
characteristics. Use
them.
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The first activity performed by the project manager is planning, and one of the

early planning tasks is estimation. Recalling the evolutionary process model, plan-

ning is revisited after each iteration of the software. Therefore, the plan (and its pro-

ject estimates) are revisited after each iteration of OOA, OOD, and even OOP.

A key issue that faces a project manager during planning is an estimate of the

implemented size of the software. Size is directly proportional to effort and duration.

The following OO metrics [LOR94] can provide insight into software size:

Number of scenario scripts (NSS). The number of scenario scripts or use-cases

(Chapters 11 and 21) is directly proportional to the number of classes required to meet

requirements; the number of states for each class; and the number of methods, attrib-

utes, and collaborations. NSS is a strong indicator of program size.

Number of key classes (NKC). A key class focuses directly on the business domain

for the problem and will have a lower probability of being implemented via reuse.9

For this reason, high values for NKC indicate substantial development work. Lorenz

and Kidd [LOR94} suggest that between 20 and 40 percent of all classes in a typical

OO system are key classes. The remainder support infrastructure (GUI, communica-

tions, databases, etc.).

Number of subsystems (NSUB). The number of subsystems provides insight into

resource allocation, scheduling (with particular emphasis on parallel development)

and overall integration effort.

The metrics NSS, NKC, and NSUB can be collected for past OO projects and are

related to the effort expended on the project as a whole and on individual process

activities (e.g., OOA, OOD, OOP, and OOT). These data can also be used along with

the design metrics discussed earlier in this chapter to compute “productivity metrics”

such as average number of classes per developer or average methods per person-

month. Collectively, these metrics can be used to estimate effort, duration, staffing,

and other information for the current project.

24.8 SUMMARY 

Object-oriented software is fundamentally different than software developed using

conventional methods. Therefore, the metrics for OO systems focus on measurement

that can be applied to the class and the design characteristics—localization, encap-

sulation, information hiding, inheritance, and object abstraction techniques—that

make the class unique.

The CK metrics suite defines six class-oriented software metrics that focus on the

class and the class hierarchy. The metrics suite also develops metrics to assess the

XRef
The applicability of an
evolutionary process
model, called the
recursive/parallel
model, is discussed in
Chapter 20.

9 This will be true only until a robust library of reusable components is developed for a particular
domain.
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collaborations between classes and the cohesion of methods that reside within a

class. At a class-oriented level, the CK metrics suite can be augmented with metrics

proposed by Lorenz and Kidd and the MOOD metrics suite. These include measures

of class “size” and metrics that provide insight into the degree of specialization for

subclasses.

Operation-oriented metrics focus on the size and complexity of individual opera-

tions. It is important to note, however, the the primary thrust for OO design metrics

is at the class level.

A wide variety of OO metrics have been proposed to assess the testability of an

OO system. These metrics focus on encapsulation, inheritance, class complexity,

and polymorphism. Many of these metrics have been adapted from the CK metrics

suite and metrics proposed by Lorenz and Kidd. Others have been proposed by

Binder.

Measurable characteristics of the analysis and design model can assist the project

manager for an OO system in planning and tracking activities. The number of sce-

nario scripts (use-cases), key classes, and subsystems provide information about the

level of effort required to implement the system.
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PROBLEMS AND POINTS TO PONDER

24.1. Review the metrics presented in this chapter and in Chapter 19. How would

you characterize the syntactic and semantic differences between metrics for con-

ventional and OO software?

24.2. How does localization affect metrics developed for conventional and OO soft-

ware?

24.3. Why isn’t more emphasis given to OO metrics that address the specific char-

acteristics of operations within a class?

24.4. Review the metrics discussed in this chapter and suggest a few that directly

or indirectly address the information hiding design characteristic.

24.5. Review the metrics discussed in this chapter and suggest a few that directly

or indirectly address the abstraction design characteristic.

24.6. A class, X, has 12 operations. Cyclomatic complexity has been computed for

all operations in the OO system and the average value of module complexity is 4. For

class X, the complexity for operations 1 to 12 is 5, 4, 3, 3, 6, 8, 2, 2, 5, 5, 4, 4, respec-

tively. Compute the weighted methods per class.

24.7. Referring to Figure 20.8, compute the value of DIT for each inheritance tree.

What is the value of NOC for the class X2 for both trees?

24.8. Refer to [CHI94] and present a one-page discussion of the formal definition of

the LCOM metric.

24.9. Referring to Figure 20.8B, what is the value of NOA for classes X3 and X4?

24.10. Referring to Figure 20.8B, assume that four operations have been overrid-

den in the inheritance tree (class hierarchy), what is the value of SI for the hierarchy?

24.11. A software team has completed five OO projects to date. The following data

have been collected for all size projects:

Project NSS NKC NSUB Effort (days)
1 34 60 3 900

2 55 75 6 1575

3 122 260 8 4420

4 45 66 2 990

5 80 124 6 2480

A new project is in early stages of OOA. It is estimated that 95 use-cases will be devel-

oped for the project. Estimate 

a. The total number of classes that will be required to implement the system.

b. The total amount of effort required to implement the system.
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24.12. Your instructor will provide you with a list of OO metrics from this chapter.

Compute the values of these metrics for one or more of these problems:

a. The design model for the SafeHome design.

b. The design model for the PHTRS system described in Problem 12.13. 

c. The design model for the video game considered in Problem 22.14.

d. The design model for the e-mail considered in Problem 22.15.

e. The design model for the ATC system considered in Problem 22.16.

FURTHER READINGS AND INFORMATION SOURCES

A variety of books on OOA, OOD, and OOT (see Further Readings and Information

Sources in Chapters 20, 21, and 22) make passing reference to OO metrics, but few

address the subject in any detail. Books by Jacobson (Object-Oriented Software Engi-

neering, Addison-Wesley, 1994) and Graham (Object-Oriented Methods, Addison-

Wesley, 2nd ed., 1993) provide more treatment than most. 

Whitmire [WHI97] presents the most comprehensive and mathematically sophis-

ticated treatment of OO metrics published to date. Lorenz and Kidd [LOR94] and

Hendersen-Sellers (Object-Oriented Metrics: Measures of Complexity, Prentice-Hall,

1996) offer the only other books dedicated to OO metrics. Other books dedicated to

conventional software metrics (see Further Readings and Information Sources for

Chapters 4 and 19) contain limited discussions of OO metrics.

A wide variety of information sources on object-oriented metrics and related sub-

jects is available on the Internet. An up-to-date list of World Wide Web references

that are relevant to OO metrics can be found at the SEPA Web site:

http://www.mhhe.com/engcs/compsci/pressman/resources/OOM.mhtml

669





671

P A R T

In this part of Software Engineering: A Practitioner’s Approach, we
consider a number of advanced topics that will extend your
understanding of software engineering. In the chapters that fol-

low, we address the following questions:

• What notation and mathematical preliminaries (“formal
methods”) are required to formally specify software?

• What key technical activities are conducted during the
cleanroom software engineering process?

• How is component-based software engineering used to cre-
ate systems from reusable components?

• How does the client/server architecture affect the way in
which software is engineered?

• Are software engineering concepts and principles applicable
for Web-based applications and products?

• What key technical activities are required for software
reengineering?

• What are the architectural options for establishing a CASE
tools environment?

• What are the future directions of software engineering?

Once these questions are answered, you’ll understand topics that
may have a profound impact on software engineering over the next
decade.

ADVANCED TOPICS
IN SOFTWARE
ENGINEERING

Five
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Software engineering methods can be categorized on a "formality" spec-
trum that is loosely tied to the degree of mathematical rigor applied dur-
ing analysis and design. For this reason, the analysis and design methods

discussed earlier in this book fall at the informal end of the spectrum. A com-
bination of diagrams, text, tables, and simple notation is used to create analy-
sis and design models, but little mathematical rigor has been applied.

We now consider the other end of the formality spectrum. Here, a specifica-
tion and design are described using a formal syntax and semantics that spec-
ify system function and behavior. The specification is mathematical in form
(e.g., predicate calculus can be used as the basis for a formal specification lan-
guage).

In his introductory discussion of formal methods, Anthony Hall [HAL90]
states:

Formal methods are controversial. Their advocates claim that they can revolution-

ize [software] development. Their detractors think they are impossibly difficult. Mean-

while, for most people, formal methods are so unfamiliar that it is difficult to judge

the competing claims.

In this chapter, we explore formal methods and examine their potential
impact on software engineering in the years to come.

25 FORMAL METHODS

What is it? Formal methods

allow a software engineer to cre-

ate a specification that is more

complete, consistent, and unambiguous than

those produced using conventional or object-

oriented methods. Set theory and logic notation

are used to create a clear statement of facts

(requirements). This mathematical specification

can then be analyzed to prove correctness and

consistency. Because the specification is created

using mathematical notation, it is inherently less

ambiguous than informal modes of representation. 

Who does it? A specially trained software engineer

creates a formal specification.

Why is it important? In safety-critical or mission-

critical systems, failure can have a high price.

Lives may be lost or severe economic conse-

quences can arise when computer software fails.

In such situations, it is essential that errors are

uncovered before software is put into operation.

Formal methods reduce specification errors dra-

matically and, as a consequence, serve as the

basis for software that has very few errors once

the customer begins using it.

What are the steps? The first step in the application

of formal methods is to define the data invariant,

state, and operations for a system function. The

data invariant is a condition that is true through-

out the execution of a function that contains a col-

lection of data, The state is the stored data that a

Q U I C K
L O O K
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25.1 BASIC CONCEPTS

The Encyclopedia of Software Engineering [MAR94] defines formal methods in the fol-

lowing manner:

Formal methods used in developing computer systems are mathematically based techniques

for describing system properties. Such formal methods provide frameworks within which

people can specify, develop, and verify systems in a systematic, rather than ad hoc 

manner.

A method is formal if it has a sound mathematical basis, typically given by a formal

specification language. This basis provides a means of precisely defining notions like con-

sistency and completeness, and more relevantly, specification, implementation and 

correctness. 

The desired properties of a formal specification—consistency, completeness, and

lack of ambiguity—are the objectives of all specification methods. However, the use

of formal methods results in a much higher likelihood of achieving these ideals. The

formal syntax of a specification language (Section 25.4) enables requirements or

design to be interpreted in only one way, eliminating ambiguity that often occurs

when a natural language (e.g., English) or a graphical notation must be interpreted

by a reader. The descriptive facilities of set theory and logic notation (Section 25.2)

enable clear statement of facts (requirements). To be consistent, facts stated in one

place in a specification should not be contradicted in another place. Consistency is

ensured by mathematically proving that initial facts can be formally mapped (using

inference rules) into later statements within the specification.

Completeness is difficult to achieve, even when formal methods are used. Some

aspects of a system may be left undefined as the specification is being created; other

characteristics may be purposely omitted to allow designers some freedom in choos-

ing an implementation approach; and finally, it is impossible to consider every oper-

ational scenario in a large, complex system. Things may simply be omitted by

mistake. 

function accesses and alters; and

operations are actions that take

place in a system as it reads or

writes data to a state. An operation is associated

with two conditions: a precondition and a post-

condition. The notation and heuristics of sets and

constructive specification—set operators, logic

operators, and sequences—form the basis of for-

mal methods.

What is the work product? A specification repre-

sented in a formal language such as Z or VDM is

produced when formal methods are applied.

How do I ensure that I’ve done it right? Because for-

mal methods use discrete mathematics as the

specification mechanism, logic proofs can be

applied to each system function to demonstrate

that the specification is correct. 

Q U I C K
L O O K

“[F]ormal methods
have tremendous
potential for
improving the clarity
and precision of
requirements
specifications, and in
finding important
and subtle errors.
Steve Easterbrook
et al.
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Although the formalism provided by mathematics has an appeal to some software

engineers, others (some would say, the majority) look askance at a mathematical

view of software development. To understand why a formal approach has merit, we

must first consider the deficiencies associated with less formal approaches.

25.1.1 Deficiencies of Less Formal Approaches1

The methods discussed for analysis and design in Parts Three and Four of this book

made heavy use of natural language and a variety of graphical notations. Although

careful application of analysis and design methods, coupled with thorough review

can and does lead to high-quality software, sloppiness in the application of these

methods can create a variety of problems. A system specification can contain con-

tradictions, ambiguities, vagueness, incomplete statements, and mixed levels of

abstraction.

Contradictions are sets of statements that are at variance with each other. For

example, one part of a system specification may state that the system must monitor

all the temperatures in a chemical reactor while another part, perhaps written by

another member of staff, may state that only temperatures occurring within a cer-

tain range are to be monitored. Normally, contradictions that occur on the same page

of a system specification can be detected easily. However, contradictions are often

separated by a large number of pages.

Ambiguities are statements that can be interpreted in a number of ways. For exam-

ple, the following statement is ambiguous:

The operator identity consists of the operator name and password; the password consists

of six digits. It should be displayed on the security VDU and deposited in the login file when

an operator logs into the system.

In this extract, does the word it refer to the password or the operator identity?

Vagueness often occurs because a system specification is a very bulky document.

Achieving a high level of precision consistently is an almost impossible task. It can

lead to statements such as “The interface to the system used by radar operators should

be user-friendly” or “The virtual interface shall be based on simple overall concepts

that are straightforward to understand and use and few in number.” A casual perusal

of these statements might not detect the underlying lack of any useful information.

Incompleteness is probably one of the most frequently occurring problems with

system specifications. For example, consider the functional requirement:

The system should maintain the hourly level of the reservoir from depth sensors situated

in the reservoir. These values should be stored for the past six months.
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1 This section and others in the first part of this chapter have been adapted from work contributed
by Darrel Ince for the European version of the fourth edition of Software Engineering: A Practi-
tioner's Approach.

Although a good
document index
cannot eliminate
contradictions, it can
help to uncover them.
Spend the time to
create a
comprehensive index
for specifications and
other documents.

“Making mistakes is
human, Repeating
‘em is too.”
Malcolm Forbes 
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This describes the main data storage part of a system. If one of the commands for

the system was

The function of the AVERAGE command is to display on a PC the average water level for a

particular sensor between two times.

Assuming that no more detail was presented for this command, the details of the

command would be seriously incomplete. For example, the description of the com-

mand does not include what should happen if a user of a system specifies a time that

was more than six months before the current hour.

Mixed levels of abstraction occur when very abstract statements are intermixed ran-

domly with statements that are at a much lower level of detail. For example, state-

ments such as

The purpose of the system is to track the stock in a warehouse.

might be intermixed with

When the loading clerk types in the withdraw command he or she will communicate the

order number, the identity of the item to be removed, and the quantity removed. The sys-

tem will respond with a confirmation that the removal is allowable.

While such statements are important in a system specification, specifiers often man-

age to intermix them to such an extent that it becomes very difficult to see the over-

all functional architecture of a system.

Each of these problems is more common than we would like to believe. And each

represents a potential deficiency in conventional and object-oriented methods for

specification.

25.1.2 Mathematics in Software Development

Mathematics has many useful properties for the developers of large systems. One of

its most useful properties is that it is capable of succinctly and exactly describing a

physical situation, an object, or the outcome of an action. Ideally, the software engi-

neer should be in the same position as the applied mathematician. A mathematical

specification of a system should be presented, and a solution developed in terms of

a software architecture that implements the specification should be produced.2

Another advantage of using mathematics in the software process is that it provides

a smooth transition between software engineering activities. Not only functional spec-

ifications but also system designs can be expressed in mathematics, and of course,

the program code is a mathematical notation—albeit a rather long-winded one.

2 A word of caution is appropriate at this point. The mathematical system specifications that are
presented in this chapter are not as succinct as a simple mathematical expression. Software sys-
tems are notoriously complex, and it would be unrealistic to expect that they could be specified in
one line of mathematics.

Effective use of formal
technical reviews
during specification
can eliminate many of
these problems.
However, some will
not be uncovered.
Therefore, be on the
lookout for deficiencies
during design, code,
and test.
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The major property of mathematics is that it supports abstraction and is an excel-

lent medium for modeling. Because it is an exact medium there is little possibility of

ambiguity: Specifications can be mathematically validated for contradictions and

incompleteness, and vagueness disappears completely. In addition, mathematics can

be used to represent levels of abstraction in a system specification in an organized

way.

Mathematics is an ideal tool for modeling. It enables the bare bones of a specifi-

cation to be exhibited and helps the analyst and system specifier to validate a spec-

ification for functionality without intrusion of such issues as response time, design

directives, implementation directives, and project constraints. It also helps the designer,

because the system design specification exhibits the properties of a model, provid-

ing only sufficient details to enable the task in hand to be carried out.

Finally, mathematics provides a high level of validation when it is used as a soft-

ware development medium. It is possible to use a mathematical proof to demonstrate

that a design matches a specification and that some program code is a correct reflec-

tion of a design. This is preferable to current practice, where often little effort is put

into early validation and where much of the checking of a software system occurs

during system and acceptance testing.

25.1.3 Formal Methods Concepts

The aim of this section is to present the main concepts involved in the mathemati-

cal specification of software systems, without encumbering the reader with too much

mathematical detail. To accomplish these, we use a few simple examples.

Example 1:  A Symbol Table. A program is used to maintain a symbol table. Such

a table is used frequently in many different types of applications. It consists of a col-

lection of items without any duplication. An example of a typical symbol table is

shown in Figure 25.1. It represents the table used by an operating system to hold the

names of the users of the system. Other examples of tables include the collection of

names of staff in a payroll system, the collection of names of computers in a network

communications system, and the collection of destinations in a system for produc-

ing railway timetables.

Assume that the table presented in this example consists of no more than MaxIds

members of staff. This statement, which places a constraint on the table, is a com-

ponent of a condition known as a data invariant—an important idea that we shall

return to throughout this chapter.

A data invariant is a condition that is true throughout the execution of the sys-

tem that contains a collection of data. The data invariant that holds for the symbol

table just discussed has two components: (1) that the table will contain no more

than MaxIds names and (2) that there will be no duplicate names in the table. In the

case of the symbol table program, this means that, no matter when the symbol table
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A data invariant is a
set of conditions that
are true throughout the
execution of the
system that contains a
collection of data.
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is examined during execution of the system, it will always contain no more than

MaxIds staff identifiers and will contain no duplicates.

Another important concept is that of a state. In the context of formal methods,3 a

state is the stored data that a system accesses and alters. In the example of the sym-

bol table program, the state is the symbol table. 

The final concept is that of an operation. This is an action that takes place in a sys-

tem and reads or writes data to a state. If the symbol table program is concerned with

adding and removing staff names from the symbol table, then it will be associated

with two operations: an operation to add a specified name to the symbol table and

an operation to remove an existing name from the table. If the program provides the

facility to check whether a specific name is contained in the table, then there would

be an operation that would return some indication of whether the name is in the

table.

An operation is associated with two conditions: a precondition and a postcon-

dition. A precondition defines the circumstances in which a particular operation is

valid. For example, the precondition for an operation that adds a name to the staff

identifier symbol table is valid only if the name that is to be added is not contained

in the table and also if there are fewer than MaxIds staff identifiers in the table. The

postcondition of an operation defines what happens when an operation has com-

pleted its action. This is defined by its effect on the state. In the example of an oper-

ation that adds an identifier to the staff identifier symbol table, the postcondition

would specify mathematically that the table has been augmented with the new

identifier.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Wilson

Simpson

Abel

Fernandez

MaxIds = 10

FIGURE 25.1
A symbol table
used for an
operating 
system

3 Recall that the term state has also been used in Chapters 12 and 21 as a representation of the
behavior of a system or objects.

In formal methods, a
“state” is stored data
that the system
accesses and alters. An
“operation” is an
action that reads or
writes data to a state.

A “precondition”
defines the
circumstances in which
a particular operation
is valid. A “post-
condition” defines
what happens when
an operation has
completed its action.
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Example 2:  A Block Handler. One of the more important parts of a computer's

operating system is the subsystem that maintains files created by users. Part of the

filing subsystem is the block handler. Files in the file store are composed of blocks of

storage that are held on a file storage device. During the operation of the computer,

files will be created and deleted, requiring the acquisition and release of blocks of

storage. In order to cope with this, the filing subsystem will maintain a reservoir of

unused (free) blocks and keep track of blocks that are currently in use. When blocks

are released from a deleted file they are normally added to a queue of blocks waiting

to be added to the reservoir of unused blocks. This is shown in Figure 25.2. In this

figure, a number of components are shown: the reservoir of unused blocks, the blocks

that currently make up the files administered by the operating system, and those

blocks that are waiting to be added to the reservoir. The waiting blocks are held in a

queue, with each element of the queue containing a set of blocks from a deleted file.

For this subsystem the state is the collection of free blocks, the collection of used

blocks, and the queue of returned blocks. The data invariant, expressed in natural

language, is

• No block will be marked as both unused and used.

• All the sets of blocks held in the queue will be subsets of the collection of

currently used blocks.

• No elements of the queue will contain the same block numbers.

• The collection of used blocks and blocks that are unused will be the total 

collection of blocks that make up files.
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1  3  4  6  9

File #1

5  8  11

File #2

7

File #3

Block queue containing blocks from deleted files

Unused blocks

2

Queued for entry into unused blocks

2  5  7  8  10
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Used blocks

Blocks are released
to queue when files
are deleted

FIGURE 25.2
A block 
handler

Brainstorming
techniques can work
well when you need to
develop a data
invariant for a
reasonably complex
function. Have a
number of people
write down bounds,
restrictions, and
limitations for the
function and then
combine and edit.
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• The collection of unused blocks will have no duplicate block numbers.

• The collection of used blocks will have no duplicate block numbers.

Some of the operations associated with these data are

• An operation that adds a collection of blocks to the end of the queue.

• An operation that removes a collection of used blocks from the front of the

queue and places them in the collection of unused blocks.

• An operation that checks whether the queue of blocks is empty.

The precondition of the first operation is that the blocks to be added must be in the

collection of used blocks. The postcondition is that the collection of blocks must be

added to the end of the queue.

The precondition of the second operation is that the queue must have at least one

item in it. The postcondition is that the blocks must be added to the collection of

unused blocks.

The final operation—checking whether the queue of returned blocks is empty—

has no precondition. This means that the operation is always defined, regardless of

what value the state has. The postcondition delivers the value true if the queue is

empty and false otherwise.

Example 3: A Print Spooler. In multitasking operating systems, a number of tasks

make requests to print files. Often, there are not enough printing devices to satisfy

all current print requests simultaneously. Any print request that cannot be immedi-

ately satisfied is placed in a queue awaiting printing. The part of an operating system

that deals with the administration of such queues is known as a print spooler.

In this example we assume that the operating system can employ no more than

MaxDevs output devices and that each device has a queue associated with it. We will

also assume that each device is associated with a limit of lines in a file which it will

print. For example, an output device that has a limit of 1000 lines of printing will be

associated with a queue that contains only files having no more than 1000 lines of

text. Print spoolers sometimes impose this constraint in order to forbid large print

jobs that may occupy slow printing devices for exceptionally long periods. A schematic

representation of a print spooler is shown in Figure 25.3.

Referring to the figure, spooler state consists of four components: the queues of

files waiting to be printed, each queue being associated with a particular output device;

the collection of output devices controlled by the spooler; the relationship between

the output devices and the maximum file size that each can print; and the relation-

ship between the files awaiting printing and their size in lines. For example, Figure

25.3 shows that the output device LP1 which has a print limit of 750 lines has two

files ftax and persons awaiting printing, and that the size of the files are 650 lines

and 700 lines, respectively.
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The state of the spooler is represented by the four components: queues, output

devices, limits, and sizes. The data invariant has five components:

• Each output device is associated with an upper limit on print lines.

• Each output device is associated with a possibly nonempty queue of files

awaiting printing.

• Each file is associated with a size.

• Each queue associated with an output device contains files that have a size

less than the upper limit of the output device.

• There will be no more than MaxDevs output devices administered by the

spooler.

A number of operations can be associated with the spooler. For example,

• An operation that adds a new output device to the spooler together with its

associated print limit.

• An operation that removes a file from the queue associated with a particular

output device.

• An operation that adds a file to the queue associated with a particular output

device.

• An operation that alters the upper limit of print lines for a particular output

device.

• An operation that moves a file from a queue associated with an output device

to another queue associated with a second output device.
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exres

newdata       450
ftax       650
exres       50
persons       700

Size

LP1       750
LP2       500
LAS1       300
LAS2       200
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newdata
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Files awaiting printing

LP2

LP1
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Device queues

LAS2

FIGURE 25.3
A print spooler

States and operations
are analogous in many
ways to the class
definition for OO
systems. States
represents the data
domain (attributes)
and operations are the
processes (methods)
that manipulate the
data.
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Each of these operations corresponds to a function of the spooler. For example, the

first operation would correspond to the spooler being notified of a new device being

attached to the computer containing the operating system that administers the

spooler.

As before, each operation is associated with a precondition and a postcondition.

For example, the precondition for the first operation is that the output device name

does not already exist and that there are currently less than MaxDevs output devices

known to the spooler. The postcondition is that the name of the new device is added

to the collection of existing device names, a new entry is formed for the device with

no files being associated with its queue, and the device is associated with its print

limit. 

The precondition for the second operation (removing a file from a queue associ-

ated with a particular output device) is that the device is known to the spooler and

that at least one entry in the queue is associated with the device. The postcondition

is that the head of the queue associated with the output device is removed and its

entry in the part of the spooler that keeps tracks of file sizes is deleted.

The precondition for the fifth operation described (moving a file from a queue

associated with an output device to another queue associated with a second output

device) is

• The first output device is known to the spooler.

• The second output device is known to the spooler.

• The queue associated with the first device contains the file to be moved.

• The size of the file is less than or equal to the print limit associated with the

second output device.

The postcondition is that the file is removed from one queue and added to another

queue.

In each of the examples noted in this section, we introduce the key concepts of

formal specification. But we do so without emphasizing the mathematics that are

required to make the specification formal. In the next section, we consider these math-

ematics.

25.2 MATHEMATICAL PRELIMINARIES

To apply formal methods effectively, a software engineer must have a working knowl-

edge of the mathematical notation associated with sets and sequences and the log-

ical notation used in predicate calculus. The intent of the section is to provide a brief

introduction. For a more detailed discussion the reader is urged to examine books

dedicated to these subjects (e.g., [WIL87], [GRI93], and [ROS95]).
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25.2.1 Sets and Constructive Specification

A set is a collection of objects or elements and is used as a cornerstone of formal

methods. The elements contained within a set are unique (i.e., no duplicates are

allowed). Sets with a small number of elements are written within curly brackets

(braces) with the elements separated by commas. For example, the set

{C++, Pascal, Ada, COBOL, Java}

contains the names of five programming languages. 

The order in which the elements appear within a set is immaterial. The number of

items in a set is known as its cardinality. The # operator returns a set's cardinality.

For example, the expression 

#{A, B, C, D} = 4

implies that the cardinality operator has been applied to the set shown with a result

indicating the number of items in the set.

There are two ways of defining a set. A set may be defined by enumerating its ele-

ments (this is the way in which the sets just noted have been defined). The second

approach is to create a constructive set specification. The general form of the mem-

bers of a set is specified using a Boolean expression. Constructive set specification is

preferable to enumeration because it enables a succinct definition of large sets. It also

explicitly defines the rule that was used in constructing the set. 

Consider the following constructive specification example:

{n : � | n < 3 . n}

This specification has three components, a signature, n : �, a predicate n < 3, and a

term, n. The signature specifies the range of values that will be considered when form-

ing the set, the predicate (a Boolean expression) defines how the set is to be con-

stricted, and, finally, the term gives the general form of the item of the set. In the

example above, � stands for the natural numbers; therefore, natural numbers are to

be considered. The predicate indicates that only natural numbers less than 3 are to

be included; and the term specifies that each element of the set will be of the form n.

Therefore, this specification defines the set

{0, 1, 2}

When the form of the elements of a set is obvious, the term can be omitted. For exam-

ple, the preceding set could be specified as

(n : � | n < 3}

All the sets that have been described here have elements that are single items. Sets

can also be made from elements that are pairs, triples, and so on. For example, the

set specification
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{x, y : � | x + y = 10 . (x, y2)}

describes the set of pairs of natural numbers that have the form (x, y2) and where the

sum of x and y is 10. This is the set

{ (1, 81), (2, 64), (3, 49), . . .}

Obviously, a constructive set specification required to represent some component

of computer software can be considerably more complex than those noted here. How-

ever, the basic form and structure remain the same.

25.2.2 Set Operators

A specialized set of symbology is used to represent set and logic operations. These

symbols must be understood by the software engineer who intends to apply formal

methods.

The � operator is used to indicate membership of a set. For example, the expression

x � X

has the value true if x is a member of the set X and the value false otherwise. For

example, the predicate

12 �{6, 1, 12, 22}

has the value true since 12 is a member of the set.

The opposite of the � operator is the � operator. The expression

x � X

has the value true if x is not a member of the set X and false otherwise. For example,

the predicate

13 � {13, 1, 124, 22}

has the value false.

The operators � and � take sets as their operands. The predicate

A � B

has the value true if the members of the set A are contained in the set B and has the

value false otherwise. Thus, the predicate

{1, 2} � {4, 3, 1, 2}

has the value true. However, the predicate

{HD1, LP4, RC5} � {HD1, RC2, HD3, LP1, LP4, LP6}

has a value of false because the element RC5 is not contained in the set to the right

of the operator.

Knowledge of set
operations is
indispensible when
formal specifications
are developed. Spend
the time to familiarize
yourself with each, if
you intend to apply
formal methods.
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The operator � is similar to �. However, if its operands are equal, it has the value

true. Thus, the value of the predicate

{HD1, LP4, RC5} � {HD1, RC2, HD3, LP1, LP4, LP6}

is false, and the predicate 

{HD1, LP4, RC5} � {HD1, LP4, RC5}

is true.

A special set is the empty set �. This corresponds to zero in normal mathematics.

The empty set has the property that it is a subset of every other set. Two useful iden-

tities involving the empty set are

� � A = A and  � � A = �

for any set A, where � is known as the union operator, sometimes known as cup; �

is the intersection operator, sometimes known as cap.

The union operator takes two sets and forms a set that contains all the elements

in the set with duplicates eliminated. Thus, the result of the expression

{File1, File2, Tax, Compiler} � {NewTax, D2, D3, File2}

is the set 

{Filel, File2, Tax, Compiler, NewTax, D2, D3}

The intersection operator takes two sets and forms a set consisting of the common

elements in each set. Thus, the expression

{12, 4, 99, 1} � {1, 13, 12, 77}

results in the set {12, 1}.

The set difference operator, \, as the name suggests, forms a set by removing the

elements of its second operand from the elements of its first operand. Thus, the value

of the expression

{New, Old, TaxFile, Sysparam} \ {Old, SysParam}

results in the set {New, TaxFile}.

The value of the expression

{a, b, c, d} � {x, y}

will be the empty set �. The operator always delivers a set; however, in this case

there are no common elements between its operands so the resulting set will have

no elements.

The final operator is the cross product, �, sometimes known as the Cartesian prod-

uct. This has two operands which are sets of pairs. The result is a set of pairs where

each pair consists of an element taken from the first operand combined with an 
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element from the second operand. An example of an expression involving the cross

product is

{1, 2} � {4, 5, 6}

The result of this expression is

{(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6)}

Notice that every element of the first operand is combined with every element of the

second operand.

A concept that is important for formal methods is that of a powerset. A powerset

of a set is the collection of subsets of that set. The symbol used for the powerset oper-

ator in this chapter is �. It is a unary operator that, when applied to a set, returns the

set of subsets of its operand. For example,

� {1, 2, 3} = {�, {1}, (2}}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} 

since all the sets are subsets of {1, 2, 3}.

25.2.3 Logic Operators

Another important component of a formal method is logic: the algebra of true and

false expressions. The meaning of common logical operators is well understood by

every software engineer. However, the logic operators that are associated with com-

mon programming languages are written using readily available keyboard symbols.

The equivalent mathematical operators to these are

� and

� or

¬ not

=> implies

Universal quantification is a way of making a statement about the elements of a set

that is true for every member of the set. Universal quantification uses the symbol, �.

An example of its use is

� i, j : � . i > j => i2 > j2

which states that for every pair of values in the set of natural numbers, if i is greater

than j, then i2 is greater than j2.

25.2.4 Sequences

A sequence is a mathematical structure that models the fact that its elements are

ordered. A sequence s is a set of pairs whose elements range from 1 to the highest-

number element. For example,

{(1, Jones), (2, Wilson), (3, Shapiro), (4, Estavez)}
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is a sequence. The items that form the first elements of the pairs are collectively known

as the domain of the sequence and the collection of second elements is known as the

range of the sequence. In this book, sequences are designated using angle brackets.

For example, the preceding sequence would normally be written as

� Jones, Wilson, Shapiro, Estavez�

Unlike sets, duplication in a sequence is allowed and the ordering of a sequence is

important. Therefore,

� Jones, Wilson, Shapiro� � � Jones, Shapiro, Wilson�

The empty sequence is represented as � �.
A number of sequence operators are used in formal specifications. Catenation, �,

is a binary operator that forms a sequence constructed by adding its second operand

to the end of its first operand. For example,

� 2, 3, 34, 1� � �12, 33, 34, 200�

results in the sequence � 2, 3, 34, 1, 12, 33, 34, 200�.
Other operators that can be applied to sequences are head, tail, front, and last. The

operator head extracts the first element of a sequence; tail returns with the last n – 1

elements in a sequence of length n; last extracts the final element in a sequence; and

front returns with the first n – 1 elements in a sequence of length n. For example,

head�2, 3, 34, 1, 99, 101� = 2

tail�2, 3, 34, 1, 99, 101� = �3, 34, 1,99, 101�
last�2, 3, 34, 1, 99, 101� = 101 

front�2, 3, 34, 1, 99, 101� = �2, 3, 34, 1, 99�

Since a sequence is set of pairs, all set operators described in Section 25.2.2 are appli-

cable. When a sequence is used in a state, it should be designated as such by using

the keyword seq. For example,

FileList : seq FILES

NoUsers : �

describes a state with two components: a sequence of files and a natural number.

25.3 APPLYING MATHEMATICAL NOTATION FOR
FORMAL SPECIFICATION

To illustrate the use of mathematical notation in the formal specification of a soft-

ware component, we revisit the block handler example presented in Section 25.1.3.

To review, an important component of a computer's operating system maintains files

that have been created by users. The block handler maintains a reservoir of unused

blocks and will also keep track of blocks that are currently in use. When blocks are
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released from a deleted file they are normally added to a queue of blocks waiting to

be added to the reservoir of unused blocks. This has been depicted schematically in

Figure 25.2.4

A set named BLOCKS will consist of every block number. AllBlocks is a set of blocks

that lie between 1 and MaxBlocks. The state will be modeled by two sets and a

sequence. The two sets are used and free. Both contain blocks—the used set contains

the blocks that are currently used in files and the free set contains blocks that are

available for new files. The sequence will contain sets of blocks that are ready to be

released from files that have been deleted. The state can be described as

used, free: � BLOCKS

BlockQueue: seq � BLOCKS

This is very much like the declaration of program variables. It states that used and

free will be sets of blocks and that BlockQueue will be a sequence, each element of

which will be a set of blocks. The data invariant can be written as

used � free = � �
used � free =  AllBlocks �
� i: dom BlockQueue . BlockQueue i � used �
� i, j : dom BlockQueue . i ≠ j => BlockQueue i � BlockQueue j = � 

The mathematical components of the data invariant match four of the bulleted,

natural-language components described earlier. The first line of the data invari-

ant states that there will be no common blocks in the used collection and free col-

lections of blocks. The second line states that the collection of used blocks and

free blocks will always be equal to the whole collection of blocks in the system.

The third line indicates the ith element in the block queue will always be a subset

of the used blocks. The final line states that, for any two elements of the block

queue that are not the same, there will be no common blocks in these two ele-

ments. The final two natural language components of the data invariant are imple-

mented by virtue of the fact that used and free are sets and therefore will not

contain duplicates.

The first operation we shall define is one that removes an element from the head

of the block queue. The precondition is that there must be at least one item in the

queue:

#BlockQueue > 0,

The postcondition is that the head of the queue must be removed and placed in the

collection of free blocks and the queue adjusted to show the removal:

4 If your recollection of the block handler example is hazy, please return to Section 25.1.3 to review
the data invariant, operations, preconditions, and postconditions associated with the block 
handler.
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used' = used \ head BlockQueue �
free’ = free � head BlockQueue �
BlockQueue' = tail BlockQueue

A convention used in many formal methods is that the value of a variable after an

operation is primed. Hence, the first component of the preceding expression states

that the new used blocks (used’)will be equal to the old used blocks minus the blocks

that have been removed. The second component states that the new free blocks (free’)

will be the old free blocks with the head of the block queue added to it. The third com-

ponent states that the new block queue will be equal to the tail of the old value of

the block queue; that is, all elements in the queue apart from the first one. A second

operation adds a collection of blocks, Ablocks, to the block queue. The precondition

is that Ablocks is currently a set of used blocks:

Ablocks � used

The postcondition is that the set of blocks is added to the end of the block queue and

the set of used and free blocks remains unchanged:

BlockQueue' = BlockQueue � �Ablocks� �
used' = used �
free' = free

There is no question that the mathematical specification of the block queue is con-

siderably more rigorous that a natural language narrative or a graphical model. The

additional rigor requires effort, but the benefits gained from improved consistency

and completeness can be justified for many types of applications.

25.4 FORMAL SPECIFICATION LANGUAGES

A formal specification language is usually composed of three primary components:

(1) a syntax that defines the specific notation with which the specification is repre-

sented, (2) semantics to help define a "universe of objects" [WIN90] that will be used

to describe the system, and (3) a set of relations that define the rules that indicate

which objects properly satisfy the specification.

The syntactic domain of a formal specification language is often based on a syn-

tax that is derived from standard set theory notation and predicate calculus. For exam-

ple, variables such as x, y, and z describe a set of objects that relate to a problem

(sometimes called the domain of discourse) and are used in conjunction with the oper-

ators described in Section 25.2. Although the syntax is usually symbolic, icons (e.g.,

graphical symbols such as boxes, arrows, and circles) can also be used, if they are

unambiguous.

The semantic domain of a specification language indicates how the language rep-

resents system requirements. For example, a programming language has a set of 

689

How do I
represent

pre- and post-
conditions?

?



PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING690

formal semantics that enables the software developer to specify algorithms that trans-

form input to output. A formal grammar (such as BNF) can be used to describe the

syntax of the programming language. However, a programming language does not

make a good specification language because it can represent only computable func-

tions. A specification language must have a semantic domain that is broader; that is,

the semantic domain of a specification language must be capable of expressing ideas

such as, "For all x in an infinite set A, there exists a y in an infinite set B such that the

property P holds for x and y" [WIN90]. Other specification languages apply semantics

that enable the specification of system behavior. For example, a syntax and seman-

tics can be developed to specify states and state transition, events and their effect on

state transition, synchronization and timing.

It is possible to use different semantic abstractions to describe the same system

in different ways. We did this in a less formal fashion in Chapters 12 and 21. Data

flow and corresponding processing were described using the data flow diagram, and

system behavior was depicted with the state transition diagram. Analogous notation

was used to describe object-oriented systems. Different modeling notation can be

used to represent the same system. The semantics of each representation provides

complementary views of the system. To illustrate this approach when formal meth-

ods are used, assume that a formal specification language is used to describe the set

of events that cause a particular state to occur in a system. Another formal relation

depicts all functions that occur within a given state. The intersection of these two

relations provides an indication of the events that will cause specific functions to occur. 

A variety of formal specification languages are in use today. CSP ([HIN95], [HOR85]),

LARCH [GUT93], VDM [JON91], and Z ([SPI88], [SPI92]) are representative formal

specification languages that exhibit the characteristics noted previously. In this chap-

ter, the Z specification language is used for illustrative purposes. Z is coupled with

an automated tool that stores axioms, rules of inference, and application-oriented

theorems that lead to mathematical proof of correctness of the specification.

25.5 USING Z TO REPRESENT AN EXAMPLE SOFTWARE
COMPONENT

Z specifications are structured as a set of schemas—a boxlike structure that intro-

duces variables and specifies the relationship between these variables. A schema is

essentially the formal specification analog of the programming language subroutine

or procedure. In the same way that procedures and subroutines are used to structure

a system, schemas are used to structure a formal specification.

In this section, we use the Z specification language to model the block handler

example, introduced in Section 25.1.3 and discussed further in Section 25.3. A sum-

mary of Z language notation is presented in Table 25.1. The following example of a

schema describes the state of the block handler and the data invariant:
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TABLE 25.1 Summary of Z Notation

Z notation is based on typed set theory and first-order logic. Z provides a construct, called a schema, to
describe a specification’s state space and operations. A schema groups variable declarations with a list
of predicates that constrain the possible value of a variable. In Z, the schema X is defined by the form

———X–––––––––––———————————————
declarations

————————————————————————
predicates

————————————————————————

Global functions and constants are defined by the form

declarations
————————————————————————

predicates

The declaration gives the type of the function or constant, while the predicate gives it value. Only an
abbreviated set of Z symbols is presented in this table.

Sets:
S : � X S is declared as a set of Xs.
x � S x is a member of S.
x � S x is not a member of S.
S � T S is a subset of T: Every member of S is also in T.
S � T The union of S and T: It contains every member of S or T or both.
S � T The intersection of S and T: It contains every member of both S and T.
S \ T The difference of S and T: It contains every member of S except those also in T.
� Empty set: It contains no members.
{x} Singleton set: It contains just x.
� The set of natural numbers 0, 1, 2, ....
S : � X S is declared as a finite set of Xs.
max (S) The maximum of the nonempty set of numbers S.

Functions:
f:X >→ Y f is declared as a partial injection from X to Y
dom f The domain of f: the set of values x for which f (x) is defined.
ran f The range of f: the set of values taken by f (x) as x varies over the domain of f.
f � {x → y} A function that agrees with f except that x is mapped to y.
{x} �– f A function like f, except that x is removed from its domain.

Logic:
P � Q P and Q: It is true if both P and Q are true.
P => Q P implies Q: It is true if either Q is true or P is false.
� S’ = � S No components of schema S change in an operation.
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———BlockHandler——————————————

used, free : � BLOCKS

BlockQueue : seq � BLOCKS

———————————————————————

used � free =  � �
used � free =  AllBlocks �
� i : dom BlockQueue . BlockQueue i � used �
� i, j : dom BlockQueue . i ≠ j => 

BlockQueue i � BlockQueue j = �

————————————————————————

The schema consists of two parts. The part above the central line represents the vari-

ables of the state, while the part below the central line describes the data invariant.

Whenever the schema representing the data invariant and state is used in another

schema it is preceded by the 	 symbol. Therefore, if the preceding schema is used in

a schema that, for example, describes an operation, then it would be written as 	Block-

Handler. As the last sentence implies, schemas can be used to describe operations.

The following example of a schema describes the operation that removes an element

from the block queue:

———RemoveBlock———————————————

	BlockHandler

————————————————————————

#BlockQueue > 0,

used' = used \ head BlockQueue �
free’ = free � head BlockQueue �
BlockQueue' = tail BlockQueue

—————————————————————————

The inclusion of 	BlockHandler results in all variables that make up the state being

available for the RemoveBlock schema and ensures that the data invariant will hold

before and after the operation has been executed.

The second operation, which adds a collection of blocks to the end of the queue,

is represented as

———AddBlock—————————————————

	BlockHandler

Ablocks? :  BLOCKS

—————————————————————————

Ablocks? � used

BlockQueue' = BlockQueue � �Ablocks?�
used' = used �
free' = free

——————————————————————————

WebRef
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By convention in Z, an input variable that is read from and does not form part of the

state is terminated by a question mark. Thus, Ablocks?, which acts as an input param-

eter, is terminated by a question mark.

25.6 THE TEN COMMANDMENTS OF FORMAL METHODS

The decision to use of formal methods in the real world is not one that is taken lightly.

Bowan and Hinchley [BOW95] have coined “the ten commandments of formal meth-

ods” as a guide for those who are about to apply this important software engineer-

ing approach.5

1. Thou shalt choose the appropriate notation. In order to choose effec-

tively from the wide array of formal specification languages, a software engi-

neer should consider language vocabulary, application type to be specified,

and breadth of usage of the language. 

2. Thou shalt formalize but not overformalize. It is generally not necessary

to apply formal methods to every aspect of a major system. Those compo-

nents that are safety critical are first choices, followed by components whose

failure cannot be tolerated (for business reasons). 

3. Thou shalt estimate costs. Formal methods have high startup costs.

Training staff, acquisition of support tools, and use of contract consultants

result in high first-time costs. These costs must be considered when examin-

ing the return on investment associated with formal methods.

4. Thou shalt have a formal methods guru on call. Expert training and on-

going consulting is essential for success when formal methods are used for

the first time.

5. Thou shalt not abandon thy traditional development methods. It is

possible, and in many cases desirable, to integrate formal methods with con-

ventional or object-oriented methods (Chapters 12 and 21). Each has

strengths and weakness. A combination, if properly applied, can produce

excellent results.6

6. Thou shalt document sufficiently. Formal methods provide a concise,

unambiguous, and consistent method for documenting system requirements.

However, it is recommended that a natural language commentary accom-

pany the formal specification to serve as a mechanism for reinforcing the

reader’s understanding of the system.

693

5 This treatment is a much abbreviated version of [BOW95].
6 Cleanroom software engineering (Chapter 26) is an example of an integrated approach that uses

formal methods and more conventional development methods. 
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7. Thou shalt not compromise thy quality standards. “There is nothing

magical about formal methods” [BOW95] and for this reason, other SQA

activities (Chapter 8) must continue to be applied as systems are developed.

8. Thou shalt not be dogmatic. A software engineer must recognize that

formal methods are not a guarantee of correctness. It is possible (some

would say, likely) that the final system, even when developed using formal

methods, may have small omissions, minor bugs, and other attributes that do

not meet expectations.

9. Thou shalt test, test, and test again. The importance of software testing

has been discussed in Chapters 17, 18, and 23. Formal methods do not

absolve the software engineer from the need to conduct well-planned, thor-

ough tests.

10. Thou shalt reuse. Over the long term, the only rational way to reduce soft-

ware costs and increase software quality is through reuse (Chapter 27). For-

mal methods do not change this reality. In fact, it may be that formal

methods are an appropriate approach when components for reuse libraries

are to be created.

25.7 FORMAL METHODS—THE ROAD AHEAD

Although formal, mathematically based specification techniques are not as yet used

widely in the industry, they do offer substantial advantages over less formal tech-

niques. Liskov and Bersins [LIS86] summarize these in the following way:

Formal specifications can be studied mathematically while informal specifications cannot.

For example, a correct program can be proved to meet its specifications, or two alternative

sets of specifications can be proved equivalent . . . Certain forms of incompleteness or incon-

sistency can be detected automatically.

In addition, formal specification removes ambiguity and encourages greater rigor in

the early stages of the software engineering process. 

But problems remain. Formal specification focuses primarily on function and data.

Timing, control, and behavioral aspects of a problem are more difficult to represent.

In addition, some elements of a problem (e.g., human/machine interfaces) are bet-

ter specified using graphical techniques or prototypes. Finally, specification using for-

mal methods is more difficult to learn than methods such as structured analysis and

represents a significant "culture shock" for some software practitioners. For this rea-

son, it is likely that formal, mathematical specification techniques will form the foun-

dation for a future generation of CASE tools. When and if this occurs, mathematically

based specification may be adopted by a wider segment of the software engineering

community.7

7 It is important to note that others disagree. See [YOU94]. 
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25.8 SUMMARY

Formal methods provide a foundation for specification environments leading to analy-

sis models that are more complete, consistent, and unambiguous than those pro-

duced using conventional or object-oriented methods. The descriptive facilities of set

theory and logic notation enable a software engineer to create a clear statement of

facts (requirements). 

The underlying concepts that govern formal methods are, (1) the data invariant, a

condition true throughout the execution of the system that contains a collection of

data; (2) the state, the stored data that a system accesses and alters; and (3) the oper-

ation, an action that takes place in a system and reads or writes data to a state. An

operation is associated with two conditions: a precondition and a postcondition.

Discrete mathematics—the notation and heuristics associated with sets and con-

structive specification, set operators, logic operators, and sequences—forms the basis

of formal methods. Discrete mathematics is implemented in the context of a formal

specification language, such as Z.

Z, like all formal specification languages, has both syntactic and semantic domains.

The syntactic domain uses a symbology that is closely aligned with the notation of

sets and predicate calculus. The semantic domain enables the language to express

requirements in a concise manner. The structure of Z incorporates schemas—box-

like structures that introduce variables and specify the relationship between these

variables.

A decision to use formal methods must consider startup costs as well as the cul-

tural changes associated with a radically different technology. In most instances, for-

mal methods have highest payoff for safety-critical and business-critical systems.
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PROBLEMS AND POINTS TO PONDER

25.1. Review the types of deficiencies associated with less formal approaches to

software engineering in Section 25.1.1. Provide three examples of each from your

own experience.

25.2. The benefits of mathematics as a specification mechanism have been discussed

at length in this chapter. Is there a downside?

25.3. You have been assigned to a team that is developing software for a fax modem.

Your job is to develop the “phone book” portion of the application. The phone book

function enables up to MaxNames people to be stored along with associated com-

pany names, fax numbers, and other related information. Using natural language,

define

a. The data invariant.

b. The state.

c. The operations that are likely.

25.4. You have been assigned to a software team that is developing software, called

MemoryDoubler, that provides greater apparent memory for a PC than physical mem-

ory. This is accomplished by identifying, collecting, and reassigning blocks of mem-

ory that have been assigned to an existing application but are not being used. The

unused blocks are reassigned to applications that require additional memory. Mak-

ing appropriate assumptions and using natural language, define

a. The data invariant.

b. The state.

c. The operations that are likely.
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25.5. Develop a constructive specification for a set that contains tuples of natural

numbers of the form (x, y, z2) such that the sum of x and y equals z.

25.6. The installer for a PC-based application first determines whether an accept-

able set of hardware and systems resources is present. It checks the hardware con-

figuration to determine whether various devices (of many possible devices) are present,

and determines whether specific versions of system software and drivers are already

installed. What set operator could be used to accomplish this? Provide an example

in this context.

25.7. Attempt to develop a expression using logic and set operators for the follow-

ing statement: “For all x and y, if x is the parent of y and y is the parent of z, then x is

the grandparent of z. Everyone has a parent.” Hint: Use the function P(x, y) and 

G(x, z) to represent parent and grandparent functions, respectively.

25.8. Develop a constructive set specification of the set of pairs where the first ele-

ment of each pair is the sum of two nonzero natural numbers and the second ele-

ment is the difference between the same numbers. Both numbers should be between

100 and 200 inclusive. 

25.9. Develop a mathematical description for the state and data invariant for Prob-

lem 25.3. Refine this description in the Z specification language. 

25.10. Develop a mathematical description for the state and data invariant for Prob-

lem 25.4. Refine this description in the Z specification language.

25.11. Using the Z notation presented in Table 25.1, select some part of the Safe-

Home security system described earlier in this book and attempt to specify it with Z.

25.12. Using one or more of the information sources noted in the references to this

chapter or Further Readings and Information Sources, develop a half-hour presenta-

tion on the basic syntax and semantics of a formal specification language other 

than Z.

FURTHER READINGS AND INFORMATION SOURCES

In addition to the books used as references in this chapter, a fairly large number of

books on formal methods topics have been published over the past decade. A listing
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Cooper, D. and R. Barden, Z in Practice, Prentice-Hall, 1995.

Craigen, D., S. Gerhart, and T. Ralston, Industrial Application of Formal Methods to Model, Design

and Analyze Computer Systems, Noyes Data Corp., 1995.
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Diller, A., Z: An Introduction to Formal Methods, 2nd ed., Wiley, 1994.

Harry, A., Formal Methods Fact File: VDM and Z, Wiley, 1997.

Hinchley, M. and J. Bowan, Applications of Formal Methods, Prentice-Hall, 1995.

Hinchley, M. and J. Bowan, Industrial Strength Formal Methods, Academic Press, 1997. 

Hussmann, H., Formal Foundations for Software Engineering Methods, Springer-Verlag, 1997.

Jacky, J., The Way of Z: Practical Programming with Formal Methods, Cambridge University

Press, 1997. 

Lano, J. and H. Haughton (eds.), Object-Oriented Specification Case Studies, Prentice-Hall, 1993.

Rann, D., J. Turner, and J. Whitworth, Z: A Beginner's Guide, Chapman and Hall, 1994.

Ratcliff, B., Introducing Specification Using Z: A Practical Case Study Approach, McGraw-Hill,

1994.

D. Sheppard, An Introduction to Formal Specification with Z and VDM, McGraw-Hill, 1995.

The September 1990, issues of IEEE Transactions on Software Engineering, IEEE Soft-

ware, and IEEE Computer were dedicated to formal methods. They remain an excel-

lent source of useful information. 

Schuman (Formal Object-Oriented Development, Springer-Verlag, 1996) has edited

a book that addresses formal methods and object technologies, providing guidelines

on the selective use of formal methods, and showing how such methods can be used

in conjunction with OO approaches. Bowman and Derrick (Formal Methods for Open

Object-Based Distributed Systems, Kluwer Academic Publishers, 1997) address the use

of formal methods when coupled with OO applications in a distributed environment.

A wide variety of information sources on formal methods and related subjects is

available on the Internet. An up-to-date list of World Wide Web references that are

relevant to formal methods can be found at the SEPA Web site:

http://www.mhhe.com/engcs/compsci/pressman/resources/

formal-methods.mhtml
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The integrated use of conventional software engineering modeling (and
possibly formal methods), program verification (correctness proofs), and
statistical SQA have been combined into a technique that can lead to

extremely high-quality software. Cleanroom software engineering is an approach
that emphasizes the need to build correctness into software as it is being devel-
oped. Instead of the classic analysis, design, code, test, and debug cycle, the
cleanroom approach suggests a different point of view [LIN94]: 

The philosophy behind cleanroom software engineering is to avoid dependence on

costly defect removal processes by writing code increments right the first time and

verifying their correctness before testing. Its process model incorporates the statis-

tical quality certification of code increments as they accumulate into a system.

In many ways, the cleanroom approach elevates software engineering to
another level. Like the formal methods presented in Chapter 25, the cleanroom
process emphasizes rigor in specification and design, and formal verification of
each design element using correctness proofs that are mathematically based.
Extending the approach taken in formal methods, the cleanroom approach also
emphasizes techniques for statistical quality control, including testing that is
based on the anticipated use of the software by customers.

26 CLEANROOM SOFTWARE
ENGINEERING

What is it? How many times

have you heard someone say “Do

it right the first time”? That’s the

overriding philosophy of cleanroom software engi-

neering—a process that emphasizes mathemati-

cal verification of correctness before program

construction commences and certification of soft-

ware reliability as part of the testing activity. The

bottom line is extremely low failure rates that

would be difficult or impossible to achieve using

less formal methods.

Who does it? A specially trained software engi-

neer.

Why is it important? Mistakes create rework. Rework

takes time and increases costs. Wouldn’t it be nice

if we could dramatically reduce the number of

mistakes (bugs) introduced as the software is

designed and built? That’s the premise of clean-

room software engineering.

What are the steps? Analysis and design models are

created using box structure representation. A “box”

encapsulates the system (or some aspect of the

system) at a specific level of abstraction. Correct-

ness verification is applied once the box structure

design is complete. Once correctness has been

verified for each box structure, statistical usage

testing commences. The software is tested by defin-

ing a set of usage scenarios, determining the prob-

ability of use for each  scenario, and then defining

random tests that conform to the probabilities. The

Q U I C K
L O O K
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When software fails in the real world, immediate and long-term hazards abound.
The hazards can be related to human safety, economic loss, or effective operation of
business and societal infrastructure. Cleanroom software engineering is a process
model that removes defects before they can precipitate serious hazards. 

26.1 THE CLEANROOM APPROACH

The philosophy of the “cleanroom” in hardware fabrication technologies is really quite

simple: It is cost-effective and time-effective to establish a fabrication approach that

precludes the introduction of product defects. Rather than fabricating a product and

then working to remove defects, the cleanroom approach demands the discipline

required to eliminate defects in specification and design and then fabricate in a “clean”

manner.

The cleanroom philosophy was first proposed for software engineering by Mills,

Dyer, and Linger [MIL87] during the 1980s. Although early experiences with this dis-

ciplined approach to software work showed significant promise [HAU94], it has not

gained widespread usage. Henderson [HEN95] suggests three possible reasons: 

1. A belief that the cleanroom methodology is too theoretical, too mathematical, and too

radical for use in real software development.

2. It advocates no unit testing by developers but instead replaces it with correctness veri-

fication and statistical quality control—concepts that represent a major departure from the

way most software is developed today.

3. The maturity of the software development industry. The use of cleanroom processes

requires rigorous application of defined processes in all life cycle phases. Since most of

the industry is still operating at the ad hoc level (as defined by the Software Engineer-

ing  Institute Capability Maturity Model), the industry has not been ready to apply those

techniques.

Despite elements of truth in each of these concerns, the potential benefits of clean-

room software engineering far outweigh the investment required to overcome the

cultural resistance that is at the core of these concerns.

error records that result are ana-

lyzed to enable mathematical

computation of projected relia-

bility for the software component. 

What is the work product? Black-box, state-box, and

clear-box specifications are developed. The results

of formal correctness proofs and statistical use tests

are recorded.

How do I ensure that I’ve done it right? Formal proof

of correctness is applied to the box structure

specification. Statistical use testing exercises

usage scenarios to ensure that errors in user func-

tionality are uncovered and corrected. Test data

are used to provide an indication of software

reliability.

Q U I C K
L O O K

“Cleanroom
engineering achieves
statistical quality
control over software
development by
strictly separating
the design process
from the testing
process in a pipeline
of incremental
software
development.”
Harlan Mills 
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26.1.1 The Cleanroom Strategy

The cleanroom approach makes use of a specialized version of the incremental soft-

ware model (Chapter 2). A “pipeline of software increments” [LIN94] is developed by

small independent software engineering teams. As each increment is certified, it is

integrated in the whole. Hence, functionality of the system grows with time.

The sequence of cleanroom tasks for each increment is illustrated in Figure 26.1.

Overall system or product requirements are developed using the system engineering

methods discussed in Chapter 10. Once functionality has been assigned to the soft-

ware element of the system, the pipeline of cleanroom increments is initiated. The

following tasks occur:

Increment planning. A project plan that adopts the incremental strategy is

developed. The functionality of each increment, its projected size, and a

cleanroom development schedule are created. Special care must be taken to

ensure that certified increments will be integrated in a timely manner.

Requirements gathering. Using techniques similar to those introduced in

Chapter 11, a more-detailed description of customer-level requirements (for

each increment) is developed.

Box structure specification. A specification method that makes use of box

structures [HEV93] is used to describe the functional specification. Conforming
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BSS
RG

Increment 1

SE

FD CV

TP

CG CI
SUT C

BSS
RG

Increment 2

FD CV

TP

CG CI
SUT C

BSS
RG

Increment 3

SE — system engineering
RG — requirements gathering
BSS — box structure specification
FD — formal design
CV — correctness verification

CG — code generation
CI — code inspection
SUT — statistical use testing
C — certification
TP — test planning

FD CV

TP

CG CI
SUT C

FIGURE 26.1
The cleanroom
process model

What are 
the major

tasks conducted
as part of
cleanroom
software
engineering?

?
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to the operational analysis principles discussed in Chapter 11, box structures

“isolate and separate the creative definition of behavior, data, and procedures

at each level of refinement.”

Formal design. Using the box structure approach, cleanroom design is a

natural and seamless extension of specification. Although it is possible to

make a clear distinction between the two activities, specifications (called

black boxes) are iteratively refined (within an increment) to become analo-

gous to architectural and component-level designs (called state boxes and

clear boxes, respectively).

Correctness verification. The cleanroom team conducts a series of rigor-

ous correctness verification activities on the design and then the code. Verifi-

cation (Sections 26.3 and 26.4) begins with the highest-level box structure

(specification) and moves toward design detail and code. The first level of

correctness verification occurs by applying a set of “correctness questions”

[LIN88]. If these do not demonstrate that the specification is correct, more

formal (mathematical) methods for verification are used.

Code generation, inspection, and verification. The box structure specifi-

cations, represented in a specialized language, are translated into the 

appropriate programming language. Standard walkthrough or inspection

techniques (Chapter 8) are then used to ensure semantic conformance of the

code and box structures and syntactic correctness of the code. Then correct-

ness verification is conducted for the source code.

Statistical test planning. The projected usage of the software is analyzed and

a suite of test cases that exercise a “probability distribution” of usage are planned

and designed (Section 26.4). Referring to Figure 26.1, this cleanroom activity is

conducted in parallel with specification, verification, and code generation.

Statistical use testing. Recalling that exhaustive testing of computer soft-

ware is impossible (Chapter 17), it is always necessary to design a finite num-

ber of test cases. Statistical use techniques [POO88] execute a series of tests

derived from a statistical sample (the probability distribution noted earlier) of

all possible program executions by all users from a targeted population (Sec-

tion 26.4).

Certification. Once verification, inspection, and usage testing have been

completed (and all errors are corrected), the increment is certified as ready

for integration.

Like other software process models discussed elsewhere in this book, the cleanroom

process relies heavily on the need to produce high-quality analysis and design models.

As we will see later in this chapter, box structure notation is simply another way for a

software engineer to represent requirements and design. The real distinction of the

cleanroom approach is that formal verification is applied to engineering models. 

“Quality is not an act.
It is a habit.”
Aristotle 

Cleanroom emphasizes
tests that exercise the
way the software is
really used. Use-cases
provide excellent input
to the statistical test
planning process.

WebRef
An excellent source of
information and resources
for cleanroom software
engineering can be found
at 
www.cleansoft.com
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26.1.2 What Makes Cleanroom Different?

Dyer [DYE92] alludes to the differences of the cleanroom approach when he defines

the process:

Cleanroom represents the first practical attempt at putting the software development process

under statistical quality control with a well-defined strategy for continuous process improve-

ment. To reach this goal, a cleanroom unique life cycle was defined which focused on math-

ematics-based software engineering for correct software designs and on statistics-based

software testing for certification of software reliability.

Cleanroom software engineering differs from the conventional and object-oriented

views presented in Parts Three and Four of this book because

1. It makes explicit use of statistical quality control.

2. It verifies design specification using a mathematically based proof of correct-

ness.

3. It relies heavily on statistical use testing to uncover high-impact errors.

Obviously, the cleanroom approach applies most, if not all, of the basic software

engineering principles and concepts presented throughout this book. Good analy-

sis and design procedures are essential if high quality is to result. But cleanroom

engineering diverges from conventional software practices by deemphasizing (some

would say, eliminating) the role of unit testing and debugging and dramatically

reducing (or eliminating) the amount of testing performed by the developer of the

software.1

In conventional software development, errors are accepted as a fact of life. Because

errors are deemed to be inevitable, each program module should be unit tested (to

uncover errors) and then debugged (to remove errors). When the software is finally

released, field use uncovers still more defects and another test and debug cycle begins.

The rework associated with these activities is costly and time consuming. Worse, it

can  be degenerative—error correction can (inadvertently) lead to the introduction of

still more errors.

In cleanroom software engineering, unit testing and debugging are replaced by

correctness verification and statistically based testing. These activities, coupled with

the record keeping necessary for continuous improvement, make the cleanroom

approach unique.

26.2 FUNCTIONAL SPECIFICATION

Regardless of the analysis method that is chosen, the operational principles presented

in Chapter 11 apply. Data, function, and behavior are modeled. The resultant 
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1 Testing is conducted but by an independent testing team.

The most important
distinguishing
characteristics of
cleanroom are proof of
correctness and
statistical use testing.

“It’s a funny thing
about life: if you
refuse to accept
anything but the
best, you very often
get it.”
W. Somerset
Maugham 
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models must be partitioned (refined) to provide increasingly greater detail. The over-

all objective is to move from a specification that captures the essence of a problem

to a specification that provides substantial implementation detail.

Cleanroom software engineering complies with the operational analysis princi-

ples by using a method called box structure specification. A “box” encapsulates the

system (or some aspect of the system) at some level of detail. Through a process of

stepwise refinement, boxes are refined into a hierarchy where each box has referen-

tial transparency. That is, “the information content of each box specification is suffi-

cient to define its refinement, without depending on the implementation of any other

box” [LIN94]. This enables the analyst to partition a system hierarchically, moving

from essential representation at the top to implementation-specific detail at the bot-

tom. Three types of boxes are used:

Black box. The black box specifies the behavior of a system or a part of a

system. The system (or part) responds to specific stimuli (events) by applying

a set of transition rules that map the stimulus into a response. 

State box. The state box encapsulates state data and services (operations)

in a manner that is analogous to objects. In this specification view, inputs to

the state box (stimuli) and outputs (responses) are represented. The state box

also represents the “stimulus history” of the black box; that is, the data

encapsulated in the state box that must be retained between the transitions

implied.

Clear box. The transition functions that are implied by the state box are

defined in the clear box. Stated simply, a clear box contains the procedural

design for the state box.

Figure 26.2 illustrates the refinement approach using box structure specification.

A black box (BB1) defines responses for a complete set of stimuli. BB1 can be refined

into a set of black boxes, BB1.1 to BB1.n, each of which addresses a class of behav-

ior. Refinement continues until a cohesive class of behavior is identified (e.g., BB1.1.1).

A state box (SB1.1.1) is then defined for the black box (BB1.1.1). In this case, SB1.1.1

contains all data and services required to implement the behavior defined by BB1.1.1.

Finally, SB1.1.1 is refined into clear boxes (CB1.1.1.n) and procedural design details are 

specified.

As each of these refinement steps occurs, verification of correctness also occurs.

State-box specifications are verified to ensure that each conforms to the behavior

defined by the parent black-box specification. Similarly, clear-box specifications are

verified against the parent state box.

It should be noted that specification methods based on formal methods (Chapter

25) can be used in lieu of the box structure specification approach. The only require-

ment is that each level of specification can be formally verified.

Box structure
refinement and
verification of
correctness occur
simultaneously.

How is
refinement

accomplished as
part of box
structure
specification?

?
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26.2.1 Black-Box Specification

A black-box specification describes an abstraction, stimuli, and response using the

notation shown in Figure 26.3 [MIL88]. The function f is applied to a sequence, S*,

of inputs (stimuli), S, and transforms them into an output (response), R. For simple

software components, f may be a mathematical function, but in general, f is described

using natural language (or a formal specification language).

Many of the concepts introduced for object-oriented systems are also applicable

for the black box. Data abstractions and the operations that manipulate those abstrac-

tions are encapsulated by the black box. Like a class hierarchy, the black box speci-

fication can exhibit usage hierarchies in which low-level boxes inherit the properties

of those boxes higher in the tree structure.

26.2.2 State-Box Specification

The state box is “a simple generalization of a state machine” [MIL88]. Recalling the

discussion of behavioral modeling and state transition diagrams in Chapter 12, a state

is some observable mode of system behavior. As processing occurs, a system responds
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BB1

CB1.1.1.1

CB1.1.1.2

CB1.1.1.3

SB1.1.1BB1.1.1

BB1.1.2

BB1.1.3

BB1.1

BB1.2

BB1.n

FIGURE 26.2
Box structure
refinement

f : S*          RS R
FIGURE 26.3
A black-box
specification

XRef
Object-oriented
concepts are discussed
in Chapter 20.
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to events (stimuli) by making a transition from the current state to some new state.

As the transition is made, an action may occur. The state box uses a data abstrac-

tion to determine the transition to the next state and the action (response) that will

occur as a consequence of the transition.

Referring to Figure 26.4, the state box incorporates a black box. The stimulus, S,

that is input to the black box arrives from some external source and a set of internal

system states, T. Mills [MIL88] provides a mathematical description of the function,

f, of the black box contained within the state box:

g : S* � T* �� R � T

where g is a subfunction that is tied to a specific state, t. When considered collec-

tively, the state-subfunction pairs (t, g) define the black box function f.

26.2.3 Clear-Box Specification

The clear-box specification is closely aligned with procedural design and structured

programming. In essence, the subfunction g within the state box is replaced by the

structured programming constructs that implement g.

As an example, consider the clear box shown in Figure 26.5. The black box, g,

shown in Figure 26.4, is replaced by a sequence construct that incorporates a condi-

tional. These, in turn, can be refined into lower-level clear boxes as stepwise refine-

ment proceeds.

It is important to note that the procedural specification described in the clear-box

hierarchy can be proved to be correct. This topic is considered in the next section. 

26.3 CLEANROOM DESIGN

The design approach used in cleanroom software engineering makes heavy use of

the structured programming philosophy. But in this case, structured programming is

applied far more rigorously.

S RBlack box, g

T

State

FIGURE 26.4
A state box
specification

XRef
Procedural design and
structured
programming are
discussed in Chapter
16.
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Basic processing functions (described during earlier refinements of the specifica-

tion) are refined using a “stepwise expansion of mathematical functions into struc-

tures of logical connectives [e.g., if-then-else] and subfunctions, where the expansion

[is] carried out until all identified subfunctions could be directly stated in the pro-

gramming language used for implementation” [DYE92]. 

The structured programming approach can be used effectively to refine function,

but what about data design? Here a number of fundamental design concepts (Chap-

ter 13) come into play. Program data are encapsulated as a set of abstractions that

are serviced by subfunctions. The concepts of data encapsulation, information hid-

ing, and data typing are used to create the data design.

26.3.1 Design Refinement and Verification

Each clear-box specification represents the design of a procedure (subfunction)

required to accomplish a state box transition. With the clear box, the structured pro-

gramming constructs and stepwise refinement are used as illustrated in Figure 26.6.

A program function, f, is refined into a sequence of subfunctions g and h. These in

turn are refined into conditional constructs (if-then-else and do-while). Further refine-

ment illustrates continuing logical refinement. 

At each level of refinement, the cleanroom team2 performs a formal correctness

verification. To accomplish this, a set of generic correctness conditions are attached

to the structured programming constructs. If a function f is expanded into a sequence

g and h, the correctness condition for all input to f is

• Does g followed by h do f ?

When a function p is refined into a conditional of the form, if � c � then q, else r, the

correctness condition for all input to p is
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S R

T

State

g11 cg1

g12

g13

FIGURE 26.5
A clear-box
specification

2 Because the entire team is involved in the verification process, it is less likely that an error will be
made in conducting the verification itself.

WebRef
The DoD STARS program
has developed a variety
of cleanroom guides and
documents: 
ftp.cdrom.com/pub/
ada/docs/cleanrm/

What
conditions

are applied to
prove structured
constructs
correct?

?
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• Whenever condition �c� is true, does q do p; and whenever �c� is false,

does r do p?

When function m is refined as a loop, the correctness conditions for all input to m are

• Is termination guaranteed?

• Whenever �c� is true, does n followed by m do m; and whenever �c� is

false, does skipping the loop still do m?

Each time a clear box is refined to the next level of detail, these correctness condi-

tions are applied.

It is important to note that the use of the structured programming constructs con-

strains the number of correctness tests that must be conducted. A single condition

is checked for sequences; two conditions are tested for if-then-else, and three con-

ditions are verified for loops.

To illustrate correctness verification for a procedural design, we use a simple exam-

ple first introduced by Linger, Mills, and Witt [LIN79]. The intent is to design and ver-

ify a small program that finds the integer part, y, of a square root of a given integer,

x. The procedural design is represented using the flowchart in Figure 26.7.

h2 c5

h1h2

h12

c2

g11

g12

g13

g1n

c4

c3

c1

c2

h11

g2

g1

c1

hg

f

g2

FIGURE 26.6
Stepwise
refinement

If you limit yourself to
just the structured
constructs as you
create a procedural
design, proof of
correctness is
straightforward. If you
“violate” the
constructs, correctness
proofs are difficult or
impossible.
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To verify the correctness of this design, we must define entry and exit conditions

as noted in Figure 26.8. The entry condition notes that x must be greater than or equal

to 0. The exit condition requires that x remain unchanged and take on a value within

the range noted in the figure. To prove the design to be correct, it is necessary to prove

the conditions init, loop, cont, yes, and exit shown in Figure 26.8 are true in all cases.

These are sometimes called subproofs.
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(y + 1)2 ≤ x y := y + 1(y + 1)2 ≤ x

y := 0

sqrtFIGURE 26.7
Computing the
integer part of
a square root
[LIN79]

y := y + 1(y + 1)2 ≤ x

y := 0

sqrt

exit: x unchanged and y2 ≤ x ≤ (y + 1)2

yes: (y + 1)2 ≤ x

loop: [y2 ≤ x] cont: [y2 ≤ x]

init:  [x ≥ 0, and y = 0]

entry:  [x ≥ 0]

FIGURE 26.8
Proving the
design correct
[LIN79]



PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING710

1. The condition init demands that [x ≥ 0 and y = 0]. Based on the requirements

of the problem, the entry condition is assumed correct.3 Therefore, the first

part of the init condition, x ≥ 0, is satisfied. Referring to the flowchart, the

statement immediately preceding the init condition, sets y = 0. Therefore, the

second part of the init condition is also satisfied. Hence, init is true.

2. The loop condition may be encountered in one of two ways: (1) directly from

init (in this case, the loop condition is satisfied directly) or via control flow

that passes through the condition cont. Since the cont condition is identical to

the loop condition, loop is true regardless of the flow path that leads to it.

3. The cont condition is encountered only after the value of y is incremented by

1. In addition, the control flow path that leads to cont can be invoked only if

the yes condition is also true. Hence, if (y + 1)2 ≤ x, it follows that y2 ≤ x. The

cont condition is satisfied.

4. The yes condition is tested in the conditional logic shown. Hence, the yes

condition must be true when control flow moves along the path shown.

5. The exit condition first demands that x remain unchanged. An examination of

the design indicates that x appears nowhere to the left of an assignment

operator. There are no function calls that use x. Hence, it is unchanged. Since

the conditional test (y + 1)2 ≤ x must fail to reach the exit condition, it follows

that (y + 1)2 ≤ x. In addition, the loop condition must still be true (i.e., y2 ≤ x).

Therefore, (y + 1)2 > x and y2 ≤ x can be combined to satisfy the exit condition.

We must further ensure that the loop terminates. An examination of the loop condi-

tion indicates that, because y is incremented and x ≥ 0, the loop must eventually ter-

minate. 

The five steps just noted are a proof of the correctness of the design of the algo-

rithm noted in Figure 26.7. We are now certain that the design will, in fact, compute

the integer part of a square root.

A more rigorous mathematical approach to design verification is possible. How-

ever, a discussion of this topic is beyond the scope of this book. Interested readers

should refer to [LIN79].

26.3.2 Advantages of Design Verification4

Rigorous correctness verification of each refinement of the clear-box design has a num-

ber of distinct advantages. Linger [LIN94] describes these in the following manner:

• It reduces verification to a finite process. The nested, sequential way

that control structures are organized in a clear box naturally defines a hierar-

3 A negative value for a square root has no meaning in this context.
4 This section and Figures 26.7 through 26.9 have been adapted from [LIN94]. Used with permis-

sion.

To prove a design
correct, you must first
identify all conditions
and then prove that
each takes on the
appropriate Boolean
value. These are called
subproofs.

What do we
gain by

doing correctness
proofs?

?



CHAPTER 26 CLEANROOM SOFTWARE ENGINEERING

chy that reveals the correctness conditions that must be verified. An axiom of

replacement [LIN79] lets us substitute intended functions with their control

structure refinements in the hierarchy of subproofs. For example, the sub-

proof for the intended function f1 in Figure 26.9 requires proving that the

composition of the operations g1 and g2 with the intended function f2 has

the same effect on data as f1. Note that f2 substitutes for all the details of its

refinement in the proof. This substitution localizes the proof argument to the

control structure at hand. In fact, it lets the software engineer carry out the

proofs in any order.

• It is impossible to overemphasize the positive effect that reducing

verification to a finite process has on quality. Even though all but the

most trivial programs exhibit an essentially infinite number of execution

paths, they can be verified in a finite number of steps.

• It lets cleanroom teams verify every line of design and code. Teams

can carry out the verification through group analysis and discussion on the

basis of the correctness theorem, and they can produce written proofs when

extra confidence in a life- or mission-critical system is required.

• It results in a near zero defect level. During a team review, every cor-

rectness condition of every control structure is verified in turn. Every team

member must agree that each condition is correct, so an error is possible
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Subproofs:

f 1 = [DO g1; g2; [f2] END] ?

f2 = [WHILE p1 DO [f3] END] ?

f3 = [DO g3; [f4]; g8 END] ?

f4 = [IF p2; THEN [f5] ELSE [f6] END] ?

f5 = [DO g4; g5 END] ?

f6 = [DO g6; g7 END] ?    

[f1]
  DO
    g1
    g2
    [f2]
      WHILE
        p1
    DO [f3]
        g3
        [f4]
        IF
          p2
        THEN [f5]
          g4
          g5
        ELSE [f6]
          g6
          g7
        END
        g8
    END
END

FIGURE 26.9
A design with
subproofs
[LIN94]

Despite the extremely
large number of
execution paths in a
program, the number
of steps to prove the
program correct is
quite small.
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only if every team member incorrectly verifies a condition. The requirement

for unanimous agreement based on individual verification results in software

that has few or no defects before first execution.

• It scales up. Every software system, no matter how large, has top-level,

clear-box procedures composed of sequence, alternation, and iteration struc-

tures. Each of these typically invokes a large subsystem with thousands of

lines of code—and each of those subsystems has its own top-level intended

functions and procedures. So the correctness conditions for these high-level

control structures are verified in the same way as are those of low-level

structures. Verification at high levels may take, and well be worth, more time,

but it does not take more theory.

• It produces better code than unit testing. Unit testing checks the effects

of executing only selected test paths out of many possible paths. By basing

verification on function theory, the cleanroom approach can verify every pos-

sible effect on all data, because while a program may have many execution

paths, it has only one function. Verification is also more efficient than unit

testing. Most verification conditions can be checked in a few minutes, but

unit tests take substantial time to prepare, execute, and check.

It is important to note that design verification must ultimately be applied to the source

code itself. In this context, it is often called correctness verification.

26.4 CLEANROOM TESTING

The strategy and tactics of cleanroom testing are fundamentally different from con-

ventional testing approaches. Conventional methods derive a set of test cases to

uncover design and coding errors. The goal of cleanroom testing is to validate soft-

ware requirements by demonstrating that a statistical sample of use-cases (Chapter

11) have been executed successfully.

26.4.1 Statistical Use Testing

The user of a computer program rarely needs to understand the technical details of

the design. The user-visible behavior of the program is driven by inputs and events

that are often produced by the user. But in complex systems, the possible spectrum

of input and events (i.e., the use-cases) can be extremely wide. What subset of use-

cases will adequately verify the behavior of the program? This is the first question

addressed by statistical use testing.

Statistical use testing “amounts to testing software the way users intend to use it”

[LIN94]. To accomplish this, cleanroom testing teams (also called certification teams)

must determine a usage probability distribution for the software. The specification

(black box) for each increment of the software is analyzed to define a set of stimuli
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(inputs or events) that cause the software to change its behavior. Based on interviews

with potential users, the creation of usage scenarios, and a general understanding

of the application domain, a probability of use is assigned to each stimuli.

Test cases are generated for each stimuli5 according to the usage probability dis-

tribution. To illustrate, consider the SafeHome security  system discussed earlier in

this book. Cleanroom software engineering is being used to develop a software incre-

ment that manages user interaction with the security system keypad. Five stimuli

have been identified for this increment. Analysis indicates the percent probability dis-

tribution of each stimulus. To make selection of test cases easier, these probabilities

are mapped into intervals numbered between 1 and 99 [LIN94] and illustrated in the

following table:

Program Stimulus Probability Interval
Arm/disarm (AD) 50% 1–49

Zone set (ZS) 15% 50–63

Query (Q) 15% 64–78

Test (T) 15% 79–94

Panic alarm 5% 95–99

To generate a sequence of usage test cases that conform to the usage probability

distribution, a series of random numbers between 1 and 99 is generated. The ran-

dom number corresponds to an interval on the preceding probability distribution.

Hence, the sequence of usage test cases is defined randomly but corresponds to the

appropriate probability of stimuli occurrence. For example, assume the following ran-

dom number sequences are generated:

13-94-22-24-45-56

81-19-31-69-45-9

38-21-52-84-86-4

Selecting the appropriate stimuli based on the distribution interval shown in the table,

the following use-cases are derived:

AD–T–AD–AD–AD–ZS

T–AD–AD–AD–Q–AD–AD

AD–AD–ZS–T–T–AD

The testing team executes these use-cases and verifies software behavior against the

specification for the system. Timing for tests is recorded so that interval times may

be determined. Using interval times, the certification team can compute  mean-time-

to-failure. If a long sequence of tests is conducted without failure, the MTTF is low

and software reliability may be assumed high.

713

5 Automated tools are used to accomplish this. For further information, see [DYE92].
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26.4.2 Certification 

The verification and testing techniques discussed earlier in this chapter lead to soft-

ware components (and entire increments) that can be certified. Within the context of

the cleanroom software engineering approach, certification implies that the reliabil-

ity (measured by mean-time-to-failure, MTTF) can be specified for each component.

The potential impact of certifiable software components goes far beyond a single

cleanroom project. Reusable software components can be stored along with their

usage scenarios, program stimuli, and probability distributions. Each component

would have a certified reliability under the usage scenario and testing regime described.

This information is invaluable to others who intend to use the components.

The certification approach involves five steps [WOH94]:

1. Usage scenarios must be created.

2. A usage profile is specified.

3. Test cases are generated from the profile.

4. Tests are executed and failure data are recorded and analyzed.

5. Reliability is computed and certified.

Steps 1 through 4 have been discussed in an earlier section. In this section, we con-

centrate on reliability certification.  

Certification for cleanroom software engineering requires the creation of three

models [POO93]:

Sampling model. Software testing executes m random test cases and is

certified if no failures or a specified numbers of failures occur. The value of m

is derived mathematically to ensure that required reliability is achieved.

Component model. A system composed of n components is to be certified.

The component model enables the analyst to determine the probability that

component i will fail prior to completion.

Certification model. The overall reliability of the system is projected and

certified.

At the completion of statistical use testing, the certification team has the infor-

mation required to deliver software that has a certified MTTF computed using each

of these models. 

A detailed discussion of the computation of the sampling, component, and certi-

fication models is beyond the scope of this book. The interested reader should see

[MUS87], [CUR86], and [POO93] for additional detail. 

26.5 SUMMARY

Cleanroom software engineering is a formal approach to software development that

can lead to software that has remarkably high quality. It uses box structure specifi-

How do we
certify a

software
component?

?
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cation (or formal methods) for analysis and design modeling and emphasizes cor-

rectness verification, rather than testing, as the primary mechanism for finding and

removing errors. Statistical use testing is applied to develop the failure rate infor-

mation necessary to certify the reliability of delivered software.

The cleanroom approach begins with analysis and design models that use a box

structure representation. A “box” encapsulates the system (or some aspect of the sys-

tem) at a specific level of abstraction. Black boxes are used to represent the exter-

nally observable behavior of a system. State boxes encapsulate state data and

operations. A clear box is used to model the procedural design that is implied by the

data and operations of a state box.

Correctness verification is applied once the box structure design is complete. The

procedural design for a software component is partitioned into a series of subfunc-

tions. To prove the correctness of the subfunctions, exit conditions are defined for

each subfunction and a set of subproofs is applied. If each exit condition is satisfied,

the design must be correct.

Once correctness verification is complete, statistical use testing commences. Unlike

conventional testing, cleanroom software engineering does not emphasize unit or

integration testing. Rather, the software is tested by defining a set of usage scenar-

ios, determining the probability of use for each scenario, and then defining random

tests that conform to the probabilities. The error records that result are combined

with sampling, component, and certification models to enable mathematical com-

putation of projected reliability for the software component.

The cleanroom philosophy is a rigorous approach to software engineering. It is a

software process model that emphasizes mathematical verification of correctness

and certification of software reliability. The bottom line is extremely low failure rates

that would be difficult or impossible to achieve using less formal methods. 
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PROBLEMS AND POINTS TO PONDER

26.1. If you had to pick one aspect of cleanroom software engineering that makes

it radically different from conventional or object-oriented software engineering

approaches, what would it be?

26.2. How do an incremental process model and certification work together to pro-

duce high-quality software?

26.3. Using box structure specification, develop “first-pass” analysis and design mod-

els for the SafeHome system.

26.4. Develop a box structure specification for a portion of the PHTRS system intro-

duced in Problem 12.13.

26.5. Develop a box structure specification for the e-mail system presented in Prob-

lem 21.15.

26.6. A bubble sort algorithm is defined in the following manner:
procedure bubblesort;

var i, t, integer;

begin

repeat until t=a[1]

t:=a[1];

for j:= 2 to n do

if a[j-1] > a[j] then begin

t:=a[j-1];
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a[j-1]:=a[j];

a[j]:=t;

end

endrep

end

Partition the design into subfunctions and define a set of conditions that would enable

you to prove that this algorithm is correct.

26.7. Document a correctness verification proof for the bubble sort discussed in

Problem 26.6.

26.8. Select a program component that you have designed in another context (or

one assigned by your instructor) and develop a complete proof of correctness for it.

26.9. Select a program that you use regularly (e.g., an e-mail handler, a word proces-

sor, a spreadsheet program). Create a set of usage scenarios for the program. Define

the probability of use for each scenario and then develop a program stimuli and prob-

ability distribution table similar to the one shown in Section 26.4.1.

26.10. For the program stimuli and probability distribution table developed in Prob-

lem 26.9, use a random number generator to develop a set of test cases for use in

statistical use testing.

26.11. In your own words, describe the intent of certification in the cleanroom soft-

ware engineering context.

26.12. Write a short paper that describes the mathematics used to define the certi-

fication models described briefly in Section 26.4.2. Use [MUS87], [CUR86], and [POO93]

as a starting point.

FURTHER READINGS AND INFORMATION SOURCES

Prowell et al. (Cleanroom Software Engineering: Technology and Process, Addison-Wes-

ley, 1999) provides an in-depth treatment of all important aspects of the cleanroom

approach. Useful discussions of cleanroom topics have been edited by Poore and

Trammell (Cleanroom Software Engineering: A Reader, Blackwell Publishing, 1996).

Becker and Whittaker (Cleanroom Software Engineering Practices, Idea Group Pub-

lishing, 1996) present an excellent overview for those who are unfamiliar with clean-

room practices.

The Cleanroom Pamphlet (Software Technology Support Center, Hill AF Base, April

1995) contains reprints of a number of important articles. Linger [LIN94] produced

one of the better introductions to the subject. Asset Source for Software Engineering

Technology, ASSET, (United States Department of Defense) offers an excellent six vol-

ume set of Cleanroom Engineering Handbooks. ASSET can be contacted at

info@source.asset.com. Lockheed Martin's Guide to the Integration of Object-Oriented
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Design verification via proof of correctness lies at the heart of the cleanroom

approach. Books by Baber (Error-Free Software, Wiley, 1991) and Schulmeyer (Zero

Defect Software, McGraw-Hill, 1990) discuss proof of correctness in considerable detail.

A wide variety of information sources on cleanroom software engineering and

related subjects is available on the Internet. An up-to-date list of World Wide Web

references that are relevant to cleanroom software engineering can be found at the

SEPA Web site:

http://www.mhhe.com/engcs/compsci/pressman/resources/

cleanroom.mhtml
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In the software engineering context, reuse is an idea both old and new. Pro-
grammers have reused ideas, abstractions, and processes since the earliest
days of computing, but the early approach to reuse was ad hoc. Today, com-

plex, high-quality computer-based systems must be built in very short time peri-
ods. This mitigates toward a more organized approach to reuse. 

Component-based software engineering (CBSE) is a process that emphasizes
the design and construction of computer-based systems using reusable soft-
ware “components.” Clements [CLE95] describes CBSE in the following way:

[CBSE] is changing the way large software systems are developed. [CBSE] embod-

ies the “buy, don’t build” philosophy espoused by Fred Brooks and others. In the

same way that early subroutines liberated the programmer from thinking about

details, [CBSE] shifts the emphasis from programming software to composing soft-

ware systems. Implementation has given way to integration as the focus. At its

foundation is the assumption that there is sufficient commonality in many large

software systems to justify developing reusable components to exploit and satisfy

that commonality.

But a number of questions arise. Is it possible to construct complex systems
by assembling them from a catalog of reusable software components? Can this

27 COMPONENT-BASED
SOFTWARE ENGINEERING

What is it? You purchase a

“stereo system” and bring it home.

Each component has been

designed to fit a specific architectural style—

connections are standardized, communication

protocol has be preestablished. Assembly is easy

because you don’t have to build the system from

hundreds of discrete parts. Component-based soft-

ware engineering strives to achieve the same

thing. A set of prebuilt, standardized software com-

ponents are made available to fit a specific archi-

tectural style for some application domain. The

application is then assembled using these com-

ponents, rather than the “discrete parts” of a con-

ventional programming language. 

Who does it? Software engineers apply the CBSE

process.

Why is it important? It takes only a few minutes to

assemble the stereo system because the compo-

nents are designed to be integrated with ease.

Although software is considerably more complex,

it follows that component-based systems are eas-

ier to assemble and therefore less costly to build

than systems constructed from discrete parts. In

addition, CBSE encourages the use of predictable

architectural patterns and standard software infra-

structure, thereby leading to a higher-quality

result.

What are the steps? CBSE encompasses two paral-

lel engineering activities: domain engineering and

Q U I C K
L O O K
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be accomplished in a cost- and time-effective manner? Can appropriate incentives
be established to encourage software engineers to reuse rather than reinvent? Is man-
agement willing to incur the added expense associated with creating reusable soft-
ware components? Can the library of components necessary to accomplish reuse be
created in a way that makes it accessible to those who need it? Can components that
do exist be found by those who need them?

These and many other questions continue to haunt the community of researchers
and industry professionals who are striving to make software component reuse a
mainstream approach to software engineering. We look at some of the answers in
this chapter.

27.1 ENGINEERING OF COMPONENT-BASED SYSTEMS

On the surface, CBSE seems quite similar to conventional or object-oriented software

engineering. The process begins when a software team establishes requirements for

the system to be built using conventional requirements elicitation techniques (Chap-

ters 10 and 11). An architectural design (Chapter 14) is established, but rather than

moving immediately into more detailed design tasks, the team examines require-

ments to determine what subset is directly amenable to composition, rather than con-

struction. That is, the team asks the following questions for each system requirement:

• Are commercial off-the-shelf (COTS) components available to implement the

requirement?

• Are internally developed reusable components available to implement the

requirement?

component-based development.

Domain engineering explores an

application domain with the spe-

cific intent of finding functional, behavioral, and

data components that are candidates for reuse.

These components are placed in reuse libraries.

Component-based development elicits require-

ments from the customer, selects an appropriate

architectural style to meet the objectives of the

system to be built, and then (1) selects potential

components for reuse, (2) qualifies the components

to be sure that they properly fit the architecture

for the system, (3) adapts components if modifi-

cations must be made to properly integrate them,

and (4) integrates the components to form sub-

systems and the application as a whole. In addi-

tion, custom components are engineered to

address those aspects of the system that cannot

be implemented using existing components.

What is the work product? Operational software,

assembled using existing and newly developed

software components, is the result of CBSE. 

How do I ensure that I’ve done it right? Use the same

SQA practices that are applied in every software

engineering process—formal technical reviews

assess the analysis and design models, special-

ized reviews consider issues associated with

acquired components, testing is applied to

uncover errors in newly developed software and

in reusable components that have been inte-

grated into the architecture.

Q U I C K
L O O K
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• Are the interfaces for available components compatible within the architec-

ture of the system to be built?

The team attempts to modify or remove those system requirements that can-

not be implemented with COTS or in-house components.1 If the requirement(s)

cannot be changed or deleted, conventional or object-oriented software engi-

neering methods are applied to develop those new components that must be engi-

neered to meet the requirement(s). But for those requirements that are addressed

with available components, a different set of software engineering activities 

commences:

Component qualification. System requirements and architecture define

the components that will be required. Reusable components (whether COTS

or in-house) are normally identified by the characteristics of their interfaces.

That is, “the services that are provided, and the means by which consumers

access these services” [BRO96] are described as part of the component inter-

face. But the interface does not provide a complete picture of the degree to

which the component will fit the architecture and requirements. The software

engineer must use a process of discovery and analysis to qualify each com-

ponent’s fit.

Component adaptation. In Chapter 14, we noted that software architec-

ture represents design patterns that are composed of components (units of

functionality), connections, and coordination. In essence the architecture

defines the design rules for all components, identifying modes of connection

and coordination. In some cases, existing reusable components may be mis-

matched to the architecture’s design rules. These components must be

adapted to meet the needs of the architecture or discarded and replaced by

other, more suitable components.

Component composition. Architectural style again plays a key role in the

way in which software components are integrated to form a working system.

By identifying connection and coordination mechanisms (e.g., run-time prop-

erties of the design), the architecture dictates the composition of the end

product.

Component update. When systems are implemented with COTS compo-

nents, update is complicated by the imposition of a third party (i.e., the orga-

nization that developed the reusable component may be outside the

immediate control of the software engineering organization).

Each of these CBSE activities is discussed in more detail in Section 27.4.
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1 The implication is that the organization adjust its business or product requirements so that 
component-based implementation can be achieved without the need for custom engineering.
This approach reduces system cost and improves time to market but is not always possible. 

“[I]t seems clear that
in the near future
most software
applications will be
assembled from
components rather
than being
constructed from
scratch.”
Paul Allen and
Stuart Frost 

What are 
the CBSE

framework
activities?

?
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In the first part of this section, the term component has been used repeatedly, yet

a definitive description of the term is elusive. Brown and Wallnau [BRO96] suggest

the following possibilities:

• Component—a nontrivial, nearly independent, and replaceable part of a sys-

tem that fulfills a clear function in the context of a well-defined architecture.

• Run-time software component—a dynamic bindable package of one or more

programs managed as a unit and accessed through documented interfaces

that can be discovered in run time.

• Software component—a unit of composition with contractually specified and

explicit context dependencies only.

• Business component—the software implementation of an “autonomous” busi-

ness concept or business process.

In addition to these descriptions, software components can also be characterized

based on their use in the CBSE process. In addition to COTS components, the CBSE

process yields:

• Qualified components—assessed by software engineers to ensure that not

only functionality, but performance, reliability, usability, and other quality fac-

tors (Chapter 19) conform to the requirements of the system or product to be

built.

• Adapted components—adapted to modify (also called mask or wrap) [BRO96]

unwanted or undesirable characteristics.

• Assembled components—integrated into an architectural style and intercon-

nected with an appropriate infrastructure that allows the components to be

coordinated and managed effectively.

• Updated components—replacing existing software as new versions of compo-

nents become available.

Because CBSE is an evolving discipline, it is unlikely that a unifying definition will

emerge in the near term.

27.2 THE CBSE PROCESS

In Chapter 2, a “component-based development model” (Figure 2.11) was used to

illustrate how a library of reusable “candidate components” can be integrated into a

typical evolutionary process model. The CBSE process, however, must be character-

ized in a manner that not only identifies candidate components but also qualifies each

component’s interface, adapts components to remove architectural mismatches,

assembles components into a selected architectural style, and updates components

as requirements for the system change [BRO96].

XRef
Certification of
software components
can be accomplished
using cleanroom
methods. See Chapter
26 for details.



CHAPTER 27 COMPONENT-BASED SOFTWARE ENGINEERING

The process model for component-based software engineering emphasizes par-

allel tracks in which domain engineering (Section 27.3) occurs concurrently with 

component-based development. Domain engineering performs the work required to

establish a set of software components that can be reused by the software engineer.

These components are then transported across a “boundary” that separates domain

engineering from component-based development.

Figure 27.1 illustrates a typical process model that explicitly accommodates CBSE

[CHR95]. Domain engineering creates a model of the application domain that is used

as a basis for analyzing user requirements in the software engineering flow. A generic

software architecture (and corresponding structure points, see Section 27.3.3) pro-

vide input for the design of the application. Finally, after reusable components have

been purchased, selected from existing libraries, or constructed (as part of domain

engineering), they are made available to software engineers during component-based

development.

27.3 DOMAIN ENGINEERING

The intent of domain engineering is to identify, construct, catalog, and disseminate

a set of software components that have applicability to existing and future software
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in a particular application domain. The overall goal is to establish mechanisms that

enable software engineers to share these components—to reuse them—during work

on new and existing systems. 

Domain engineering includes three major activities—analysis, construction, and

dissemination. An overview of domain analysis was presented in Chapter 21. How-

ever, the topic is revisited in the sections that follow. Domain construction and dis-

semination are considered in later sections in this chapter. 

It can be argued that “reuse will disappear, not by elimination, but by integration”

into the fabric of software engineering practice [TRA95]. As greater emphasis is placed

on reuse, some believe that domain engineering will become as important as soft-

ware engineering over the next decade. 

27.3.1 The Domain Analysis Process

In Chapter 21, we discussed the overall approach to domain analysis within the con-

text of object-oriented software engineering. The steps in the process were defined

as:

1. Define the domain to be investigated.

2. Categorize the items extracted from the domain.

3. Collect a representative sample of applications in the domain.

4. Analyze each application in the sample.

5. Develop an analysis model for the objects.

It is important to note that domain analysis is applicable to any software engineer-

ing paradigm and may be applied for conventional as well as object-oriented devel-

opment.

Prieto-Diaz [PRI87] expands the second domain analysis step and suggests an

eight-step approach to the identification and categorization of reusable components:

1. Select specific functions or objects.

2. Abstract functions or objects.

3. Define a taxonomy.

4. Identify common features.

5. Identify specific relationships.

6. Abstract the relationships.

7. Derive a functional model.

8. Define a domain language.

A domain language enables the specification and later construction of applications

within the domain.

“Domain engineering
is about finding
commonalities
among systems to
identify components
that can be applied
to many systems,
and to identify
program families
that are positioned
to take fullest
advantage of those
components.”
Paul Clements 

How can we
identify and

categorize
reusable
components?

?



CHAPTER 27 COMPONENT-BASED SOFTWARE ENGINEERING

Although the steps just noted provide a useful model for domain analysis, they

provide no guidance for deciding which software components are candidates for

reuse. Hutchinson and Hindley [HUT88] suggest the following set of pragmatic ques-

tions as a guide for identifying reusable software components:

• Is component functionality required on future implementations?

• How common is the component's function within the domain?

• Is there duplication of the component's function within the domain?

• Is the component hardware dependent?

• Does the hardware remain unchanged between implementations?

• Can the hardware specifics be removed to another component?

• Is the design optimized enough for the next implementation?

• Can we parameterize a nonreusable component so that it becomes reusable?

• Is the component reusable in many implementations with only minor

changes?

• Is reuse through modification feasible?

• Can a nonreusable component be decomposed to yield reusable components?

• How valid is component decomposition for reuse?

An in-depth discussion of domain analysis methods is beyond the scope of this book.

For additional information on domain analysis, see [PRI93]. 

27.3.2 Characterization Functions

It is sometimes difficult to determine whether a potentially reusable component is in

fact applicable in a particular situation. To make this determination, it is necessary

to define a set of domain characteristics that are shared by all software within a

domain. A domain characteristic defines some generic attribute of all products that

exist within the domain. For example, generic characteristics might include the impor-

tance of safety/reliability, programming language, concurrency in processing, and

many others.

A set of domain characteristics for a reusable component can be represented as

{Dp}, where each item, Dpi, in the set represents a specific domain characteristic. The

value assigned to Dpi represents an ordinal scale that is an indication of the relevance

of the characteristic for component p. A typical scale [BAS94] might be

1: not relevant to whether reuse is appropriate

2: relevant only under unusual circumstances

3: relevant—the component can be modified so that it can be used, despite 

differences
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4: clearly relevant, and if the new software does not have this characteristic,

reuse will be inefficient but may still be possible

5: clearly relevant, and if the new software does not have this characteristic,

reuse will be ineffective and reuse without the characteristic is not recom-

mended

When new software, w, is to be built within the application domain, a set of domain

characteristics is derived for it. A comparison is then made between Dpi and Dwi to deter-

mine whether the existing component p can be effectively reused in application w.

Table 27.1 [BAS94] lists typical domain characteristics that can have an impact of

software reuse. These domain characteristics must be taken into account in order to

reuse a component effectively.

Even when software to be engineered clearly exists within an application domain,

the reusable components within that domain must be analyzed to determine their

applicability. In some cases (ideally, a limited number), “reinventing the wheel” may

still be the most cost-effective choice. 

27.3.3 Structural Modeling and Structure Points

When domain analysis is applied, the analyst looks for repeating patterns in the appli-

cations that reside within a domain. Structural modeling is a pattern-based domain

engineering approach that works under the assumption that every application domain

has repeating patterns (of function, data, and behavior) that have reuse potential. 

Pollak and Rissman [POL94] describe structural models in the following way:

Structural models consist of a small number of structural elements manifesting clear pat-

terns of interaction. The architectures of systems using structural models are character-

ized by multiple ensembles that are composed from these model elements. Many

architectural units emerge from simple patterns of interaction among this small number

of elements.

WebRef
A worthwhile report
addressing object
technology, architectures,
and domain analysis can
be found at
www.sei.cmu.edu/
mbse/wisr_report.
html

TABLE 27.1 Domain Characteristics Affecting Reuse [BAS94]

Product Process Personnel

Requirements stability Process model Motivation
Concurrent software Process conformance Education
Memory constraints Project environment Experience/training
Application size Schedule constraints • application domain
User interface complexity Budget constraints • process
Programming language(s) Productivity • platform
Safety/reliability • language
Lifetime requirements Development team
Product quality productivity
Product reliability
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Each application domain can be characterized by a structural model (e.g., aircraft

avionics systems differ greatly in specifics, but all modern software in this domain

has the same structural model). Therefore, the structural model is an architectural

style (Chapter 14) that can and should be reused across applications within the

domain.

McMahon [MCM95] describes a structure point as “a distinct construct within a

structural model.” Structure points have three distinct characteristics:

1. A structure point is an abstraction that should have a limited number of

instances. Restating this in object-oriented jargon (Chapter 20), the size of

the class hierarchy should be small. In addition, the abstraction should recur

throughout applications in the domain. Otherwise, the cost to verify, docu-

ment, and disseminate the structure point cannot be justified.

2. The rules that govern the use of the structure point should be easily under-

stood. In addition, the interface to the structure point should be relatively

simple.

3. The structure point should implement information hiding by isolating all

complexity contained within the structure point itself. This reduces the per-

ceived complexity of the overall system.

As an example of structure points as architectural patterns for a system, consider

the domain of software for alarm systems. This domain might encompass systems

as simple as SafeHome (discussed in earlier chapters) or as complex as the alarm sys-

tem for an industrial process. In every case, however, a set of predictable structural

patterns are encountered:

• An interface that enables the user to interact with the system.

• A bounds setting mechanism that allows the user to establish bounds on the

parameters to be measured.

• A sensor management mechanism that communicates with all monitoring

sensors.

• A response mechanism that reacts to the input provided by the sensor man-

agement system.

• A control mechanism that enables the user to control the manner in which

monitoring is carried out.

Each of these structure points is integrated into a domain architecture.

It is possible to define generic structure points that transcend a number of differ-

ent application domains [STA94]:

• Application front end—the GUI including all menus, panels and input and

command editing facilities.

• Database—the repository for all objects relevant to the application domain.
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• Computational engine—the numerical and nonnumerical models that manipu-

late data.

• Reporting facility—the function that produces output of all kinds.

• Application editor—the mechanism for customizing the application to the

needs of specific users.

Structure points have been suggested as an alternative to lines of code and function

points for software cost estimation [MCM95]. A brief discussion of costing using struc-

ture points is presented in Section 27.6.2.

27.4 COMPONENT-BASED DEVELOPMENT

Component-based development is a CBSE activity that occurs in parallel with domain

engineering. Using analysis and architectural design methods discussed earlier in

this book, the software team refines an architectural style that is appropriate for the

analysis model created for the application to be built.2

Once the architecture has been established, it must be populated by components

that (1) are available from reuse libraries and/or (2) are engineered to meet custom

needs. Hence, the task flow for component-based development has two parallel paths

(Figure 27.1). When reusable components are available for potential integration into

the architecture, they must be qualified and adapted. When new components are

required, they must be engineered. The resultant components are then “composed”

(integrated) into the architecture template and tested thoroughly. 

27.4.1 Component Qualification, Adaptation, and Composition 

As we have already seen, domain engineering provides the library of reusable com-

ponents that are required for component-based software engineering. Some of these

reusable components are developed in-house, others can be extracted from existing

applications, and still others may be acquired from third parties.

Unfortunately, the existence of reusable components does not guarantee that these

components can be integrated easily or effectively into the architecture chosen for a

new application. It is for this reason that a sequence of component-based develop-

ment activities are applied when a component is proposed for use.

Component Qualification

Component qualification ensures that a candidate component will perform the func-

tion required, will properly “fit” into the architectural style specified for the system,

and will exhibit the quality characteristics (e.g., performance, reliability, usability) that

are required for the application.

2 It should be noted that the architectural style is often influenced by the generic structural model
created during domain engineering (see Figure 27.1).
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The interface description provides useful information about the operation and use

of a software component, but it does not provide all of the information required to

determine if a proposed component can, in fact, be reused effectively in a new appli-

cation. Among the many factors considered during component qualification are

[BRO96]:

• Application programming interface (API).

• Development and integration tools required by the component.

• Run-time requirements, including resource usage (e.g., memory or storage),

timing or speed, and network protocol.

• Service requirements, including operating system interfaces and support

from other components.

• Security features, including access controls and authentication protocol.

• Embedded design assumptions, including the use of specific numerical or

nonnumerical algorithms.

• Exception handling.

Each of these factors is relatively easy to assess when reusable components that have

been developed in-house are proposed. If good software engineering practices were

applied during their development, answers to the questions implied by the list can

be developed. However, it is much more difficult to determine the internal workings

of COTS or third-party components because the only available information may be

the interface specification itself.

Component Adaptation

In an ideal setting, domain engineering creates a library of components that can be

easily integrated into an application architecture. The implication of “easy integra-

tion” is that (1) consistent methods of resource management have been implemented

for all components in the library, (2) common activities such as data management

exist for all components, and (3) interfaces within the architecture and with the exter-

nal environment have been implemented in a consistent manner. 

In reality, even after a component has been qualified for use within an application

architecture, it may exhibit conflict in one or more of the areas just noted. To miti-

gate against these conflicts, an adaptation technique called component wrapping

[BRO96] is often used. When a software team has full access to the internal design

and code for a component (often not the case when COTS components are used)

white-box wrapping is applied. Like its counterpart in software testing (Chapter 17),

white-box wrapping examines the internal processing details of the component and

makes code-level modifications to remove any conflict. Gray-box wrapping is applied

when the component library provides a component extension language or API 

that enables conflicts to be removed or masked. Black-box wrapping requires the 
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introduction of pre- and postprocessing at the component interface to remove or

mask conflicts. The software team must determine whether the effort required to ade-

quately wrap a component is justified or whether a custom component (designed to

eliminate the conflicts encountered) should be engineered instead.

Component Composition

The component composition task assembles qualified, adapted, and engineered com-

ponents to populate the architecture established for an application. To accomplish

this, an infrastructure must be established to bind the components into an opera-

tional system. The infrastructure (usually a library of specialized components) pro-

vides a model for the coordination of components and specific services that enable

components to coordinate with one another and perform common tasks.

Among the many mechanisms for creating an effective infrastructure is a set of

four “architectural ingredients” [ADL95] that should be present to achieve compo-

nent composition:

Data exchange model. Mechanisms that enable users and applications to

interact and transfer data (e.g., drag and drop, cut and paste) should be defined

for all reusable components. The data exchange mechanisms not only allow

human-to-software and component-to-component data transfer but also trans-

fer among system resources (e.g., dragging a file to a printer icon for output). 

Automation. A variety of tools, macros, and scripts should be implemented

to facilitate interaction between reusable components.

Structured storage. Heterogeneous data (e.g., graphical data, voice/video,

text, and numerical data) contained in a “compound document” should be

organized and accessed as a single data structure, rather than a collection of

separate files. “Structured data maintains a descriptive index of nesting struc-

tures that applications can freely navigate to locate, create, or edit individual

data contents as directed by the end user” [ADL95].

Underlying object model. The object model ensures that components

developed in different programming languages that reside on different plat-

forms can be interoperable. That is, objects must be capable of communicat-

ing across a network. To achieve this, the object model defines a standard for

component interoperability.

Because the potential impact of reuse and CBSE on the software industry is enor-

mous, a number of major companies and industry consortia3 have proposed stan-

dards for component software:

3 An excellent discussion of the “distributed objects” standards is presented in [ORF96] and

[YOU98].
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OMG/CORBA. The Object Management Group has published a common

object request broker architecture (OMG/CORBA). An object request broker

(ORB) provides a variety on services that enable reusable components

(objects) to communicate with other components, regardless of their location

within a system. When components are built using the OMG/CORBA stan-

dard, integration of those components (without modification) within a system

is assured if an interface definition language (IDL) interface is created for every

component. Using a client/server metaphor, objects within the client appli-

cation request one or more services from the ORB server. Requests are made

via an IDL or dynamically at run time. An interface repository contains all

necessary information about the service’s request and response formats.

CORBA is discussed further in Chapter 28.

Microsoft COM. Microsoft has developed a component object model

(COM) that provides a specification for using components produced by vari-

ous vendors within a single application running under the Windows operat-

ing system. COM encompasses two elements: COM interfaces (implemented

as COM objects) and a set of mechanisms for registering and passing mes-

sages between COM interfaces. From the point of view of the application,

“the focus is not on how [COM objects are] implemented, only on the fact

that the object has an interface that it registers with the system, and that it

uses the component system to communicate with other COM objects”

[HAR98].

Sun JavaBean Components. The JavaBean component system is a

portable, platform independent CBSE infrastructure developed using the Java

programming language. The JavaBean system extends the Java applet4 to

accommodate the more sophisticated software components required for

component-based development. The JavaBean component system encom-

passes a set of tools, called the Bean Development Kit (BDK), that allows

developers to (1) analyze how existing Beans (components) work, (2) cus-

tomize their behavior and appearance, (3) establish mechanisms for coordi-

nation and communication, (4) develop custom Beans for use in a specific

application, and (5) test and evaluate Bean behavior.

Which of these standards will dominate the industry? There is no easy answer

at this time. Although many developers have standardized on one of the stan-

dards, it is likely that large software organizations may choose to use all three

standards, depending on the application categories and platforms that are 

chosen.
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27.4.2 Component Engineering

As we noted earlier in this chapter, the CBSE process encourages the use of existing

software components. However, there are times when components must be engi-

neered. That is, new software components must be developed and integrated with

existing COTS and in-house components. Because these new components become

members of the in-house library of reusable components, they should be engineered

for reuse.

Nothing is magical about creating software components that can be reused. Design

concepts such as abstraction, hiding, functional independence, refinement, and struc-

tured programming, along with object-oriented methods, testing, SQA, and correct-

ness verification methods, all contribute to the creation of software components that

are reusable.5 In this section we will not revisit these topics. Rather, we consider the

reuse-specific issues that are complementary to solid software engineering practices.

27.4.3 Analysis and Design for Reuse

The components of the analysis model were discussed in detail in Parts Three and

Four of this book. Data, functional, and behavioral models (represented in a variety

of different notations) can be created to describe what a particular application must

accomplish. Written specifications are then used to describe these models. A com-

plete description of requirements is the result.

Ideally, the analysis model is analyzed to determine those elements of the model

that point to existing reusable components. The problem is extracting information

from the requirements model in a form that can lead to “specification matching.”

Bellinzoni, Gugini, and Pernici [BEL95] describe one approach for object-oriented

systems:

Components are defined and stored as specification, design, and implementation classes

at various levels of abstraction—with each class being an engineered description of a prod-

uct from previous applications. The specification knowledge—development knowledge—is

stored in the form of reuse-suggestion classes, which contain directions for retrieving

reusable components on the basis of their description and for composing and tailoring them

after retrieval.

Automated tools are used to browse a repository in an attempt to match the require-

ment noted in the current specification with those described for existing reusable

components (classes). Characterization functions (Section 27.3.2) and keywords are

used to help find potentially reusable components.

If specification matching yields components that fit the needs of the current appli-

cation, the designer can extract these components from a reuse library (repository)

and use them in the design of new systems. If design components cannot be found,

the software engineer must apply conventional or OO design methods to create them.

5 To learn more about these topics, see Chapters 13 through 16 and 20 through 22.

Even if your
organization doesn’t
do domain
engineering, do it
informally as you
work. As you build the
analysis model ask
yourself, “Is it likely
that this object or
function has been
encountered in other
applications of this
type?” If the answer
is, “Yes,” a
component may
already exist.
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It is at this point—when the designer begins to create a new component—that design

for reuse (DFR) should be considered.

As we have already noted, DFR requires the software engineer to apply solid soft-

ware design concepts and principles (Chapter 13). But the characteristics of the appli-

cation domain must also be considered. Binder [BIN93] suggests a number of key

issues6 that form a basis for design for reuse:

Standard data. The application domain should be investigated and stan-

dard global data structures (e.g., file structures or a complete database)

should be identified. All design components can then be characterized to

make use of these standard data structures.

Standard interface protocols. Three levels of interface protocol should be

established: the nature of intramodular interfaces, the design of external

technical (nonhuman) interfaces, and the human/machine interface.

Program templates. The structure model (Section 27.3.3) can serve as a

template for the architectural design of a new program. 

Once standard data, interfaces, and program templates have been established, the

designer has a framework in which to create the design. New components that con-

form to this framework have a higher probability for subsequent reuse.

Like design, the construction of reusable components draws on software engi-

neering methods that have been discussed elsewhere in this book. Construction can

be accomplished using conventional third generation programming languages, fourth

generation languages and code generators, visual programming techniques, or more

advanced tools.

27.5 CLASSIFYING AND RETRIEVING COMPONENTS

Consider a large university library. Tens of thousands of books, periodicals, and other

information resources are available for use. But to access these resources, a catego-

rization scheme must be developed. To navigate this large volume of information,

librarians have defined a classification scheme that includes a Library of Congress

classification code, keywords, author names, and other index entries. All enable the

user to find the needed resource quickly and easily.

Now, consider a large component repository. Tens of thousands of reusable soft-

ware components reside in it. But how does a software engineer find the one she

needs? To answer this question, another question arises: How do we describe soft-

ware components in unambiguous, classifiable terms? These are difficult questions,

and no definitive answer has yet been developed. In this section we explore current

directions that will enable future software engineers to navigate reuse libraries.
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6 In general, the design for reuse preparations should be undertaken as part of domain engineering
(Section 27.3).
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27.5.1 Describing Reusable Components

A reusable software component can be described in many ways, but an ideal descrip-

tion encompasses what Tracz [TRA90] has called the 3C model—concept, content,

and context.

The concept of a software component is “a description of what the component

does” [WHI95]. The interface to the component is fully described and the semantics—

represented within the context of pre- and postconditions—are identified. The con-

cept should communicate the intent of the component.

The content of a component describes how the concept is realized. In essence, the

content is information that is hidden from casual users and need be known only to

those who intend to modify or test the component.

The context places a reusable software component within its domain of applica-

bility. That is, by specifying conceptual, operational, and implementation features,

the context enables a software engineer to find the appropriate component to meet

application requirements.

To be of use in a pragmatic setting, concept, content, and context must be trans-

lated into a concrete specification scheme. Dozens of papers and articles have been

written about classification schemes for reusable software components (e.g., [WHI95]

contains an extensive bibliography). The methods proposed can be categorized into

three major areas: library and information science methods, artificial intelligence

methods, and hypertext systems. The vast majority of work done to date suggests the

use of library science methods for component classification.

Figure 27.2 presents a taxonomy of library science indexing methods. Controlled

indexing vocabularies limit the terms or syntax that can be used to classify an object

(component). Uncontrolled indexing vocabularies place no restrictions on the nature

Terms not extracted
from text

Terms extracted
from text

Uncontrolled

Indexing
vocabularies

KeywordClassed

Controlled

Faceted

Enumerated

Thesaurus

Subject
headings

Descriptors

Without syntax

With syntax
FIGURE 27.2
A taxonomy 
of indexing 
methods
[FRA94]

In order to describe a
reusable component,
the component’s
concept, content, and
context should be
described.
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of the description. The majority of classification schemes for software components

fall into three categories:

Enumerated classification. Components are described by a hierarchical

structure in which classes and varying levels of subclasses of software com-

ponents are defined. Actual components are listed at the lowest level of any

path in the enumerated hierarchy. For example, an enumerated hierarchy for

window operations7 might be

window operations

display

open

menu-based

openWindow

system-based

sysWindow

close

via pointer

...

resize

via command

setWindowSize, stdResize, shrinkWindow

via drag

pullWindow, stretchWindow

up/down shuffle

...

move

...

close

...

The hierarchical structure of an enumerated classification scheme makes it

easy to understand and to use. However, before a hierarchy can be built,

domain engineering must be conducted so that sufficient knowledge of the

proper entries in the hierarchy is available.

Faceted classification. A domain area is analyzed and a set of basic

descriptive features are identified. These features, called facets, are then

ranked by importance and connected to a component. A facet can describe

the function that the component performs, the data that are manipulated, the

context in which they are applied, or any other feature. The set of facets that

describe a component is called the facet descriptor. Generally, the facet

description is limited to no more than seven or eight facets.
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As a simple illustration of the use of facets in component classification, con-

sider a scheme [LIA93] that makes use of the following facet descriptor:

{function, object type, system type}

Each facet in the facet descriptor takes on one or more values that are gener-

ally descriptive keywords. For example, if function is a facet of a component,

typical values assigned to this facet might be

function = (copy, from) or (copy, replace, all)

The use of multiple facet values enables the primitive function copy to be

refined more fully. Keywords (values) are assigned to the set of facets for

each component in a reuse library. When a software engineer wants to

query the library for possible components for a design, a list of values is

specified and the library is searched for matches. Automated tools can be

used to incorporate a thesaurus function. This enables the search to encom-

pass not only the keyword specified by the software engineer but also tech-

nical synonyms for those keywords. A faceted classification scheme gives

the domain engineer greater flexibility in specifying complex descriptors for

components [FRA94]. Because new facet values can be added easily, the

faceted classification scheme is easier to extend and adapt than the enumer-

ation approach.

Attribute-value classification. A set of attributes is defined for all compo-

nents in a domain area. Values are then assigned to these attributes in much

the same way as faceted classification. In fact, attribute value classification is

similar to faceted classification with the following exceptions: (1) no limit is

placed on the number of attributes that can be used; (2) attributes are not

assigned priorities, and (3) the thesaurus function is not used.

Based on an empirical study of each of these classification techniques, Frakes and

Pole [FRA94] indicate that there is no clear “best” technique and that “no method did

more than moderately well in search effectiveness . . .” It would appear that further

work remains to be done in the development of effective classification schemes for

reuse libraries.

27.5.2 The Reuse Environment

Software component reuse must be supported by an environment that encompasses

the following elements:

• A component database capable of storing software components and the clas-

sification information necessary to retrieve them.

• A library management system that provides access to the database.



CHAPTER 27 COMPONENT-BASED SOFTWARE ENGINEERING

• A software component retrieval system (e.g., an object request broker) that

enables a client application to retrieve components and services from the

library server.

• CBSE tools that support the integration of reused components into a new

design or implementation.

Each of these functions interact with or is embodied within the confines of a reuse

library.

The reuse library is one element of a larger CASE repository (Chapter 31) and pro-

vides facilities for the storage of software components and a wide variety of reusable

artifacts (e.g., specifications, designs, code fragments, test cases, user guides). The

library encompasses a database and the tools that are necessary to query the data-

base and retrieve components from it. A component classification scheme (Section

27.5.1) serves as the basis for library queries.

Queries are often characterized using the context element of the 3C model described

earlier in this section. If an initial query results in a voluminous list of candidate com-

ponents, the query is refined to narrow the list. Concept and content information are

then extracted (after candidate components are found) to assist the developer in

selecting the proper component.

A detailed discussion of the structure of reuse libraries and the tools that manage

them is beyond the scope of this book. The interested reader should see [HOO91] and

[LIN95] for additional information.

27.6 ECONOMICS OF CBSE

Component-based software engineering has an intuitive appeal. In theory, it should

provide a software organization with advantages in quality and timeliness. And these

should translate into cost savings. But are there hard data that support our intuition?

To answer this question we must first understand what actually can be reused in

a software engineering context and then what the costs associated with reuse really

are. As a consequence, it is possible to develop a cost/benefit analysis for compo-

nent reuse.

27.6.1 Impact on Quality, Productivity, and Cost

Considerable evidence from industry case studies (e.g., [HEN95], [MCM95], [LIM94])

indicates substantial business benefits can be derived from aggressive software reuse.

Product quality, development productivity, and overall cost are all improved.

Quality. In an ideal setting, a software component that is developed for reuse

would be verified to be correct (see Chapter 26) and would contain no defects. In

reality, formal verification is not carried out routinely, and defects can and do

occur. However, with each reuse, defects are found and eliminated, and a 
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component’s quality improves as a result. Over time, the component becomes vir-

tually defect free. 

In a study conducted at Hewlett Packard, Lim [LIM94] reports that the defect

rate for reused code is 0.9 defects per KLOC, while the rate for newly developed

software is 4.1 defects per KLOC. For an application that was composed of 68 per-

cent reused code, the defect rate was 2.0 defects per KLOC—a 51 percent improve-

ment from the expected rate, had the application been developed without reuse.

Henry and Faller [HEN95] report a 35 percent improvement in quality. Although

anecdotal reports span a reasonably wide spectrum of quality improvement per-

centages, it is fair to state that reuse provides a nontrivial benefit in terms of the

quality and reliability for delivered software.

Productivity. When reusable components are applied throughout the software

process, less time is spent creating the plans, models, documents, code, and data

that are required to create a deliverable system. It follows that the same level of

functionality is delivered to the customer with less input effort. Hence, productivity

is improved.  Although percentage productivity improvement reports are notori-

ously difficult to interpret,8 it appears that 30 to 50 percent reuse can result in pro-

ductivity improvements in the 25–40 percent range.

Cost. The net cost savings for reuse are estimated by projecting the cost of the

project if it were developed from scratch, Cs, and then subtracting the sum of the

costs associated with reuse, Cr, and the actual cost of the software as delivered, Cd.

Cs can be determined by applying one or more of the estimation techniques dis-

cussed in Chapter 5. The costs associated with reuse, Cr, include [CHR95]

• Domain analysis and modeling.

• Domain architecture development.

• Increased documentation to facilitate reuse.

• Support and enhancement of reuse components.

• Royalties and licenses for externally acquired components.

• Creation or acquisition and operation of a reuse repository.

• Training of personnel in design and construction for reuse.

Although costs associated with domain analysis (Section 27.4) and the operation of a

reuse repository can be substantial, many of the other costs noted here address issues

that are part of good software engineering practice, whether or not reuse is a priority.

Although empirical
data vary, industry
evidence indicates that
reuse does provide
substantial cost
benefit.

8 Many extenuating circumstances (e.g., application area, problem complexity, team structure and
size, project duration, technology applied) can have an impact on the productivity of a project
team.
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27.6.2 Cost Analysis Using Structure Points

In Section 27.3.3, we defined a structure point as an architectural pattern that recurs

throughout a particular application domain. A software designer (or system engi-

neer) can develop an architecture for a new application, system, or product by defin-

ing a domain architecture and then populating it with structure points. These

structure points are either individual reusable components or packages of reusable

components. 

Even though structure points are reusable, their qualification, adaptation, inte-

gration, and maintenance costs are nontrivial. Before proceeding with reuse, the

project manager must understand the costs associated with the use of structure

points.

Since all structure points (and reusable components in general) have a past his-

tory, cost data can be collected for each. In an ideal setting, the qualification, adap-

tation, integration, and maintenance costs associated with each component in a reuse

library is maintained for each instance of usage. These data can then be analyzed to

develop projected costs for the next instance of reuse.

As an example, consider a new application, X, that requires 60 percent new code

and the reuse of three structure points, SP1, SP2, and SP3. Each of these reusable

components has been used in a number of other applications and average costs for

qualification, adaptation, integration, and maintenance are available. 

To estimate the effort required to deliver X, the following must be determined:

overall effort = Enew + Equal + Eadapt + Eint

where 

Enew = effort required to engineer and construct new software components

(determined using techniques described in Chapter 5).

Equal = effort required to qualify SP1, SP2, and SP3.

Eadapt = effort required to adapt SP1, SP2, and SP3.

Eint = effort required to integrate SP1, SP2, and SP3.

The effort required to qualify, adapt, and integrate SP1, SP2, and SP3 is determined by

taking the average of historical data collected for qualification, adaptation, and inte-

gration of the reusable components in other applications.

27.6.3 Reuse Metrics

A variety of software metrics have been developed in an attempt to measure the ben-

efits of reuse within a computer-based system. The benefit associated with reuse

within a system S can be expressed as a ratio

Rb(S) = [Cnoreuse – Creuse]/Cnoreuse (27-1)
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where

Cnoreuse is the cost of developing S with no reuse.

Creuse is the cost of developing S with reuse.

It follows that Rb(S) can be expressed as a nondimensional value in the range

0 ≤ Rb(S) ≤ 1 (27-2)

Devanbu and his colleagues [DEV95] suggest that (1) Rb will be affected by the design

of the system; (2)  since Rb is affected by the design, it is important to make Rb a part

of an assessment of design alternatives; and (3) the benefits associated with reuse

are closely aligned to the cost benefit of each individual reusable component. 

A general measure of reuse in object-oriented systems, termed reuse leverage

[BAS94], is defined as

Rlev = OBJreused/OBJbuilt (27-3)

where

OBJreused is the number of objects reused in a system.

OBJbuilt is the number of objects built for a system.

27.7 SUMMARY

Component-based software engineering offers inherent benefits in software quality,

developer productivity, and overall system cost. And yet, many roadblocks remain to

be overcome before the CBSE process model is widely used throughout the industry.

In addition to software components, a variety of reusable artifacts can be acquired

by a software engineer. These include technical representations of the software (e.g.,

specifications, architectural models, designs), documents, test data, and even process-

related tasks (e.g., inspection techniques).

The CBSE process encompasses two concurrent subprocesses—domain engi-

neering and component-based development. The intent of domain engineering is to

identify, construct, catalog, and disseminate a set of software components in a par-

ticular application domain. Component-based development then qualifies, adapts,

and integrates these components for use in a new system. In addition, component-

based development engineers new components that are based on the custom require-

ments of a new system, 

Analysis and design techniques for reusable components draw on the same prin-

ciples and concepts that are part of good software engineering practice. Reusable

components should be designed within an environment that establishes standard

data structures, interface protocols, and program architectures for each application

domain.

Component-based software engineering uses a data exchange model, tools, struc-

tured storage, and an underlying object model to construct applications. The object



CHAPTER 27 COMPONENT-BASED SOFTWARE ENGINEERING

model generally conforms to one or more component standards (e.g., OMG/CORBA)

that define the manner in which an application can access reusable objects. Classi-

fication schemes enable a developer to find and retrieve reusable components and

conform to a model that identifies concept, content, and context. Enumerated clas-

sification, faceted classification, and attribute-value classification are representative

of many component classification schemes.

The economics of software reuse are addressed by a single question: Is it cost

effective to build less and reuse more? In general, the answer is, “Yes,” but a soft-

ware project planner must consider the nontrivial costs associated with the qualifi-

cation, adaptation, and integration of reusable components.
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PROBLEMS AND POINTS TO PONDER

27.1. One of the key roadblocks to reuse is getting software developers to consider

reusing existing components, rather than reinventing new ones (after all, building

things is fun!). Suggest three or four different ways that a software organization can

provide incentives for software engineers to reuse. What technologies should be in

place to support the reuse effort?

27.2. Although software components are the most obvious reusable “artifact,” many

other entities produced as part of software engineering can be reused. Consider project

plans and cost estimates. How can these be reused and what is the benefit of doing so?

27.3. Do a bit of research on domain engineering and flesh out the process model

outlined in Figure 27.1. Identify the tasks that are required for domain analysis and

software architecture development. 

27.4. How are characterization functions for application domains and component

classification schemes the same? How are they different?
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27.5. Develop a set of domain characteristics for information systems that are rel-

evant to a university’s student data processing.

27.6. Develop a set of domain characteristics that are relevant for word-process-

ing/desktop-publishing software.

27.7. Develop a simple structural model for an application domain assigned by your

instructor or one with which you are familiar.

27.8. What is a structure point?

27.9. Acquire information on the most recent CORBA or COM or JavaBeans standard

and prepare a three- to five-page paper that discusses its major highlights. Get informa-

tion on an object request broker tool and illustrate how the tool achieves the standard.

27.10. Develop an enumerated classification for an application domain assigned by

your instructor or one with which you are familiar.

27.11. Develop a faceted classification scheme for an application domain assigned

by your instructor or one with which you are familiar. 

27.12. Research the literature to acquire recent quality and productivity data that

support the use of CBSE. Present the data to your class.

27.13. An object-oriented system is estimated to require 320 objects, when com-

plete. It is further estimated that 190 objects can be acquired from an existing repos-

itory. What is the reuse leverage? Assume that new objects cost $1000 each and that

the cost to adapt an object is $600 and to integrate each object is $400. What is the

estimated cost of the system. What is the value for Rb?

FURTHER READINGS AND INFORMATION SOURCES

Many books on component-based development and component reuse have been

published in recent years. Allen, Frost, and Yourdon (Component-Based Development

for Enterprise Systems: Applying the Select Perspective, Cambridge University Press,

1998) cover the entire CBSE process, using UML (Chapters 21 and 22) as the basis for

their modeling approach. Books by Lim (Managing Software Reuse: A Comprehensive

Guide to Strategically Reengineering the Organization for Reusable Components, 

Prentice-Hall, 1998); Coulange (Software Reuse, Springer-Verlag, 1998); Reifer (Prac-

tical Software Reuse, Wiley, 1997); and Jacobson, Griss, and Jonsson (Software Reuse:

Architecture Process and Organization for Business Success, Addison-Wesley, 1997)

address many CBSE topics. Fowler (Analysis Patterns: Reusable Object Models,

Addison-Wesley, 1996) considers the application of architectural patterns within the

CBSE process and provides many useful examples.  Tracz (Confessions of a Used 

Program Salesman: Institutionalizing Software Reuse, Addison-Wesley, 1995) presents

a sometimes lighthearted, but meaningful, discussion of the issues associated with

creating a reuse culture.
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Leach (Software Reuse: Methods, Models, and Costs, McGraw-Hill, 1997) provides

a detailed analysis of cost issues associated with CBSE and reuse. Poulin (Measuring

Software Reuse: Principles, Practices, and Economic Models, Addison-Wesley, 1996)

suggests a number of quantitative methods for assessing the benefits of software

reuse.

Dozens of books describing the industry’s component-based standards have been

published in recent years. These address the inner workings of the standards them-

selves but also consider many important CBSE topics. A sampling for the three stan-

dards discussed in this chapter follows:

CORBA

Doss, G.M., CORBA Networking With Java, Wordware Publishing, 1999.

Hoque, R., CORBA for Real Programmers, Academic Press/Morgan Kaufmann, 1999.

Siegel, J., CORBA 3 Fundamentals and Programming, Wiley, 1999. 

Slama, D., J. Garbis, and P. Russell, Enterprise CORBA, Prentice-Hall, 1999. 

COM

Box, D., K. Brown, T. Ewald, and C. Sells, Effective COM: 50 Ways to Improve Your COM- and

MTS-Based Applications, Addison-Wesley, 1999.

Kirtland, M., Designing Component-Based Applications, Microsoft Press, 1999.

Many organizations apply a combination of component standards. Books by Ger-

aghty et al. (COM-CORBA Interoperability, Prentice-Hall, 1999), Pritchard (COM and

CORBA Side by Side: Architectures, Strategies, and Implementations, Addison-Wesley,

1999), and Rosen et al. (Integrating CORBA and COM Applications, Wiley, 1999) con-

sider the issues associated with the use of both CORBA and COM as the basis for

component-based development. 

JavaBeans

Asbury, S. and S.R. Weiner, Developing Java Enterprise Applications, Wiley, 1999. 

Valesky, T.C., Enterprise Javabeans: Developing Component-Based Distributed Applications, 

Addison-Wesley, 1999.

Vogel, A. and M. Rangarao, Programming with Enterprise JavaBeans, JTS, and OTS, Wiley, 1999.

A wide variety of information sources on component-based software engineering

and component reuse is available on the Internet. An up-to-date list of World Wide

Web references that are relevant to CBSE can be found at the SEPA Web site:

http://www.mhhe.com/engcs/compsci/pressman/resources/cbse.mhtml
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A t the turn of the twentieth century, the development of a new genera-
tion of machine tools capable of holding very tight tolerances empow-
ered the engineers who designed a new factory process called mass

production. Before the advent of this advanced machine tool technology,
machines could not hold tight tolerances. But with it, easily assembled inter-
changeable parts—the cornerstone of mass production—could be built.

When a new computer-based system is to be developed, a software engi-
neer is constrained by the limitations of existing computing technology and
empowered when new technologies provide capabilities that were unavailable
to earlier generations of engineers. The evolution of distributed computer archi-
tectures has enabled system and software engineers to develop new approaches
to how work is structured and how information is processed within an organi-
zation. 

New organization structures and new information processing approaches
(e.g., intra- and Internet technologies, decision support systems, groupware,
and imaging) represent a radical departure from the earlier mainframe- and
minicomputer-based technologies. New computing architectures have provided
the technology that has enabled organizations to reengineer their business
processes (Chapter 30).

28 CLIENT/SERVER SOFTWARE
ENGINEERING

What is it? Client/server (c/s)

architectures dominate the land-

scape of computer-based sys-

tems. Everything from automatic teller networks

to the Internet exist because software residing on

one computer—the client—requests services

and/or data from another computer—the server.

Client/server software engineering blends con-

ventional principles, concepts, and methods dis-

cussed earlier in this book with elements of

object-oriented and component-based software

engineering to create c/s systems.

Who does it? Software engineers perform the analy-

sis, design, implementation, and testing of c/s 

systems.

Why is it important? The impact of c/s systems on

business, commerce, government, and science is

pervasive. As technological advances (e.g., com-

ponent-based development, object request bro-

kers, Java) change the way in which c/s systems

are built, a solid software engineering process

must be applied to their construction.

What are the steps? The steps involved in the 

engineering of c/s systems are similar to those

applied during OO and component-based soft-

ware engineering. The process model is evolu-

tionary, beginning with requirements elicitation.

Functionality is allocated to subsystems of com-

ponents, which are then assigned to either the

client or the server side of the c/s architecture.

Q U I C K
L O O K
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In this chapter, we examine a dominant architecture for  information processing—
client/server (c/s) systems. Client/server systems have evolved in conjunction with
advances in desktop computing, component-based software engineering, new stor-
age technologies, improved network communications, and enhanced database
technology. The objective of this chapter1 is to present a brief overview of
client/server systems with an emphasis on the special software engineering issues
that must be addressed when such c/s systems are analyzed, designed, tested, and
supported. 

28.1 THE STRUCTURE OF CLIENT/SERVER SYSTEMS

Hardware, software, database, and network technologies all contribute to distributed

and cooperative computer architectures. In its most general form, a distributed and

cooperative computer architecture is as illustrated in Figure 28.1. A root system, some-

times a mainframe, serves as the repository for corporate data. The root system is

connected to servers (typically powerful workstations or PCs) that play a dual role.

The servers update and request corporate data maintained by the root system. They

also maintain local departmental systems and play a key role in networking user-

level PCs via a local area network (LAN).

In a c/s structure, the computer that resides above another computer (in Figure

28.1) is called the server, and the computer(s) at the level below is called the client.

The client requests services,2 and the server provides them. However, within the con-

text of the the architecture represented in Figure 28.2, a number of different imple-

mentations can be achieved [ORF99]:

Design focuses on integration of

existing components and the cre-

ation of new components. Imple-

mentation and testing strive to exercise both client

and server functionality within the context of com-

ponent integration standards and the architecture.

What is the work product? A high-quality client/

server system is the outcome of c/s software engi-

neering. Other software work products (discussed

earlier in this book) are also produced. 

How do I ensure that I’ve done it right? Use the same

SQA practices that are applied in every software

engineering process—formal technical reviews

assess the analysis and design models, specialized

reviews consider issues associated with component

integration and middleware, and testing is applied

to uncover errors at the component, subsystem,

client, and server levels.

Q U I C K
L O O K

1 Portions of this chapter have been adapted from course material developed by John Porter for the
client/server curriculum offered at The BEI Engineering School of Fairfield University. Used with
permission.

2 In this context, services can be broadly interpreted to mean data, processing, or a combination of
the two.

“The c/s computing
model represents a
specific instance of
distributed
cooperative
processing, where
the relationship
between clients and
servers is the
relationship of both
hardware and
software
components.”
Alex Berson 
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File servers. The client requests specific records from a file. The server

transmits these records to the client across the network.

Database servers. The client sends structured query language (SQL)

requests to the server. These are transmitted as messages across the net-

work. The server processes the SQL request and finds the requested informa-

tion, passing back the results only to the client.

Transaction servers. The client sends a request that invokes remote pro-

cedures at the server site. The remote procedures are a set of SQL state-

ments. A transaction occurs when a request results in the execution of the

remote procedure with the result transmitted back to the client.
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Groupware servers. When the server provides a set of applications that

enable communication among clients (and the people using them) using text,

images, bulletin boards, video, and other representations, a groupware archi-

tecture exists.

28.1.1 Software Components for c/s Systems

Instead of viewing software as a monolithic application to be implemented on one

machine, the software that is appropriate for a c/s architecture has several distinct

subsystems that can be allocated to the client, the server, or distributed between both

machines:

User interaction/presentation subsystem. This subsystem implements

all functions that are typically associated with a graphical user interface.

Application subsystem. This subsystem implements the requirements

defined by the application within the context of the domain in which the

application operates. For example, a business application might produce a

variety of printed reports based on numeric input, calculations, database

information, and other considerations. A groupware application might pro-

vide the facilities for enabling bulletin board communication or e-mail. In

both cases, the application software may be partitioned so that some compo-

nents reside on the client and others reside on the server.

Database management subsystem. This subsystem performs the data

manipulation and management required by an application.  Data manipula-

tion and management may be as simple as the transfer of a record or as

complex as the processing of sophisticated SQL transactions.

In addition to these subsystems, another software building block, often called mid-

dleware, exists in all c/s systems. Middleware comprises software components that

exist on both the client and the server and includes elements of network operating

systems as well as specialized application software that supports database-specific

applications, object request broker standards (Section 28.1.5), groupware technolo-

gies, communication management, and other features that facilitate the client/server

connection. Orfali, Harkey, and Edwards [ORF99] have referred to middleware as “the

nervous system of a client/server system.”

28.1.2 The Distribution of Software Components 

Once the basic requirements for a client/server application have been determined,

the software engineer must decide how to distribute the software components that

constitute the subsystems discussed in Section 28.1.1 between the client and the

server. When most of the functionality associated with each of the three subsystems

is allocated to the server, a fat server design has been created. Conversely, when the

Middleware establishes
the infrastructure that
enables c/s software
components to
interoperate.
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client implements most of the user interaction/presentation, application, and data-

base components, a fat client design has been created.

Fat clients are commonly encountered when file server and database server

architectures are implemented. In this case, the server provides data management

support, but all application and GUI software resides at the client. Fat servers are

often designed when transaction and groupware systems are implemented. The

server provides application support required to respond to transactions and com-

munication from the clients. The client software focuses on GUI and communica-

tion management. 

Fat clients and fat servers can be used to illustrate the general approach for the

allocation of client/server software systems. However, a more granular approach to

software component allocation defines five different configurations:

Distributed presentation. In this rudimentary client/server approach,

database logic and the application logic remain on the server, typically a

mainframe. The server also contains the logic for preparing screen informa-

tion, using software such as CICS. Special PC-based software is used to con-

vert character-based screen information transmitted from the server into a

GUI presentation on a PC.

Remote presentation. An extension of the distributed presentation

approach,  primary database and application logic remain on the server, and

data sent by the server is used by the client to prepare the user presentation. 

Distributed logic. The client is assigned all user presentation tasks and the

processes associated with data entry, such as field-level validation, server

query formulation, and server update information and requests. The server is

assigned database management tasks and the processes for client queries,

server file updates, client version control, and enterprise-wide applications.

Remote data management. Applications on the server create a new data

source by formatting data that have been extracted from elsewhere (e.g.,

from a corporate level source). Applications allocated to the client are used

to exploit the new data that has been formatted by the server. Decision sup-

port systems are included in this category.

Distributed databases. The data forming the database is spread across

multiple servers and clients. Therefore, the client must support data manage-

ment software components as well as application and GUI components.

In recent years, there has also been considerable emphasis on thin-client tech-

nology. A thin client is a so-called “network computer” that relegates all application

processing to a fat server. Thin clients (network computers) offer substantially lower

per unit cost at little or no significant performance loss when compared to desktop

machines.
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28.1.3 Guidelines for Distributing Application Subsystems

While no absolute rules cover the distribution of application subsystems between the

client and server, the following guidelines are generally followed:

The presentation/interaction subsystem is generally placed on the

client. The availability of PC-based, Windows-based environments and the

computing power required for a graphical user interface makes this approach

cost effective. 

If the database is to be shared by multiple users connected by the LAN,

it is typically located on the server. The database management system and

the database access capability are also located on the server together with the

physical database.

Static data that are used for reference should be allocated to the client.

This places the data closest to the users that require them and minimizes unnec-

essary network traffic and loading on the server.

The balance of the application subsystem is distributed between the client and

server based on the distribution that optimizes the server and client configurations

and the network that connects them. For example, the implementation of a mutually

exclusive relationship typically involves a search of the database to determine if there

is a record that matches the parameters for a search pattern. If no match is found, an

alternate search pattern is used. If the application that controls this search pattern is

contained fully on the server, network traffic is minimized. The first network trans-

mission from the client to the server would contain the parameters for both the pri-

mary and secondary search patterns. Application logic on the server would determine

if the secondary search is required. The response message to the client would con-

tain the record found as a result of either the primary or the secondary search. The

alternate approach of placing on the client the logic to determine if a second search

is required would involve a message for the first record retrieval, a response over the

network if the record is not found, a second message containing the parameters for

the second search, and a final response with the retrieved record.  If the second search

is required 50 percent of the time, placing the logic on the server to evaluate the first

search and initiate the second search, if necessary, would reduce network traffic by

33 percent.

The final decision on subsystem distribution should be based not only on the indi-

vidual application but on the mix of applications operating on the system.  For exam-

ple, an installation might contain some applications that require extensive GUI

processing and little central database processing. This would lead to the use of pow-

erful workstations on the client side, and a bare bones server. With this configura-

tion in place, other applications would favor the fat client approach so that the

capabilities of the server do not need to be upgraded.

“Some analysts view
client/server
computing as the
fourth wave of
[change in the
history of]
computing.”
Bernard Boar 

Although distribution
guidelines are
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say, a fat client, the
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with an equal set of
negatives.
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As the use of the client/server architecture has matured, the trend is to place

volatile application logic on the server. This simplifies deployment of software updates

as changes are made to the application logic [PAU95].

28.1.4 Linking c/s Software Subsystems

A number of different mechanisms are used to link the various subsystems of the

client/server architecture. These mechanisms are incorporated into the network and

operating system structure and are transparent to the end-user at the client site. The

most common types of linking mechanisms are:

• Pipes. Widely used in UNIX-based systems, pipes permit messaging between

different machines running on different operating systems. 

• Remote procedure calls. These permit one process to invoke the execution of

another process or module which resides on a different machine.

• Client/server SQL interaction. This is used to pass SQL requests and associ-

ated data from one component (typically on the client) to another component

(typically the DBMS on the server). This mechanism is limited to relational

database management system (RDBMS) applications.

In addition, object-oriented implementation of the c/s software subsystems results

in “linkage” using an object request broker. This approach is discussed in the fol-

lowing section. 

28.1.5 Middleware and Object Request Broker Architectures

The c/s software subsystems discussed in the preceding sections are implemented

by components (objects) that must be capable of interacting with one another within

a single machine (either client or server) or across the network. An object request bro-

ker is middleware that enables an object that resides on a client to send a message

to a method that is encapsulated by an object that resides on a server. In essence,

the ORB intercepts the message and handles all communication and coordination

activities required to find the object to which the message was addressed, invoke its

method, pass appropriate data to the object, and transfer the resulting data back to

the object that generated the message in the first place. 

Three widely used standards that implement an object request broker philosophy—

CORBA, COM, and JavaBeans—were discussed briefly in Chapter 27. CORBA will be

used to illustrate the use of ORB middleware.

The basic structure of a CORBA architecture is illustrated in Figure 28.3. When

CORBA is implemented in a client/server system, objects and object classes (Chap-

ter 20) on both the client and the server are defined using an interface description lan-

guage, a declarative language that allows a software engineer to define objects,
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attributes, methods, and the messages required to invoke them. In order to accom-

modate a request for a server-resident method by a client-resident object, client and

server IDL stubs are created. The stubs provide the gateway through which requests

for objects across the c/s system are accommodated.

Because requests for objects across the network occur at run time, a mechanism

for storing the object description must be established so that pertinent information

about the object and its location are available when needed. The interface repository

accomplishes this.

When a client application must invoke a method contained within an object else-

where in the system, CORBA uses dynamic invocation to (1) obtain pertinent infor-

mation about the desired method from the interface repository, (2) create a data

structure with parameters to be passed to the object, (3) create a request for the

object, and (4) invoke the request. The request is then passed to the ORB core—an

implementation-specific part of the network operating system that manages

requests—and the request is fulfilled.

The request is passed through the core and is processed by the server. At the server

site, an object adapter stores class and object information in a server-resident inter-

face repository, accepts and manages incoming requests from the client, and per-

forms a variety of other object management functions [ORF99]. At the server, IDL

stubs that are similar to those defined at the client machine are used as the interface

to the actual object implementation resident at the server site.
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Software development for a modern c/s system is object oriented. Using the CORBA

architecture described briefly in this section, software developers can create an envi-

ronment in which objects can be reused throughout a large network environment.

For further information on CORBA and its overall impact on software engineering for

c/s systems, the interested reader should refer to [HOQ99] and [SIE99]. 

28.2 SOFTWARE ENGINEERING FOR C/S SYSTEMS

A number of different software process models were introduced in Chapter 2. Although

any of them could be adapted for use during the development of software for c/s sys-

tems, two approaches are most commonly used: (1) an evolutionary paradigm that makes

use of event-based and/or object-oriented software engineering and (2) component-

based software engineering (Chapter 27) that draws on a library of COTS and in-house

software components.

Client/server systems are developed using the classic software engineering activities—

analysis, design, construction, and testing—as the system evolves from a set of gen-

eral business requirements to a collection of validated software components that have

been implemented on client and server machines.

28.3 ANALYSIS MODELING ISSUES

The requirements modeling activity for c/s systems differs little from the analysis

modeling methods applied to more conventional computer architectures. Therefore,

the basic analysis principles discussed in Chapter 11 and the analysis modeling meth-

ods presented in Chapters 12 and 21 apply equally well to c/s software. It should be

noted, however, that, because many modern c/s systems make use of reusable com-

ponents, the qualification activities associated with CBSE (Chapter 27) also apply.

Because analysis modeling avoids specification of implementation detail, issues

associated with the allocation of software components to client and server are con-

sidered only as the transition is made to design.3 However, because an evolutionary

approach to software engineering is applied for c/s systems, implementation deci-

sions on the overall c/s approach (e.g., fat client vs. fat server) may be made during

early analysis and design iterations.

28.4 DESIGN FOR C/S SYSTEMS

When software is being developed for implementation using a specific computer archi-

tecture, the design approach must consider the specific construction environment. In

essence, the design should be customized to accommodate the hardware architecture.
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When software is designed for implementation using client/server architecture,

the design approach must be “customized” to accommodate the following issues:

• Data and architectural design (Chapter 14) dominate the design process. To

effectively use the capabilities of a relational database management system

(RDBMS) or object-oriented database management system (OODBMS) the

design of the data becomes even more significant than in conventional 

applications.

• When the event-driven paradigm is chosen, behavioral modeling (an analysis

activity, Chapters 12 and 21) should be conducted and the control-oriented

aspects implied by the behavioral model should be translated into the design

model. 

• The user interaction/presentation component of a c/s system implements all

functions that are typically associated with a graphical user interface. There-

fore, interface design (Chapter 15) is elevated in importance.

• An object-oriented view of design (Chapter 22) is often chosen. Instead of the

sequential structure provided by a procedural language, an object structure is

provided by the linkage between an event initiated at the GUI and an event

handling function within the client-based software.

Although debate continues on the best analysis and design approach for c/s systems,

object-oriented methods (Chapters 21 and 22) appear to have the best combination of

features. However, conventional methods (Chapters 12 through 16) can also be adopted. 

28.4.1 Architectural Design for Client/Server Systems

The architectural design of a client/server system is often characterized as a com-

municating processes style. Bass, Clements, and Kazman [BAS98] describe this archi-

tecture in the following way:

The goal is to achieve the quality of scalability. A server exists to serve data to one or more

clients, which are typically located across a network. The client originates a call to the

server, which works, synchronously or asynchronously, to serve the client’s request. If the

server works synchronously, it returns control to the client at the same time it returns data.

If the server works asynchronously, it returns only data to the client (which has its own

thread of control).

Because modern c/s systems are component based, an object request broker architecture

(Figure 28.3) is used to implement this synchronous or asynchronous communication.

At the architectural level, the CORBA4 interface description language is used to

specify interface details. The use of IDL allows application software components to

access ORB services (components) without knowledge of their internal workings. 

4 An analogous approach is used in COM and JavaBeans. 

Although c/s software
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OO design methods
with very few
modifications. 
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The ORB also has the responsibility for coordinating communication among 

components for both the client and server. To accomplish this, the designer specifies

an object adapter (also called a wrapper) that provides the following services 

[BAS98]:

• Component (object) implementations are registered.

• All component (object) references are interpreted and reconciled.

• Component (object) references are mapped to the corresponding component

implementation.

• Objects are activated and deactivated.

• Methods (operations) are invoked when messages are transmitted.

• Security features are implemented.

To accommodate COTS components supplied by different vendors and in-house com-

ponents that may have been implemented using different technologies, the ORB archi-

tecture must be designed to achieve interoperability among components. To

accomplish this CORBA uses a bridging concept. 

Assume that a client has been implemented using ORB protocol X and the server

has been implemented using ORB protocol Y. Both protocols are CORBA compliant,

but because of internal implementation differences, they must communicate to a

“bridge” that provides a mechanism for translation between internal protocols

[BAS98]. The bridge translates messages so that client and server can communicate

smoothly.

28.4.2 Conventional Design Approaches for Application Software

In client/server systems, the data flow diagram (Chapters 12 and 14) can be used to

establish the scope of a system, identify the high-level functions and subject data

areas (data stores), and permit the decomposition of the high-level functions. In a

departure from the traditional DFD approach, however, decomposition stops at the

level of an elementary business process rather than continuing to the level of an

atomic process.

In the c/s context, an elementary business process (EBP) can be defined as a set of

tasks performed without a break by one user at a client site. The tasks are either per-

formed fully or not at all.

The entity relationship diagram also assumes an expanded role. It continues to

be used to decompose the subject data areas (data stores) of the DFD in order to

establish a high-level view of a database that is to be implemented using an RDBMS.

Its new role is to provide the structure for defining high-level business objects

(Section 28.4.3).

Instead of serving as a tool for functional decomposition, the structure chart is

now used as an assembly diagram to show the components involved in the solution
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for an elementary business process. These components, consisting of interface objects,

application objects, and database objects, establish how the data are to be processed.

28.4.3 Database Design

Database design is used to define and then specify the structure of business objects

used in the client/server system. The analysis required to identify business objects is

accomplished using business process engineering methods discussed in Chapter 10.

Conventional analysis modeling notation (Chapter 12), such as the ERD, can be used

to define business objects, but a database repository should be established in order

to capture the additional information that cannot be fully documented using a graphic

notation such as an ERD. 

In this repository, a business object is defined as information that is visible to the

purchasers and users of the system, not its implementers. This information, imple-

mented using a relational database, can be maintained in a design repository. The

following design information is collected for the client/server database [POR94]:

• Entities are identified within the ERD for the new system.

• Files implement the entities identified within the ERD.

• File-to-field relationships establish the layout for the files by identifying which

fields are included in which files.

• Fields define the fields in the design (the data dictionary).

• File-to-file relationships identify related files that can be joined to create logi-

cal views or queries.

• Relationship validation identifies the type of file-to-file or file-to-field relation-

ships used for validation.

• Field type is used to permit inheritance of field characteristics from field

superclasses (e.g., date, text, number, value, price).

• Data type specifies the characteristics of the data contained in a field.

• File type is used to identify the location of the file.

• Field functions include key, foreign key, attribute, virtual field, derived field,

and the like.

• Allowed values identify values allowed for status type fields.

• Business rules are the rules for editing, calculating derived fields, and so on.

The trend toward distributed data management has accelerated as c/s architec-

tures have become more pervasive. In c/s systems that implement this approach, the

data management component resides on both the client and the server. Within the

context of database design, a key issue is data distribution. That is, how are data dis-

tributed between the client and server and dispersed across the nodes of a network?

“The organization of
data in a database
has to represent the
underlying meaning
or semantics of the
data correctly and
efficiently.”
Gio Wiederhold 
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A relational database system enables easy access to distributed data through the

use of structured query language. The advantage of SQL in a c/s architecture is that

it is “nonnavigational” [BER92]. In an RDBMS, the type of data is specified using SQL,

but no navigational information is required. Of course, the implication of this is that

the RDBMS must be sophisticated enough to maintain the location of all data and be

capable of defining the best path to it. In less sophisticated database systems, a request

for data must indicate what is to be accessed and where it is. If application software

must maintain navigational information, data management becomes much more

complicated for c/s systems. 

It should be noted that other data distribution and management techniques are

also available to the designer [BER92]:

Manual extract. The user is allowed to manually copy appropriate data from

a server to a client. This approach is useful when static data are required by a

user and the control of the extract can be left in the user’s hands.

Snapshot. This technique automates the manual extract by specifying a

“snapshot” of data that should be transferred from a server to a client at pre-

defined intervals. This approach is useful for distributing relatively static data

that require only infrequent update.

Replication. This technique can be used when multiple copies of data must

be maintained at different sites (e.g., different servers or clients and servers).

Here, the level of complexity escalates because data consistency, updates,

security, and processing must all be coordinated at multiple sites.

Fragmentation. In this approach, the system database is fragmented across

multiple machines. Although intriguing in theory, fragmentation is exception-

ally difficult to implement and is not encountered frequently. 

Database design and, more specifically, database design for c/s systems are top-

ics that are beyond the scope of this book. The interested reader should see [BRO91],

[BER92], [VAS93], and [ORF99] for additional discussion.

28.4.4 An Overview of a Design Approach

Porter [POR95] suggests a set of steps for designing an elementary business process

that combines elements of conventional design with elements of object-oriented

design. It is assumed that a requirements model which defines business objects has

been developed and refined prior to the start of the design of elementary business

processes. The following steps are then used to derive the design:

1. For each elementary business process, identify the files that are created,

updated, referenced, or deleted.

2. Use the files identified in step 1 as the basis for defining components or objects.
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3. For each component, retrieve the business rules and other business object

information that has been established for the relevant file.

4. Determine which rules are relevant to the process, and decompose the rules

down to a method level.

5. As required, define any additional components that are needed to implement

the methods.

Porter [POR95] suggests a structure chart notation (Figure 28.4) for representing

the component structure of an elementary business process. However, a different

symbology is used so that the chart will conform to the object-oriented nature of c/s

software. Referring to the figure, five different symbols are encountered:

Interface object. This type of component, also called the user

interaction/presentation component, is typically built over a single file and

related files that have been joined through a query. It includes methods for

formatting the GUI interface and client-resident related application logic. It

also includes embedded SQL that specifies database processing performed on

the primary file over which the interface is built. If application logic normally

associated with an interface object is implemented on a server instead, typi-

cally through the use of the middleware tools, the application logic operating

on the server should be identified as a separate application object.

Database object. This type of component is used to identify database pro-

cessing such as record creation or selection based on a file other than the pri-

mary file over which an interface object is built. It should be noted that, if the

primary file over which an interface object is built is processed in a different

manner, using a second SQL statement to retrieve a file in an alternate

sequence. For example, the second file processing technique should be iden-

tified separately on the structure chart as a separate database object.

Application object. Used by either an interface object or a database object,

this component is invoked by either a database trigger or a remote procedure

call. It can also be used to identify business logic normally associated with

interface processing that has been moved to the server for operation.

Interface
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(components)
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Application
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Control coupleData couple
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Data couple. When one object invokes another independent object, a mes-

sage is passed between the two objects. The data couple symbol is used to

denote this occurrence.

Control couple. When one object invokes another independent object and

no data are passed between the two objects, a control couple symbol is used.

28.4.5 Process Design Iteration

The design repository (Section 28.4.3) used to represent business objects is also used

to represent interface, application, and database objects. The following entities are

identified:

• Methods describe how a business rule is to be implemented.

• Elementary processes define the elementary business processes identified in

the analysis model.

• Process/component link identifies the components that make up the solution

for an elementary business process.

• Components describe the components shown on the structure chart.

• Business rule/component link identifies the components that are significant to

the implementation of a given business rule.

If a repository is implemented using an RDBMS, the designer will have access to a

useful design tool that provides reporting to aid both construction and future main-

tenance of a c/s system.

28.5 TESTING ISSUES5

The distributed nature of client/server systems pose a set of unique problems for soft-

ware testers. Binder [BIN92] suggests the following areas of focus:

• Client GUI considerations.

• Target environment and platform diversity considerations.

• Distributed database considerations (including replicated data).

• Distributed processing considerations (including replicated processes).

• Nonrobust target environment.

• Nonlinear performance relationships.

The strategy and tactics associated with c/s testing must be designed in a manner

that allows each of these issues to be addressed.
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28.5.1 Overall c/s Testing Strategy

In general, the testing of client/server software occurs at three different levels: 

(1) individual client applications are tested in a “disconnected” mode, the operation

of the server and the underlying network are not considered; (2) the client software

and associated server applications are tested in concert, but network operations are

not explicitly exercised; (3) the complete c/s architecture, including network opera-

tion and performance, is tested.

Although many different types of tests are conducted at each of these levels of

detail, the following testing approaches are commonly encountered for c/s applica-

tions:

Application function tests. The functionality of client applications is tested

using the methods discussed in Chapter 17. In essence, the application is

tested in stand-alone fashion in an attempt to uncover errors in its operation.

Server tests. The coordination and data management functions of the

server are tested. Server performance (overall response time and data

throughput) is also considered.

Database tests. The accuracy and integrity of data stored by the server is

tested. Transactions posted by client applications are examined to ensure

that data are properly stored, updated, and retrieved. Archiving is also tested.

Transaction tests. A series of tests are created to ensure that each class of

transactions is processed according to requirements. Tests focus on the cor-

rectness of processing and also on performance issues (e.g., transaction pro-

cessing times and transaction volume).

Network communication tests. These tests verify that communication

among the nodes of the network occurs correctly and that message passing,

transactions, and related network traffic occur without error. Network secu-

rity tests may also be conducted as part of these tests.

To accomplish these testing approaches, Musa [MUS93] recommends the devel-

opment of operational profiles derived from client/server usage scenarios. An oper-

ational profile indicates how different types of users interoperate with the c/s system.

That is, the profiles provide a “pattern of usage” that can be applied when tests are

designed and executed. For example, for a particular type of user, what percentage

of transactions will be inquiries? updates? orders? 

To develop the operational profile, it is necessary to derive a set of user scenarios

[BIN95] that are similar to use-cases discussed earlier in this book. Each scenario

addresses who, where, what, and why. That is, who the user is, where (in the phys-

ical c/s architecture) the system interaction occurs, what the transaction is, and why

it has occurred. Scenarios can be derived using requirements elicitation techniques

or through less formal discussions with end-users. The result, however, should be

XRef
Requirements elicitation
techniques and use-
cases are discussed in
Chapter 11.

What types
of tests are

conducted for c/s
systems?

?
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the same. Each scenario should provide an indication of the system functions that

will be required to service a particular user, the order in which those functions are

required, the timing and response that is expected, and the frequency with which

each function is used. These data are then combined (for all users) to create the oper-

ational profile.

The strategy for testing c/s architectures is analogous to the testing strategy for

software-based systems described in Chapter 18. Testing begins with testing in the

small. That is, a single client application is tested. Integration of the clients, the server,

and the network are tested progressively. Finally, the entire system is tested as an

operational entity. 

Traditional testing views module/subsystem/system integration and testing (Chap-

ter 18) as top down, bottom up, or some variation of the two. Module integration in

c/s development may have some top-down or bottom-up aspects, but integration in

c/s projects tends more toward parallel development and integration of modules

across all design levels. Therefore, integration testing in c/s projects is sometimes

best accomplished using a nonincremental or "big bang" approach. 

The fact that the system is not being built to use prespecified hardware and soft-

ware affects system testing. The networked cross-platform nature of c/s systems

requires that we pay considerably more attention to configuration testing and com-

patibility testing.

Configuration testing doctrine forces testing of the system in all of the known hard-

ware and software environments in which it will operate. Compatibility testing ensures

a functionally consistent interface across hardware and software platforms. For exam-

ple, a Windows-type interface may be visually different depending on the imple-

mentation environment, but the same basic user behaviors should produce the same

results regardless of the client interface standard. 

28.5.2 c/s Testing Tactics

Even if the c/s system has not been implemented using object technology, object-

oriented testing techniques (Chapter 23) make good sense because the replicated

data and processes can be organized into classes of objects that share the same set

of properties. Once test cases have been derived for a class of objects (or their equiv-

alent in a conventionally developed system), those test cases should be broadly appli-

cable for all instances of the class.

The OO point of view is particularly valuable when the graphical user interface of

modern c/s systems is considered. The GUI is inherently object oriented and departs

from traditional interfaces because it must operate on many platforms. In addition,

testing must explore a large number of logic paths because the GUI creates, manip-

ulates, and modifies a broad range of graphical objects. Testing is further complicated

because the objects can be present or absent, they may exist for a length of time, and

they can appear anywhere on the desktop.
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“The topic of testing
is one area in which
a good deal of
commonality exists
between traditional
systems and
client/server-based
systems.”
Kelley Bourne 
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What this means is that the traditional capture/playback approach for testing con-

ventional character-based interfaces must be modified in order to handle the com-

plexities of the GUI environment. A functional variation of the capture/playback

paradigm called structured capture/playback [FAR93] has evolved for GUI testing.

Traditional capture/playback records input as keystrokes and output as screen

images, which are saved and compared against inputs and output images of subse-

quent tests. Structured capture/playback is based on an internal (logical) view of

external activities. The application program's interactions with the GUI are recorded

as internal events, which can be saved as "scripts" written in Microsoft's Visual Basic,

one of the C variants, or in the vendor's proprietary language. 

Tools that exercise GUIs do not address traditional data validation or path testing

needs. The black-box and white-box testing methods discussed in Chapter 17 are

applicable in many instances and the special object-oriented tactics presented in

Chapter 23 are appropriate for both client and server software. 

28.6 SUMMARY

Although client/server systems can adopt one or more of the software process mod-

els and many of the analysis, design, and testing methods described earlier in this

book, the special architectural features of c/s require customization of the software

engineering approach. In general, the software process model applied for c/s sys-

tems is evolutionary in nature and the technical methods often gravitate toward

object-oriented or component-based approaches. The developer must describe objects

that result in the implementation of user interaction/presentation, database, and

application subsystems. The components (objects) defined for these subsystems must

be allocated to either the client or server machines and can be linked via an object

request broker.

Object request broker architectures support c/s designs in which client objects

send messages to server objects. The CORBA standard makes use of interface defi-

nition language, and interface repositories manage requests for objects regardless of

their location on the network.

Analysis and design for client/server systems make use of data flow and entity

relationship diagrams, modified structure charts, and other notation that is encoun-

tered in the development of conventional applications. Testing strategies must be

modified to accommodate tests that examine network communication and the inter-

play between software that resides on client and server.
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PROBLEMS AND POINTS TO PONDER

28.1. Using trade publications or Internet resources for background information,

define a set of criteria for evaluating tools for c/s software engineering.

28.2. Suggest five applications in which a fat server would seem to be an appropri-

ate design strategy.

28.3. Suggest five applications in which a fat client would seem to be an appropri-

ate design strategy.

28.4. Do some additional research on the CORBA standard and determine how the

latest release of the standard addresses interoperability among different ORBs pro-

vided by different vendors.

28.5. Research a structured query language and provide a brief example of how a

transaction might be characterized using the language.

28.6. Research the latest advances in groupware and develop a brief presentation

for your class. Your instructor may assign a specific function to different presenters.

28.7. A company is establishing a new e-commerce division to sell casual apparel

and outdoor merchandise. The e-catalog will be published on the World Wide Web

and orders can be placed via the Web site, by e-mail, or via telephone or fax. A
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client/server system will be built to support order processing at the company site.

Define a set of high-level objects that would be required for the order-processing sys-

tem and organize these objects into three component categories: the user interaction/

presentation, database, and application.

28.8. Define business rules to establish when a shipment can be made if payment

is by credit card for the system described in Problem 28.7. Add additional rules if pay-

ment is by check. 

28.9. Develop a state transition diagram (Chapter 12) that defines the events and

states that would be visible to an order entry clerk working at a client PC within the

e-commerce sales division (Problem 28.7).

28.10. Provide examples of three or four messages that might result in a request

from a client for a method maintained on the server. 

FURTHER READINGS AND INFORMATION SOURCES

Although software engineering methods for client/server systems are quite similar

to conventional and OO systems, specialized knowledge and techniques are required.

Worthwhile introductions to basic concepts have been written by Lowe and Helda

(Client/Server Computing for Dummies, 3rd ed., IDG Books Worldwide, 1999) and

Zantinge and Adriaans (Managing Client/Server, Addison-Wesley, 1997). At an inter-

mediate level, McClanahan (Developing Client-Server Applications, IDG Books World-

wide, 1999) covers a broad range of c/s topics. On a more sophisticated level, Orfali

and his colleagues [ORF99] and Linthicum (Guide to Client/Server and Intranet Devel-

opment, Wiley, 1997) provide detailed guidelines for engineering c/s applications.

Berson (Client/Server Architecture, 2nd ed., McGraw-Hill, 1996) discusses component

and architecture issues.

Network computers have become a hot technology topic (and a risky business

strategy) in recent years. Sinclair and Merkow (Thin Clients Clearly Explained, Morgan

Kaufmann, 1999), Friedrichs and Jubin (Java Thin-Client Programming for a Network

Computing Environment, Prentice-Hall, 1999), Dewire (Thin Clients, McGraw-Hill, 1998),

and Kanter (Understanding Thin-Client/Server Computing, Microsoft Press, 1998) pro-

vide worthwhile guidance on how to design, build, deploy, and support thin-client

systems. 

Beginning with the modeling of business events, Ruble (Practical Analysis and Design

for Client/Server and GUI Systems, Yourdon Press, 1997) provides an in-depth discus-

sion of techniques for the analysis and design of c/s systems. Books by Goldman,

Rawles, and Mariga (Client/Server Information Systems: A Business-Oriented Approach,

Wiley, 1999); Shan, Earle, and Lenzi (Enterprise Computing with Objects: From

Client/Server Environments to the Internet, Addison-Wesley, 1997); and Gold-Bernstein
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and Marca (Designing Enterprise Client/Server Systems, Prentice-Hall, 1997) consider

c/s in a broader enterprise context. 

Loosley and Douglas (High-Performance Client/Server, Wiley, 1997) explain the prin-

ciples of software performance engineering and apply them to distributed systems

architecture and design. Heinckiens and Loomis (Building Scalable Database Applica-

tions: Object-Oriented Design, Architectures, and Implementations, Addison-Wesley,

1998) emphasize database design in their guide for building client/server applica-

tions. Ligon (Client/Server Communications Services: A Guide for the Applications Devel-

oper, McGraw-Hill, 1997) considers a wide variety of communication-related topics

including TCP/IP, ATM, EDI, CORBA, messaging, and encryption. Schneberger

(Client/Server Software Maintenance, McGraw-Hill, 1997) presents a framework for

controlling c/s software maintenance costs and optimizing user support. 

Hundreds of books address vendor-specific c/s systems development. The fol-

lowing represents a small sampling:

Anderson, G.W., Client/Server Database Design with Sybase: A High-Performance and Fine-

Tuning Guide, McGraw-Hill, 1997.

Barlotta, M.J., Distributed Application Development with Powerbuilder 6, Manning Publications,

1998.

Bates, R.J., Hands-on Client/Server Internetworking, McGraw-Hill, 1997.

Mahmoud, Q.H., Distributed Programming with Java, Manning, 1998.

Orfali, R. and D. Harkey, Client/Server Programming with JavaBeans, Wiley, 1999.

Sankar, K., Building Internet Client/Server Systems, McGraw-Hill, 1999.

Detailed guidebooks for c/s testing have been written by Mosley [MOS99] and

Bourne (Testing Client/Server Systems, McGraw-Hill, 1997). Both authors provide in-

depth discussion of testing strategies, tactics, and tools.

A wide variety of information sources on client/server software engineering is

available on the Internet. An up-to-date list of World Wide Web references that are

relevant to c/s systems can be found at the SEPA Web site:

http://www.mhhe.com/engcs/compsci/pressman/resources/

client-server.mhtml
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The World Wide Web and the Internet have drawn the general populace
into the world of computing. We purchase stock and mutual funds, down-
load music, view movies, get medical advice, book hotel rooms, sell per-

sonal items, schedule airline flights, meet people, do our banking, take college
courses, buy groceries—we do just about anything and everything in the vir-
tual world of the Web. Arguably, the Web and the Internet that empowers it are
the most important developments in the history of computing. These comput-
ing technologies have drawn us all (with billions more who will eventually fol-
low) into the information age. They have become integral to daily life in the first
years of the twenty-first century. 

For those of us who can remember a world without the Web, the chaotic
growth of the technology harkens back to another era—the early days of soft-
ware. It was a time of little discipline, but enormous enthusiasm and creativ-
ity. It was a time when programmers often hacked together systems—some
good, some bad. The prevailing attitude seemed to be “Get it done fast, and get
it into the field, we’ll clean it up (and better understand what we really need to
build) as we go.” Sound familiar?

In a virtual round table published in IEEE Software [PRE98], I staked out my
position with regard to Web engineering:

29 WEB ENGINEERING

What is it? Web-based systems

and applications (WebApps)

deliver a complex array of con-

tent and functionality to a broad population of

end-users. Web engineering is the process used

to create high-quality WebApps. Web engineer-

ing is not a perfect clone of software engineering,

but it borrows many of software engineering’s

fundamental concepts and principles, empha-

sizing the same technical and management

activities. There are subtle differences in the way

these activities are conducted, but an overriding

philosophy that dictates a disciplined approach

to the development of a computer-based system

is identical.

Who does it? Web engineers and nontechnical con-

tent developers create the WebApp.

Why is it important? As WebApps become increas-

ing integrated in business strategies for small

and large companies (e.g., e-commerce), the

need to build reliable, usable, and adaptable

systems grows in importance. That’s why a dis-

ciplined approach to WebApp development is

necessary. 

What are the steps? Like any engineering discipline,

Web engineering applies a generic approach that

is tempered with specialized strategies, tactics, and

methods. The Web engineering process begins 

with a formulation of the problem to be solved by 

the WebApp. The project is planned, and the

Q U I C K
L O O K
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It seems to me that just about any important product or system is worth engineering. Before

you start building it, you’d better understand the problem, design a workable solution, imple-

ment it in a solid way, and test it thoroughly. You should probably also control changes to

it as you work and have some mechanism for ensuring the end result’s quality. Many Web

developers don’t argue with this; they just think their world is really different and that con-

ventional software engineering approaches simply don’t apply.

This leads us to a pivotal question: Can software engineering principles, concepts,
and methods be applied to Web development? Many of them can, but their applica-
tion may require a somewhat different spin.

But what if the current ad hoc approach to Web development persists? In the
absence of a disciplined process for developing Web-based systems, there is increas-
ing concern that we may face serious problems in the successful development, deploy-
ment, and “maintenance” of these systems. In essence, the application infrastructure
that we are creating today may lead to something that might be called a tangled Web
as we move further into this new century. This phrase connotes a morass of poorly
developed Web-based applications that have too high a probability of failure. Worse,
as Web-based systems grow more complex, a failure in one can and will propagate
broad-based problems across many. When this happens, confidence in the entire
Internet may be shaken irreparably. Worse, it may lead to unnecessary and ill-
conceived government regulation, leading to irreparable harm to these unique 
technologies. 

In order to avoid a tangled Web and achieve greater success in development and
application of large-scale, complex Web-based systems, there is a pressing need for
disciplined Web engineering approaches and new methods and tools for develop-
ment, deployment, and evaluation of Web-based systems and applications. Such
approaches and techniques must take into account the special features of the new
medium, the operational environments and scenarios, and the multiplicity of user
profiles that pose additional challenges to Web-based application development. 

Web Engineering (WebE) is concerned with the establishment and use of sound
scientific, engineering, and management principles and disciplined and systematic

requirements of the WebApp are

analyzed. Architectural, naviga-

tional, and interface design are

conducted. The system is implemented using spe-

cialized languages and tools associated with the

Web, and testing commences. Because WebApps

evolve continuously, mechanisms for configura-

tion control, quality assurance, and ongoing sup-

port are needed. 

What is the work product? A variety of Web engi-

neering work products (e.g., analysis models,

design models, test procedures) are produced. The

final output is the operational WebApp. 

How do I ensure that I’ve done it right? Use the same

SQA practices that are applied in every software

engineering process—formal technical reviews

assess the analysis and design models, special-

ized reviews consider usability; testing is applied

to uncover errors in content, functionality, and

compatibility. 

Q U I C K
L O O K

“The engineering
principles of
planning before
designing and
designing before
building have
withstood every
prior technology
transition; they’ll
survive this
transition as well.”
Watts Humphrey 
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approaches to the successful development, deployment, and maintenance of high-
quality Web-based systems and applications [MUR99].

29.1 THE ATTRIBUTES OF WEB-BASED APPLICATIONS

There is little debate that Web-based systems and applications1(we will refer to these

collectively as WebApps) are different than the many other categories of computer

software discussed in Chapter 1. Powell summarizes the primary differences when

he states that Web-based systems “involve a mixture between print publishing and

software development, between marketing and computing, between internal com-

munications and external relations, and between art and technology” [POW98]. The

following attributes are encountered in the vast majority of WebApps:2

Network intensive. By its nature, a WebApp is network intensive. It resides

on a network and must serve the needs of a diverse community of clients. A

WebApp may reside on the Internet (thereby enabling open worldwide com-

munication). Alternatively, an application may be placed on an intranet

(implementing communication across an organization) or an Extranet (inter-

network communication). 

Content driven. In many cases, the primary function of a WebApp is to use

hypermedia to present text, graphics, audio, and video content to the end-

user. 

Continuous evolution. Unlike conventional application software that

evolves over a series of planned, chronologically spaced releases, Web appli-

cations evolve continuously. It is not unusual for some WebApps (specifically,

their content) to be updated on an hourly schedule. 

Some argue that the continuous evolution of WebApps makes the work performed

on them analogous to gardening. Lowe {LOW99] discusses this when he writes:

Engineering is about adopting a consistent and scientific approach, tempered by a specific

practical context, to development and commissioning of systems or applications. Web site

development is often much more about creating an infrastructure (laying out the garden)

and then "tending" the information which grows and blooms within this garden. Over time

the garden (i.e., Web site) will continue to evolve, change, and grow. A good initial archi-

tecture should allow this growth to occur in a controlled and consistent manner . . . we

could have "tree surgeons" that prune "trees" (i.e., sections of the site) within the "garden"
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1 Included within this category are complete Web sites, specialized functionality within Web sites,
and information processing applications that reside on the Internet or on an intranet or Extranet.

2 In the context of this chapter, the term Web application encompasses everything from a simple
Web page that might help a consumer compute an automobile lease payment to a comprehen-
sive Web site that provides complete travel services for business people and vacationers.

WebApps are network
intensive, content
driven, and
continuously evolving.
These attributes have a
profound impact on the
way in which WebE is
conducted.
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(the site itself) while ensuring cross-referential integrity. We could have "garden nurseries"

where young plants (i.e., design patterns for Web sites) are "grown." I probably should stop

this analogy before I get too carried away!

Continual care and feeding allows a Web site to grow (in robustness and impor-

tance). But, unlike a garden, Web applications must serve (and adapt to) the needs

of more than the gardener. The following WebApp characteristics drive the process:

Immediacy. Web-based applications have an immediacy [NOR99] that is not

found in any other type of software. That is, the time to market for a com-

plete Web site can be a matter of a few days or weeks.3 Developers must use

methods for planning, analysis, design, implementation, and testing that

have been adapted to the compressed time schedules required for WebApp

development.

Security. Because WebApps are available via network access, it is difficult, if

not impossible, to limit the population of end-users who may access the appli-

cation. In order to protect sensitive content and provide secure modes of data

transmission, strong security measures must be implemented throughout the

infrastructure that supports a WebApp and within the application itself.

Aesthetics. An undeniable part of the appeal of a WebApp is its look and

feel. When an application has been designed to market or sell products or

ideas, aesthetics may have as much to do with success as technical design.

These general characteristics apply to all WebApps but with different degrees of

influence. The following application categories are most commonly encountered in

WebE work [DAR99]:

• Informational. Read-only content is provided with simple navigation and links.

• Download. A user downloads information from the appropriate server.

• Customizable. The user customizes content to specific needs.

• Interaction. Communication among a community of users occurs via chat-

room, bulletin boards, or instant messaging.

• User input. Forms-based input is the primary mechanism for communicating

need.

• Transaction oriented. The user makes a request (e.g., places an order) that is

fulfilled by the WebApp.

• Service oriented. The application provides a service to the user (e.g., assists

the user in determining a mortgage payment).

• Portal. The application channels the user to other Web content or services

outside the domain of the portal application.

3 Reasonably sophisticated Web pages can be produced in only a few hours.

There is little doubt
that immediacy often
holds sway in WebApp
development, but be
careful! Just because
you have to get it
done quickly does not
mean that you have
the luxury of doing a
poorly engineered job.
Quick and wrong are
rarely an acceptable
result.

How can we
categorize

WebApps?
?
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• Database access. The user queries a large database and extracts information.

• Data warehousing. The user queries a collection of large databases and

extracts information.

The characteristics noted earlier in this section and the application categories just

noted represent facts of life for Web engineers. The key is living within the constraints

imposed by the characteristics and still producing a successful WebApp. 

29.1.1 Quality Attributes

Every person who has surfed the Web or used a corporate intranet has an opinion

about what makes a “good” WebApp. Individual viewpoints vary widely. Some users

enjoy flashy graphics, others want simple text. Some demand copious information,

others desire an abbreviated presentation. In fact, the user’s perception of “goodness”

(and the resultant acceptance or rejection of the WebApp as a consequence) might

be more important that any technical discussion of WebApp quality.

But how is WebApp quality perceived? What attributes must be exhibited to achieve

goodness in the eyes of end-users and at the same time exhibit the technical char-

acteristics of quality that will enable a Web engineer to correct, adapt, enhance, and

support the application over the long term?

In reality, all of the general characteristics of software quality discussed in Chap-

ters 8, 19, and 24 apply to WebApps. However, the most relevant of these character-

istics—usability, functionality, reliability, efficiency, and maintainability—provide a

useful basis for assessing the quality of Web-based systems. 

Olsina and his colleagues [OLS99] has prepared a “quality requirement tree” that

identifies a set of attributes that lead to high-quality WebApps. Figure 29.1 summa-

rizes their work.

29.1.2 The Technologies

The design and implementation of Web-based systems and applications incorporates

three important enabling technologies: component-based development, security, and

Internet standards. A Web engineer must be familiar with all three in order to build

high-quality WebApps.

Component-Based Development

The component technologies discussed in Chapters 27 and 28 have evolved in large

part because of the explosive growth of Web-based systems and applications. Recall-

ing our discussion from the preceding chapters, three major infrastructure standards

are available for Web engineers: CORBA, COM/DCOM, and JavaBeans. These 

standards (accompanied by prebuilt components, tools, and techniques) provide an

infrastructure that enables developers to deploy third party and custom developed

components and allow them to communicate with one another and with system-

level services.
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Security

If a WebApp resides on a network, it is open to unauthorized access. In some cases,

unauthorized access may be attempted by internal personnel. In others, outsiders

(hackers) may attempt access for sport, for profit, or with more malevolent intent. A

variety of security measures are provided by the network infrastructure, encryption

techniques, firewalls, and other measures. A comprehensive discussion of this impor-

tant topic is beyond the scope of this book. For more information, the interested reader

should see [ATK97], [KAE99], and [BRE99].

Internet Standards

For the last decade the dominant standard for the creation of WebApp content and

structure has been HTML, a markup language that enables the developer to provide

a series of tags that describe the appearance of a wide array of data objects (text,

graphics, audio/video, forms, etc.). However, as the size and complexity of applica-

tions grow, a new standard—XML— has been adopted for the next generation of

WebApps. XML (extensible markup language) is a strictly defined subset of the meta-

language SGML [BRA97], allowing developers to define custom tags within Web page

descriptions. Using an XML meta-language description, the meaning of the custom

tags is defined in the information transmitted to the client site. For more information

on XML, the interested reader should see [PAR99] and [STL99]. 

29.2 THE WEBE PROCESS

The characteristics of Web-based systems and applications have a profound influ-

ence on the WebE process. Immediacy and continuous evolution dictate an iter-

Web
application

quality

Usability

Global site understandability
On-line feedback and help features
Interface and aesthetic features
Special features

Searching and retrieving capability
Navigation and browsing features
Application domain-related features

Correct link processing
Error recovery
User input validation and recovery

Ease of correction
Adaptability
Extensibility

Response time performance
Page generation speed
Graphics generation speed

Functionality

Reliability

Efficiency

Maintainability

FIGURE 29.1
Quality
requirements
tree [OLS99]

“The Internet is a
risky place to
conduct business or
store assets.
Hackers, crackers,
snoops, spoofers,
spammers,
scammers,
shammers, jammers,
intruders, thieves,
purloiners,
conspirators,
vandals, Trojan horse
dealers, virus
launchers and rouge
program purveyors
run loose.”
Dorothy Denning
and Peter Denning 
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ative, incremental process model (Chapter 2) that produces WebApp releases in

rapid fire sequence. The network-intensive nature of applications in this domain

suggests a population of users that is diverse (thereby making special demands

on requirements elicitation and modeling) and an application architecture that

can be highly specialized (thereby making demands on design). Because WebApps

are often content driven with an emphasis on aesthetics, it is likely that paral-

lel development activities will be scheduled within the WebE process and involve

a team of both technical and non-technical people (e.g., copywriters, graphic

designers).

29.3 A FRAMEWORK FOR WEBE

As WebApps evolve from static, content-directed information sources to dynamic,

user-directed application environments, the need to apply solid management and

engineering principles grows in importance. To accomplish this, it is necessary to

develop a WebE framework that encompasses an effective process model, populated

by framework activities4 and engineering tasks. A process model for WebE is sug-

gested in Figure 29.2.
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Architectural
design

Content
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Navigation
design

Interface
design

Customer
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Formulation

Page generation
& testing

Planning

FIGURE 29.2 The WebE process model

4 Recalling the discussion of process models in Chapter 2, framework activities are performed for
all WebApps, while engineering tasks are adapted to the size and complexity of the WebApp to be
developed.

WebE demands an
evolutionary,
incremental software
process.
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The WebE process begins with a formulation—an activity that identifies the goals

and objectives of the WebApp and establishes the scope for the first increment. Plan-

ning estimates overall project cost, evaluates risks associated with the development

effort, and defines a finely granulated development schedule for the initial WebApp

increment, with a more coarsely granulated schedule for subsequent increments.

Analysis establishes technical requirements for the WebApp and identifies the con-

tent items that will be incorporated. Requirements for graphic design (aesthetics) are

also defined.

The engineering activity incorporates two parallel tasks illustrated on the right side

of Figure 29.2. Content design and production are tasks performed by nontechnical

members of the WebE team. The intent of these tasks is to design, produce, and/or

acquire all text, graphics, audio, and video content that are to become integrated into

the WebApp. At the same time, a set of technical design tasks (Section 29.5) are con-

ducted.

Page generation is a construction activity that makes heavy use of automated tools

for WebApp creation. The content defined in the engineering activity is merged with

the architectural, navigation, and interface designs to produce executable Web pages

in HTML, XML, and other process-oriented languages (e.g., Java). Integration with

component middleware (i.e., CORBA, DCOM, or JavaBeans) is also accomplished dur-

ing this activity. Testing exercises WebApp navigation; attempts to uncover errors in

applets, scripts, and forms; and helps ensure that the WebApp will operate correctly

in different environments (e.g., with different browsers).

Each increment produced as part of the WebE process is reviewed during customer

evaluation. This is the point at which changes are requested (scope extensions occur).

These changes are integrated into the next path through the incremental process

flow. 

29.4 FORMULATING/ANALYZING WEB-BASED SYSTEMS

Formulation and analysis of Web-based systems and applications represent a sequence

of Web engineering activities that begins with the identification of the overall goals

for a WebApp and terminates with the development of an analysis model or require-

ments specification for the system. Formulation allows the customer and the devel-

oper to establish a common set of goals and objectives for the construction of the

WebApp. It also identifies the scope of the development effort and provides a means

for determining a successful outcome. Analysis is a technical activity that identifies

the data, functional, and behavioral requirements for the WebApp.

29.4.1 Formulation

Powell [POW98} suggests a set of questions that should be answered at the begin-

ning of the formulation step:

WebRef
W3C, an industry
consortium that provides
access to WWW
information of interest to
Web engineers can be
accessed at
www.w3.org
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• What is the main motivation for the WebApp?

• Why is the WebApp needed?

• Who will use the WebApp?

The answer to each of these simple questions should be stated as succinctly as pos-

sible. For example, assume that the manufacturer of home security systems has

decided to establish an e-commerce Web site to sell its products directly to consumers.

A statement describing the motivation for the WebApp might be

SafeHomeInc.com5 will allow consumers to configure and purchase all components required

to install a home/business security system. 

It is important to note that detail is not provided in this statement. The objective is to

bound the overall intent of the site. 

After discussion with various constituencies within SafeHome Inc., an answer to

the second question is stated: 

SafeHomeInc.com will allow us to sell directly to consumers, thereby eliminating retailer

costs and improving our profit margins. It will also allow us to increase sales by a projected

25 percent over current annual sales and will allow us to penetrate geographic regions

where we currently do not have sales outlets.

Finally, the company defines the demographic for the WebApp: “Projected users of

SafeHomeInc.com are homeowners and owners of small businesses.”

These answers imply specific goals for the SafeHomeInc.com Web site. In general,

two categories of goals [GNA99] are identified:

• Informational goals. Indicate an intention to provide specific content and/or

information to the end-user.

• Applicative goals. Indicate the ability to perform some task within the

WebApp.

In the content of the SafeHomeInc.com WebApp, one informational goal might be

The site will provide users with detailed product specifications, including technical descrip-

tion, installation instructions, and pricing information.

Examination of the answers to the questions just posed might lead to the statement

of an applicative goal:

SafeHomeInc.com will query the user about the facility (i.e., house, office/retail space) that

is to be protected and make customized recommendations about the product and config-

uration to be used.

Once all informational and applicative goals have been identified, a user profile is

developed. The user profile captures “relevant features related to potential users
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including their background, knowledge, preferences and even more” [GNA99]. In the

case of SafeHomeInc.com, a user profile would identify the characteristics of a typi-

cal purchaser of security systems (this information would be supplied by the Safe-

Home Inc. marketing department).

Once goals and user profiles have been developed, the formulation activity focuses

on a statement of scope (Chapter 5) for the WebApp. In many cases, the goals already

developed are integrated into the statement of scope. In addition, however, it is useful

to indicate the degree of integration to be expected of the WebApp. That is, it is often

necessary to integrate existing information systems (e.g., an existing database appli-

cation) with a Web-based front end. Connectivity issues are considered at this stage.

29.4.2 Analysis

The concepts and principles discussed for software requirements analysis (Chapter

11) apply without revision for the Web engineering analysis activity. Scope defined

during the formulation activity is elaborated to create a complete analysis model for

the WebApp. Four different types of analysis are conducted during WebE:

Content analysis. The full spectrum of content to be provided by the

WebApp is identified. Content includes text, graphics and images, video and

audio data. Data modeling (Chapter 12) can be used to identify and describe

each of the data objects to be used within the WebApp. 

Interaction analysis. The manner in which the user interacts with the

WebApp is described in detail. Use-cases (Chapter 11) can be developed to

provide detailed descriptions of this interaction. 

Functional analysis. The usage scenarios (use-cases) created as part of

interaction analysis define the operations that will be applied to WebApp

content and imply other processing functions. All operations and functions

are described in detail.

Configuration analysis. The environment and infrastructure in which the

WebApp resides are described in detail. The WebApp can reside on the Inter-

net, an intranet, or an Extranet. In addition, the infrastructure (i.e., the com-

ponent infrastructure and the degree to which a database will be used to

generate content) for the WebApp should be identified at this stage.

Although a detailed requirements specification is recommended for large, com-

plex WebApps, such documents are rare. It can be argued that the continuous evo-

lution of WebApp requirements may make obsolete any document before it is finished.

Although this may be true in the extreme, it is necessary to define an analysis model

that can serve as a foundation for the design activity that follows. At a minimum, the

information collected during the preceding four analysis tasks should be reviewed,

modified as required, and then organized into a document that can be passed to

WebApp designers.

“Successful
knowledge products
[WebApps] allow
customers to meet
their needs better,
faster, or cheaper
themselves, rather
than working
through employee
end-users. The
Internet’s ability to
connect customers
directly with
companies provides
an infrastructure for
knowledge
products.”
Mark McDonald 
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29.5 DESIGN FOR WEB-BASED APPLICATIONS

The immediate nature of Web-based applications coupled with the pressure for con-

tinuous evolution forces a Web engineer to establish a design that solves the imme-

diate business problem while at the same time defining an application architecture

that has the ability to evolve rapidly over time. The problem, of course, is that solv-

ing the immediate problem (quickly) can result in compromises that affect the abil-

ity of the application to evolve over time. This is the designer’s dilemma.

In order to perform Web-based design effectively, a Web engineer should work to

reuse four technical elements [NAN98]:

Design principles and methods. It is important to note that the design

concepts and principles discussed in Chapter 13 apply to all WebApps. Effec-

tive modularity (exhibited by high cohesion and low coupling), information

hiding, stepwise elaboration, and other software design heuristics lead to

Web-based systems and applications that are easier to adapt, enhance, test,

and use.

Design methods for object-oriented systems discussed earlier in this book

can be reused when Web-applications are created. Hypermedia defines

“objects” that interact via a communication protocol that is loosely analo-

gous to messaging. In fact the diagrammatic notation proposed for UML

(Chapters 21 and 22) can be adapted for use in design activities for WebApps.

In addition, a variety of hypermedia design methods have been proposed

(e.g., [ISA95], [SCH96]).

Golden rules. Interactive hypermedia applications (WebApps) have been

constructed for more than a decade. Over that time, designers have devel-

oped a set of design heuristics (golden rules) that can be reapplied during the

design of new applications.

Design patterns. As we noted earlier in this book, design patterns are a

generic approach for solving some small problems that can be adapted to a

much wider variety of specific problems. In the context of WebApps, design

patterns can be applied not only to the functional elements of an application,

but to documents, graphics, and general aesthetics for a Web site.

Templates. A template can be used to provide a skeletal framework for any

design pattern or document that is to be used within a WebApp. Nanard and

Kahn [NAN98] describe this reusable design element in the following way:

Once a template is specified, any part of a hypermedia structure that conforms to

this template can be automatically generated or updated just by calling the tem-

plate with relevant data [to flesh out the skeleton]. The use of constructive tem-

plates implicitly relies on the separation of hypermedia document contents from

the specification of its presentation: source data are mapped into the hypertext

structure as specified in the template.
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“To some, Web design
focuses on visual
look and feel . . . To
others, Web design
is about the
structuring of
information and the
navigation through
the document space.
Others might even
consider Web design
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build interactive Web
applications. In
reality, design
includes all of these
things and maybe
more.”
Thomas Powell 
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Each of the four reusable design elements is discussed in greater detail in the sec-

tions that follow.

29.5.1 Architectural Design

Architectural design for Web-based systems and applications focuses on the defini-

tion of the overall hypermedia structure of the WebApp and the application of design

patterns and constructive templates to populate the structure (and achieve reuse). A

parallel activity, called content design,6 derives the overall structure and detailed lay-

out of the information content that will be presented as part of the WebApp.

WebApp Structures

Overall architectural structure is tied to the goals established for a WebApp, the con-

tent to be presented, the users who will visit, and the navigation philosophy (Section

29.5.3) that has been established. The architectural designer can choose from four

different structures [POW98] when developing the design for a typical WebApp.

Linear structures (Figure 29.3) are encountered when a predictable sequence of

interactions (with some variation or diversion) is common. A classic example might

be a tutorial presentation in which pages of information along with related graphics,

short videos, or audio are presented only after prerequisite information has been pre-

Linear Linear
with

optional flow

Linear
with

diversions

FIGURE 29.3
Linear 
structures

6 Content design is a nontechnical activity that is performed by copywriters, artists, graphic design-
ers, and others who generate Web-based content. For further detail, see [DIN98] and [LYN99].

Most WebApp
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sented. The sequence of content presentation is predefined and generally linear.

Another example might be a product order entry sequence in which specific infor-

mation must be specified in a specific order. In such cases, the structures shown in

Figure 29.3 are appropriate. As content and processing become more complex, the

purely linear flow shown on the left of the figure gives way to more sophisticated lin-

ear structures in which alternative content may be invoked or a diversion to acquire

complementary content (structure shown on the right side of Figure 29.3) occurs.

Grid structures (Figure 29.4) are an architectural option that can be applied when

WebApp content can be organized categorically in two (or more) dimensions. For

example, consider a situation in which an e-commerce site sells golf clubs. The hor-

izontal dimension of the grid represents the type of club to be sold (e.g., woods, irons,

wedges, putters). The vertical dimension represents the offerings provided by vari-

ous golf club manufacturers. Hence, a user might navigate the grid horizontally to

find the putters column and then vertically to examine the offerings provided by those

manufacturers that sell putters. This WebApp architecture is useful only when highly

regular content is encountered [POW98].

Hierarchical structures (Figure 29.5) are undoubtedly the most common WebApp

architecture. Unlike the partitioned software hierarchies discussed in Chapter 14

which encourage flow of control only along vertical branches of the hierarchy, a

WebApp hierarchical structure can be designed in a manner that enables (via hyper-

text branching) flow of control horizontally, across vertical branches of the structure.

Hence, content presented on the far left-hand branch of the hierarchy can have hyper-

text links that lead to content that exists in the middle or right-hand branch of the

structure. It should be noted, however, that although such branching allows rapid

navigation across WebApp content, it can lead to confusion on the part of the user.
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FIGURE 29.4
Grid Structure

Grid structures work
well when content can
be organized
categorically in two or
more dimensions.

Coupling is a tricky
issue for WebApp
architectures. On one
hand, it facilitates
navigation. But it can
also cause the user to
“get lost.” Don’t
overdo horizontal
connections within a
hierarchy.
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A networked, or “pure Web,” structure (Figure 29.6) is similar in may ways to the

architecture that evolves for object-oriented systems. Architectural components (in

this case, Web pages) are designed so that they may pass control (via hypertext links)

to virtually every other component in the system. This approach allows considerable

navigation flexibility, but at the same time, can be confusing to a user. 

The architectural structures discussed in the preceding paragraphs can be com-

bined to form composite structures. The overall architecture of a WebApp may be

hierarchical, but one part of the structure may exhibit linear characteristics, while

FIGURE 29.5
Hierarchical
structures

FIGURE 29.6
Networked, or
“pure Web,”
structure
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another part of the architecture may be networked. The goal for the architectural

designer is to match the WebApp structure to the content to be presented and the

processing to be conducted.

Design Patterns

As we noted earlier in this book, design patterns are a generic approach for solving

some small problem that can be adapted to a much wider variety of specific prob-

lems. In the context of Web-based systems and applications, design patterns can be

applied at the architectural level, the component-level, and at the hypertext (navi-

gational) level. 

When data processing functionality is required within a WebApp, the architectural

and component-level design patterns proposed by [BUS96], [GAM95], and others are

applicable. Hypertext-level design patterns focus on the design of navigation features

that allow a user to move through WebApp content in a facile manner. Among many

hypertext design patterns proposed in the literature are [BER98]:

• Cycle—a pattern that returns the user to a previously visited content node. 

• Web ring—a pattern that implements a “grand cycle that links entire hyper-

texts in a tour of a subject” [BER98]. 

• Contour—a pattern that occurs when cycles impinge upon one another,

allowing navigation across paths defined by the cycles.

• Counterpoint—a pattern that adds hypertext commentary, which interrupts

content narrative to provide additional information or insight.

• Mirrorworld—content is presented using different narrative threads, each

with a different point of view or perspective. For example, content that

describes a personal computer might allow the user to select a “technical” or

“nontechnical” narrative that describes the machine.

• Sieve—a pattern that guides a user through a series of options (decisions) in

order to direct the user to specific content indicated by the sequence of

options chosen or decisions made.

• Neighborhood—a pattern that overlays a uniform navigational frame across

all Web pages in order to allow a user to have consistent navigation guid-

ance regardless of location within the WebApp.

These hypertext design patterns can be reused as content is translated into a format

that allows navigation through a WebApp. 

29.5.2 Navigation Design

Once the WebApp architecture has been established and the components (pages,

scripts, applets, and other processing functions) of the architecture have been iden-

tified, the designer must define navigation pathways that enable a user to access
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WebApp content and services. To accomplish this, the designer must (1) identify the

semantics of navigation for different users of the site and (2) define the mechanics

(syntax) of achieving the navigation.

A large WebApp will often have a variety of different user roles. For example, roles

might be visitor, registered customer, or privileged user. Each of these roles can be asso-

ciated with different levels of content access and different services. A visitor may have

access to only limited content while a registered customer may have access to a much

broader range of information and services. The semantics of navigation for each of

these two roles would be different.

The WebApp designer creates a semantic navigation unit (SNU) for each goal asso-

ciated with each user role [GNA99]. For example, a registered customer may have six

different goals, all resulting in access to different information and services. A SNU is

created for each goal. Gnaho and Larcher [GNA99] describe the SNU in the follow-

ing way:

The structure of an SNU is composed of a set of navigational sub-structures that we call

ways of navigating (WoN). A WoN represents the best navigation way or path for users with

certain profiles to achieve their desired goal or sub-goal. Therefore, the concept of WoN is

associated to the concept of User Profile.

The structure of a WoN is made out of a set of relevant navigational nodes (NN) con-

nected by navigational links, including sometimes other SNUs. That means that SNUs may

themselves be aggregated to form a higher-level SNU, or may be nested to any depth.

During the initial stages of navigation design, the WebApp structure (architecture and

components) is assessed to determine one or more WoN for each user goal. As noted,

a WoN identifies navigation nodes (e.g., Web pages) and then links that enable nav-

igation between them. The WoN are then organized into SNUs.

As design proceeds, the mechanics of each navigation link are identified. Among

many possible options are text-based links, icons, buttons and switches, and graph-

ical metaphors. The designer must choose navigation links that are appropriate for

the content and consistent with the heuristics that lead to high-quality interface design.

In addition to choosing the mechanics of navigation, the designer should also

establish appropriate navigation conventions and aids. For example, icons and graph-

ical links should look “clickable” by beveling the edges to give the image a three-

dimensional look. Audio or visual feedback should be designed to provide the user

with an indication that a navigation option has been chosen. For text-based naviga-

tion, color should be used to indicate navigation links and to provide an indication

of links already traveled. These are but a few of dozens of design conventions that

make navigation user-friendly. In addition to conventions, navigation aids such as

site maps, tables of contents, indexes, search mechanisms, and dynamic help facil-

ities should also be designed at this time.

A SNU is composed of
a set of navigational
substructures called
ways of navigating
(WoN). The SNU
represents a specific
navigational goal for a
specific type of user.
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29.5.3 Interface Design

The interface design concepts, principles, and methods presented in Chapter 15 are

all applicable to the design of user interfaces for WebApps. However, the special char-

acteristics of Web-based systems and applications require a number of additional

considerations.

The user interface of a WebApp is its “first impression.” Regardless of the value of

its content, the sophistication of its processing capabilities and services, and the over-

all benefit of the WebApp itself, a poorly designed interface will disappoint the poten-

tial user and may, in fact, cause the user to go elsewhere. Because of the sheer volume

of competing WebApps in virtually every subject area, the interface must “grab” a

potential user immediately. Nielsen and Wagner [NIE96] suggest a few simple guide-

lines based on their redesign of a major WebApp:

• Server errors, even minor ones, are likely to cause a user to leave the Web

site and look elsewhere for information or services.

• Reading speed on a computer monitor is approximately 25 percent slower

than reading speed for hard copy. Therefore, do not force the user to read

voluminous amounts of text, particularly when the text explains the opera-

tion of the WebApp or assists in navigation.

• Avoid “under construction” signs—they raise expectations and cause an

unnecessary link that is sure to disappoint.

• Users prefer not to scroll. Important information should be placed within the

dimensions of a typical browser window.

• Navigation menus and headbars should be designed consistently and should

be available on all pages that are available to the user. The design should not

rely on browser functions to assist in navigation.

• Aesthetics should never supersede functionality. For example, a simple but-

ton might be a better navigation option than an aesthetically pleasing, but

vague image or icon whose intent is unclear.

• Navigation options should be obvious, even to the casual user. The user

should not have to search the screen to determine how to link to other con-

tent or services.

A well-designed interface improves the user’s perception of the content or ser-

vices provided by the site. It need not be flashy, but it should always be well struc-

tured and ergonomically sound. A comprehensive discussion of WebApp user

interfaces is beyond the scope of this book. Interested readers should see 

[SAN96], [SPO98], [ROS98], or [LYN99] among hundreds of offerings for additional 

guidance.
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29.6 TESTING WEB-BASED APPLICATIONS

In Chapter 17, we noted that testing is the process of exercising software with the

intent of finding (and ultimately correcting) errors. This fundamental philosophy does

not change for WebApps. In fact, because Web-based systems and applications reside

on a network and interoperate with many different operating systems, browsers,

hardware platforms, and communications protocols, the search for errors represents

a significant challenge for Web engineers. 

The approach for WebApp testing adopts the basic principles for all software test-

ing (Chapter 17) and applies a strategy and tactics that have been recommended for

object-oriented systems (Chapter 23). The following steps summarize the approach:

1. The content model for the WebApp is reviewed to uncover errors. This

“testing” activity is similar in many respects to copy editing a written docu-

ment. In fact, a large Web-site might enlist the services of a professional copy

editor to uncover typographical errors, grammatical mistakes, errors in content

consistency, errors in graphical representations, and cross-referencing errors.

2. The design model for the WebApp is reviewed to uncover navigation

errors. Use-cases, derived as part of the analysis activity, allow a Web engi-

neer to exercise each usage scenario against the architectural and navigation

design. In essence, these nonexecutable tests help uncover errors in naviga-

tion (e.g., a case where the user cannot reach a navigation node). In addition,

the navigation links (Section 29.5.2) are reviewed to ensure that they corre-

spond with those specified in each SNU for each user role.

3. Selected processing components and Web pages are unit tested.

When WebApps are considered, the concept of the unit changes. Each Web

page encapsulates content, navigation links, and processing elements

(forms, scripts, applets). It is not always possible or practical to test each of

these characteristics individually. In many cases, the smallest testable unit is

the Web page. Unlike unit testing of conventional software, which tends to

focus on the algorithmic detail of a module and the data that flow across the

module interface, page-level testing for WebApps is driven by the content,

processing, and links encapsulated by the Web page.

4. The architecture is constructed and integration tests are conducted.

The strategy for integration testing depends on the architecture that has been

chosen for the WebApp. If the WebApp has been designed with a linear, grid,

or simple hierarchical structure, it is possible to integrate Web pages in much

the same way as we integrate modules for conventional software. However,

if a mixed hierarchy or network (Web) architecture is used, integration testing

is similar to the approach used for OO systems. Thread-based testing (Chap-

ter 23) can be used to integrate the set of Web pages (a SNU may be used to

define the appropriate set) required to respond to a user event. Each thread is

XRef
Integration strategies
are discussed in
Chapters 18 and 23.
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integrated and tested individually. Regression testing is applied to ensure that

no side effects occur. Cluster testing integrates a set of collaborating pages

(determined by examining the the use-cases and SNU). Test cases are derived

to uncover errors in the collaborations. 

5. The assembled WebApp is tested for overall functionality and con-

tent delivery. Like conventional validation, the validation of Web-based sys-

tems and applications focuses on user-visible actions and user-recognizable

output from the system. To assist in the derivation of validation tests, the

tester should draw upon use-cases. The use-case provides a scenario that

has a high likelihood of uncovering errors in user interaction requirements.

6. The WebApp is implemented in a variety of different environmental

configurations and is tested for compatibility with each configura-

tion. A cross-reference matrix that defines all probable operating systems,

browsers,7 hardware platforms, and communications protocols is created.

Tests are then conducted to uncover errors associated with each possible

configuration.

7. The WebApp is tested by a controlled and monitored population of

end-users. A population of users that encompasses every possible user role is

chosen. The WebApp is exercised by these users and the results of their inter-

action with the system are evaluated for content and navigation errors, usabil-

ity concerns, compatibility concerns, and WebApp reliability and performance.

Because many WebApps evolve continuously, the testing process is an ongoing activ-

ity, conducted by Web support staff who use regression tests derived from the tests

developed when the WebApp was first engineered. 

29.7 MANAGEMENT ISSUES

Given the immediacy of WebApps, it is reasonable to ask: “Do we really need to spend

time managing a WebApp effort? Shouldn’t we just let a WebApp evolve naturally,

with little or no explicit management?” More than a few Web developers would opt

for little or no management, but that doesn’t make them right! 

Web engineering is a complicated technical activity. Many people are involved,

often working in parallel. The combination of technical and nontechnical tasks that

must occur (on time and within budget) to produce a high-quality WebApp represents

a challenge for any group of professionals. In order to avoid confusion, frustration,

and failure, planning must occur, risks must be considered, a schedule must be estab-

lished and tracked, and controls must be defined. These are the core activities that

we have called project management.
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7 Browsers are notorious for implementing their own subtly different “standard” interpretations of
HTML and Javascript. See www.browsercaps.com for a discussion of compatibility issues.

XRef
The activities
associated with
software project
management are
discussed in Part Two
of this book.
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29.7.1 The WebE Team

The creation of a successful Web application demands a broad array of skills. Tilley

and Huang [TIL99] address this issue when they state: “There are so many different

aspects to [Web] application software that there is a (re)emergence of the renais-

sance person, one who is comfortable operating in several disciplines . . .” While the

authors are absolutely correct, “renaissance” people are in relatively short supply;

and given the demands associated with major WebApp development projects, the

diverse skill set required might be better distributed over a WebE team.

WebE teams can be organized in much the same way as the software teams dis-

cussed in Chapter 3. However, the players and their roles are often quite different.

Among the many skills that must be distributed across WebE team members are com-

ponent-based software engineering, networking, architectural and navigational design,

Internet standards/languages, human interface design, graphic design, content lay-

out, and WebApp testing. The following roles8 should be distributed among the mem-

bers of the WebE team:

Content developer and providers. Because WebApps are inherently con-

tent driven, one WebE team member role must focus on the generation or

collection of content. Recalling that content spans a broad array of data

objects, content developers and providers may come from diverse (non-soft-

ware) backgrounds. For example, marketing or sales staff may provide prod-

uct information and graphical images, media producers may provide video

and audio, graphic designers may provide layout design and aesthetic con-

tent, copywriters may provide text-based content. In addition, research staff

may be required to find and format external content for placement or refer-

ence within the WebApp.

Web publisher. The diverse content generated by content developers and

providers must be organized for inclusion within the WebApp. In addition,

someone must act as liaison between technical staff that engineers the

WebApp and nontechnical content developers and providers. This role is

filled by the Web publisher, who must understand both content and WebApp

technology including HTML (or its next generation extensions, such as XML),

database functionality, scripts, and general Web-site navigation.

Web engineer. A Web engineer becomes involved in a wide range of activi-

ties during the development of a WebApp including requirements elicitation;

analysis modeling; architectural, navigational, and interface design; WebApp

implementation; and testing. The Web engineer should also have a solid

understanding of component technologies, client/server architectures,

HTML/XML, and database technologies as well as a working knowledge of

“In today’s net-centric
and Web-enabled
world, one now
needs to know a lot
about a lot.”
Scott Tilly and
Shihoug Huang 

8 These roles have been adapted from Hansen, Deshpande, and Murgusan [HAN99].

What roles
do people

play on a WebE
team?

?
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multi-media concepts, hardware/software platforms, network security, and

Web-site support issues.

Support specialist. This role is assigned to the person (people) who has

responsibility for continuing WebApp support. Because WebApps continu-

ously evolve, the support specialist is responsible for corrections, adapta-

tions, and enhancements to the site, including updates to content,

implementation of new procedures and forms, and changes to the navigation

pattern.

Administrator. Often called the Web master, this person has responsibility

for the day-to-day operation of the WebApp, including

• Development and implementation of policies for the operation of the

WebApp.

• Establishment of support and feedback procedures.

• Implementation of security procedures and access rights.

• Measurement and analysis of Web-site traffic.

• Coordination of change control procedures (Section 29.7.3).

• Coordination with support specialists.

The administrator may also be involved in the technical activities performed

by Web engineers and support specialists.

29.7.2 Project Management

In Part Two of this book, we considered each of the activities that are collectively

called project management.9 Process and project metrics, project planning (and esti-

mation), risk analysis and management, scheduling and tracking, SQA and SCM were

all considered in some detail. In theory, most (if not all) of the the project manage-

ment activities discussed in earlier chapters apply to WebE projects. But in practice,

the WebE approach to project management is considerably different.

First, a substantial percentage10 of WebApps are outsourced to vendors who (pur-

portedly) specialize in the development of Web-based systems and applications. In

such cases, a business (the customer) asks for a fixed price quote for WebApp devel-

opment from two or more vendors, evaluates competing quotes, and then selects a

vendor to do the work. But what does the contracting organization look for? How is

the competence of a WebApp vendor determined? How does one know whether a

price quote is reasonable? What degree of planning, scheduling, and risk assessment

can be expected as an organization (and its outsourcing contractor) embarks on a

major WebApp development effort?
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9 Readers who are unfamiliar with basic project management concepts are urged to review Chap-
ter 3 at this time.

10 Although reliable industry data are difficult to find, it is safe to say that this percentage is consid-
erably higher than the one encountered in conventional software work.
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Second, WebApp development is a relatively new application area and there is lit-

tle historical data to use for estimation. To date, virtually no WebE metrics have been

published in the literature. In fact, relatively little discussion has emerged on what

those metrics might be. Therefore, estimation is purely qualitative—based on past

experience with similar projects. But almost every WebApp wants to be innovative—

offering something new and different to those that use it. Hence, experiential esti-

mation, although useful, is open to considerable error. Therefore, how are reliable

estimates derived? What degree of assurance can be given that defined schedules

will be met?

Third, estimation, risk analysis, and scheduling are all predicated on a clear under-

standing of project scope. And yet, the “continuous evolution” characteristic discussed

in Section 29.1 suggests that WebApp scope will be fluid. How can the contracting

organization and the outsourcing vendor control costs and schedule when require-

ments are likely to change dramatically as a project progresses? How can scope creep

be controlled, and more important, should it be controlled, given the unique nature

of Web-based systems and applications?

At this stage in the history of project management for WebApps, the questions pre-

cipitated by the differences just noted are not easy to answer. However, a few guide-

lines are worth considering.

Initiating a project. Even if outsourcing is the strategy to be chosen for WebApp

development, an organization must perform a number of tasks before searching for

an outsourcing vendor to do the work:

1. Many of the analysis activities discussed in Section 29.3 should be performed

internally. The audience for the WebApp is identified; internal stakeholders

who may have interest in the WebApp are listed; the overall goals for the

WebApp are defined and reviewed; the information and services to be deliv-

ered by the WebApp are specified; competing Web sites are noted; and quali-

tative and quantitative “measures” of a successful WebApp are defined. This

information should be documented in a product specification. 

2. A rough design for the WebApp should be developed internally. Obviously, an

expert Web developer will create a complete design, but time and cost can be

saved if the general look and feel of the WebApp is identified for the out-

sourcing vendor (this can always be modified during preliminary stages of the

project). The design should include an indication of the type and volume of

content to be presented by the WebApp and the types of interactive process-

ing (e.g., forms, order entry) to be performed. This information should be

added to the product specification.

3. A rough project schedule, including not only final delivery dates but also mile-

stone dates, should be developed. Milestones should be attached to deliverable

versions of the WebApp as it evolves.

“My advice to
builders [of
WebApps}? 
1. State your quality
requirements
quantitatively. 
2. Get contractual
guarantees . . . 
3. Use proven track
record suppliers . . .
4. Build and expand
the system in
evolutionary stages. 
5. Consider
appropriate
systematic
redundancy at many
levels to allow some
degree of operation
when failures
occur.”
Tom Gilb 
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4. The degree of oversight and interaction by the contractor with the vendor should

be identified. This should include the naming of a vendor liaison and the iden-

tification of the liaison’s responsibilities and authority, the definition of quality

review points as development proceeds, and the vendor’s responsibilities

with respect to interorganizational communication.

All of the information developed during these steps should be organized into a request

for quote that is transmitted to candidate vendors.11

Selection of candidate outsourcing vendors. In recent years, thousands of “Web

design” companies have emerged to help businesses establish a Web presence or

engage in e-commerce. Many have become adept at the WebE process, but many

others are little more than hackers. In order to select candidate Web developers, the

contractor must perform due diligence: (1) interview past clients to determine the

Web vendor’s professionalism, ability to meet schedule and cost commitments, and

ability to communicate effectively; (2) determine the name of the vendor’s chief Web

engineer(s) for successful past projects (and, later, be certain that this person is con-

tractually obligated to be involved in your project); and (3) carefully examine sam-

ples of the vendor’s work that are similar in look and feel (and business area) to the

WebApp that is to be contracted. Even before a request for quote is offered, a face-

to-face meeting may provide substantial insight into the “fit” between contractor and

vendor. 

Assessing the validity of price quotes and the reliability of estimates. Because

relatively little historical data exist and the scope of WebApps is notoriously fluid,

estimation is inherently risky. For this reason, some vendors will embed substantial

safety margins into the cost quoted for a project. This is both understandable and

appropriate. The question is not “Have we gotten the best bang for our buck?” Rather,

the questions should be

• Does the quoted cost of the WebApp provide a direct or indirect return on

investment that justifies the project?

• Does the vendor that has provided the quote exhibit the professionalism and

experience we require?

If the answers to these questions are, “Yes,” the price quote is fair. 

The degree of project management you can expect or perform. The formal-

ity associated with project management tasks (performed by both the vendor and the

contractor) is directly proportional to the size, cost, and complexity of the WebApp.

For large, complex projects, a detailed project schedule that defines work tasks, SQA
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11 If WebApp development work is to be conducted by an internal group, nothing changes! The 
project is initiated in the same manner. 

“If you’re only willing
to pay peanuts, you
get monkeys.”
from “The A Team” 
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checkpoints, engineering work products, customer review points, and major mile-

stones should be developed. The vendor and contractor should assess risk jointly and

develop plans for mitigating, monitoring, and managing those risks that are deemed

important. Mechanisms for quality assurance and change control should be explic-

itly defined in writing. Methods for effective communication between the contractor

and the vendor should be established.

Assessing the development schedule. Because WebApp development schedules

span a relatively short period of time (often less than one or two months), the devel-

opment schedule should have a high degree of granularity. That is, work tasks and

minor milestones should be scheduled on a daily timeline. This fine granularity allows

both the contractor and the vendor to recognize schedule slippage before it threat-

ens the final completion date. 

Managing scope. Because it is highly likely that scope will change as a WebApp

project moves forward, the WebE process model should be incremental (Chapter 2).

This allows the development team to “freeze” the scope for one increment so that an

operational WebApp release can be created. The next increment may address scope

changes suggested by a review of the preceding increment, but once the second incre-

ment commences, scope is again frozen temporarily. This approach enables the

WebApp team to work without having to accommodate a continual stream of changes

but still recognizes the continuous evolution characteristic of most WebApps.

These guidelines are not intended to be a foolproof cookbook for the production

of low-cost, on-time WebApps. However, they will help both the contractor and the

vendor initiate work smoothly with a minimum of misunderstandings. 

29.7.3 SCM Issues for WebE

Over the past decade, WebApps have evolved from informal devices for information

dissemination to sophisticated sites for e-commerce. As WebApps become increas-

ingly important to business survival and growth, the need for configuration control

grows. Why? Because, without effective controls, improper changes to a WebApp

(recall that immediacy and continuous evolution are the dominant attributes of many

WebApps) can lead to (1) unauthorized posting of new product information, (2) erro-

neous or poorly tested functionality that frustrates visitors to a Web site, (3) security

holes that jeopardize internal company systems, and other economically unpleasant

or even disastrous consequences.  

The general strategies for software configuration management (SCM) described

in Chapter 9 are applicable, but tactics and tools must be adapted to conform to the

unique nature of WebApps. Four issues [DAR99] should be considered when devel-

oping tactics for WebApp configuration management—content, people, scalability,

and politics.

“The most effective
way to cope with
change is to help
create it.”
L. W. Lynett 
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Content. A typical WebApp contains a vast array of content—text, graphics,

applets, scripts, audio and video files, forms, active page elements, tables,

streaming data, and many others. The challenge is to organize this sea of

content into a rational set of configuration objects (Chapter 9) and then

establish appropriate configuration control mechanisms for these objects.

One approach is to model the WebApp content using conventional data mod-

eling techniques (Chapter 11), attaching a set of specialized properties to

each object. The static or dynamic nature of each object and its projected

longevity (e.g., temporary, fixed existence, or permanent object) are examples

of properties that are required to establish an effective SCM approach. For

example, if a content item is changed hourly, it has temporary longevity. The

control mechanisms for this item would be different (less formal) than those

applied for a forms component that is a permanent object.

People. Because a significant percentage of WebApp development contin-

ues to be conducted in an ad hoc manner, any person involved in the

WebApp can (and often does) create content. Many content creators have no

software engineering background and are completely unaware of the need

for configuration management. The application grows and changes in an

uncontrolled fashion.

Scalability. The techniques and controls applied to small WebApps do not

scale upward well. It is not uncommon for a simple WebApp to grow signifi-

cantly as interconnections with existing information systems, databases, data

warehouses, and portal gateways are implemented. As size and complexity

grows, small changes can have far-reaching and unintended effects that can

be problematic. Therefore, the rigor of configuration control mechanisms

should be directly proportional to application scale.

Politics. Who “owns” a WebApp? This question is argued in companies

large and small, and its answer has a significant impact on the management

and control activities associated with WebE. In some instances Web devel-

opers are housed outside the IT organization, creating potential communi-

cation difficulties. Dart [DAR99] suggests the following questions to help

understand the politics associated with WebE: Who assumes responsibility

for the accuracy of the information on the Web site? Who ensures that qual-

ity control processes have been followed before information is published to

the site? Who is responsible for making changes? Who assumes the cost of

change? The answers to these questions help determine the people within

an organization who must adopt a configuration management process for

WebApps.

Configuration management for WebE is in its infancy. A conventional SCM process

may be too cumbersome. The vast majority of SCM tools lack the features that allow
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Controlling change
during WebE projects is
essential, but it can be
overdone. Begin with
relatively informal
change control
procedures (Chapter
9). Your initial goal
should be to avoid the
ratcheting effects of
uncontrolled change. 
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them to be adapted easily to WebE. Among the issues that remain to be addressed

are [DAR99]

• How can we create a configuration management process that is nimble

enough to accommodate the immediacy and continuous evolution of

WebApps?

• How can we best introduce configuration management concepts and tools to

developers who are completely unfamiliar with the technology?

• How can we provide support for distributed WebApp development teams?

• How can we provide control in a quasi-publishing environment where con-

tent changes on a nearly continuous basis?

• How can we attain the granularity required to control a large array of config-

uration objects?

• How can we incorporate configuration management functionality into exist-

ing WebE tools?

• How can we manage changes to objects that contain links to other objects?

These and many other issues must be addressed before effective configuration man-

agement is available for WebE.

29.8 SUMMARY

The impact of Web-based systems and applications is arguably the single most sig-

nificant event in the history of computing. As WebApps grow in importance, a disci-

plined Web engineering approach—based on the principles, concepts, process, and

methods that have been developed for software engineering—has begun to evolve.

WebApps are different from other categories of computer software. They are net-

work intensive, content driven, and continuously evolving. The immediacy that dri-

ves their development, the overriding need for security in their operation, and the

demand for aesthetic as well as functional content delivery are additional differenti-

ating factors. Three technologies—component-based development, security, and

Internet standard markup languages—are integrated with more conventional soft-

ware engineering technologies during WebApp development.

The Web engineering process begins with formulation—an activity that identifies

the goals and objectives of the WebApp. Planning estimates overall project cost, eval-

uates risks associated with the development effort, and defines a development sched-

ule. Analysis establishes technical requirements for the WebApp and identifies the

content items that will be incorporated. The engineering activity incorporates two

parallel tasks: content design and technical design. Page generation is a construc-

tion activity that makes heavy use of automated tools for WebApp creation; and test-

ing exercises WebApp navigation, attempting to uncover errors in function and content,
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while ensuring that the WebApp will operate correctly in different environments. Web

engineering makes use of an iterative, incremental process model because the devel-

opment timeline for WebApps is very short. The umbrella activities applied during

software engineering work—SQA, SCM, project management—apply to all Web engi-

neering projects.
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PROBLEMS AND POINTS TO PONDER

29.1. Are there other generic attributes that differentiate WebApps for more con-

ventional software applications? Try to name two or three.

29.2. How do you judge the “quality” of a Web site? Make a ranked list of ten qual-

ity attributes that you believe are most important.

29.3. Do a bit of research and write a two- or three-page paper that summarizes

one of the three technologies noted in Section 29.1.2.

29.4. Using an actual Web site as an example, illustrate the different manifestations

of WebApp “content.”

29.5. Answer the three formulation questions for a Web site that you’re familiar

with. Develop a statement of scope for the Web site.

29.6. Develop a set of user profiles for SafeHomeInc.com or a Web site assigned by

your instructor.

29.7. Develop a complete list of informational and applicative goals for SafeHome-

Inc.com or a Web site assigned by your instructor.
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29.8. Produce a set of use-cases for SafeHomeInc.com or a Web site assigned by

your instructor.

29.9. How does content analysis differ from interaction and functional analysis?

29.10. Conduct a content analysis for SafeHomeInc.com or a Web site assigned by

your instructor.

29.11. Suggest three “golden rules” that would help guide the design of WebApps.

29.12. How does a WebApp design pattern differ from a template?

29.13. Select a Web site with which you are familiar and develop a reasonably com-

plete architectural design for the site. What architectural structure did the site design-

ers select?

29.14. Do a bit of research and write a two- or three-page paper that summarizes

current work in WebApp design patterns.

29.15. Develop an architectural design for SafeHomeInc.com or a Web site assigned

by your instructor.

29.16. Develop SNUs for SafeHomeInc.com or a Web site assigned by your instructor.

29.17. Using an actual Web site as an example, develop a critique of its user inter-

face and make recommendations that would improve it.

29.18. Describe how project management for Web-based systems and applications

differs from project management for conventional software. How is it similar?
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and Khan (Effective Web Design: Master the Essentials, Sybex, 1998); Fleming and Koman

(Web Navigation: Designing the User Experience, O'Reilly and Associates, 1998); and

Sano [SAN96] also cover important aspects of the engineering process.

In addition to [LYN99] and [DIN98], the following books provide useful guidance

for technical and nontechnical (content and aesthetic) aspects of WebApp design:
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Donnelly, D., et al., Cutting Edge Web Design: The Next Generation, Rockport Publishing, 1998. 

Holzschlag, M.E., Web by Design: The Complete Guide, Sybex, 1998. 

Niederst, J. and R. Koman, Web Design in a Nutshell: A Desktop Quick Reference, O'Reilly and

Associates, 1998.
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1997.
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and Methods, Prentice-Hall, 1998) address the quantitative assessment of WebApp

performance. Amoroso (Intrusion Detection: An Introduction to Internet Surveillance,

Correlation, Trace Back, Traps, and Response, Intrusion.Net Books, 1999) provides

detailed guidance for those Web engineers who specialize in security issues. Umar

(Application (Re)Engineering: Building Web-Based Applications and Dealing with Lega-

cies, Prentice-Hall, 1997) discusses strategies for the transformation (reengineering)

of legacy systems into Web-based applications. Mosley (Client Server Software Test-

ing on the Desk Top and the Web, Prentice-Hall, 1999) has written one of the few books

that address testing issues associated with WebApps.

Haggard (Survival Guide to Web Site Development, Microsoft Press, 1998) and Siegel

(Secrets of Successful Web Sites: Project Management on the World Wide Web, Hayden

Books, 1997) provide guidance to managers who must control and track WebApp

development.

A wide variety of information sources on Web engineering is available on the Inter-

net. An up-to-date list of World Wide Web references can be found at the SEPA Web

site: 

http://www.mhhe.com/engcs/compsci/pressman/resources/webe.mhtml 
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In a seminal article written for the Harvard Business Review, Michael Ham-
mer [HAM90] laid the foundation for a revolution in management thinking
about business processes and computing: 

It is time to stop paving the cow paths. Instead of embedding outdated processes in sil-

icon and software, we should obliterate them and start over. We should “reengineer”

our businesses: use the power of modern information technology to radically redesign

our business processes in order to achieve dramatic improvements in their performance.

Every company operates according to a great many unarticulated rules . . . Reengi-

neering strives to break away from the old rules about how we organize and con-

duct our business.

Like all revolutions, Hammer’s call to arms resulted in both positive and neg-
ative changes. During the 1990s, some companies made a legitimate effort to
reengineer, and the results led to improved competitiveness. Others relied solely
on downsizing and outsourcing (instead of reengineering) to improve their bot-
tom line. “Mean” organizations with little potential for future growth often
resulted [DEM95].

During this first decade of the twenty-first century, the hype associated with
reengineering has waned, but the process itself continues in companies large

30 REENGINEERING

What is it? Consider any tech-

nology product that has served

you well. You use it regularly, but

it’s getting old. It breaks too often, takes longer to

repair than you’d like, and no longer represents

the newest technology. What to do? If the prod-

uct is hardware, you’ll likely throw it away and

buy a newer model. But if it’s custom-built soft-

ware, that option may not be available. You’ll

need to rebuild it. You’ll create a product with

added functionality, better performance and reli-

ability, and improved maintainability. That’s what

we call reengineering.

Who does it? At a business level, reengineering is

performed by business specialists (often consult-

ing companies). At the software level, reengi-

neering is performed by software engineers.

Why is it important? We live in a rapidly changing

world. The demands on business functions and

the information technology that supports them are

changing at a pace that puts enormous compet-

itive pressure on every commercial organization.

Both the business and the software that supports

(or is) the business must be reengineered to keep

pace.

What are the steps? Business process reengineering

(BPR) defines business goals, identifies and evalu-

ates existing business processes, and creates

revised business processes that better meet cur-

rent goals. The software reengineering process

Q U I C K
L O O K
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and small. The nexus between business reengineering and software engineering lies
in a “system view.” 

Software is often the realization of the business rules that Hammer discusses. As
these rules change, software must also change. Today, major companies have tens
of thousands of computer programs that support the “old business rules.” As man-
agers work to modify the rules to achieve greater effectiveness and competitiveness,
software must keep pace. In some cases, this means the creation of major new com-
puter-based systems.1 But in many others, it means the modification or rebuilding of
existing applications.

In this chapter, we examine reengineering in a top-down manner, beginning with
a brief overview of business process reengineering and proceeding to a more detailed
discussion of the technical activities that occur when software is reengineered.

30.1 BUSINESS PROCESS REENGINEERING

Business process reengineering (BPR) extends far beyond the scope of information

technologies and software engineering. Among the many definitions (most some-

what abstract) that have been suggested for BPR is one published in Fortune maga-

zine [STE93]: “the search for, and the implementation of, radical change in business

process to achieve breakthrough results.” But how is the search conducted, and how

is the implementation achieved? More important, how can we ensure that the “rad-

ical change” suggested will in fact lead to “breakthrough results” instead of organi-

zational chaos?

30.1.1 Business Processes

A business process is “a set of logically related tasks performed to achieve a defined

business outcome” [DAV90]. Within the business process, people, equipment, mate-

encompasses inventory analysis,

document restructuring, reverse

engineering, program and data

restructuring, and forward engineering. The intent

of these activities is to create versions of existing

programs that exhibit higher quality and better

maintainability. 

What is the work product? A variety of reengi-

neering work products (e.g., analysis models,

design models, test procedures) are produced.

The final output is the reengineered business

process and/or the reengineered software that

supports it.

How do I ensure that I’ve done it right? Use the

same SQA practices that are applied in every

software engineering process—formal technical

reviews assess the analysis and design models,

specialized reviews consider business applica-

bility and compatibility, testing is applied to

uncover errors in content, functionality, and

interoperability.

Q U I C K
L O O K

1 The Web-based systems and applications discussed in Chapter 29 are contemporary examples.

“To face tomorrow
with the thought of
using the methods
of yesterday is to
envision life at a
standstill.”
James Bell 
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rial resources, and business procedures are combined to produce a specified result.

Examples of business processes include designing a new product, purchasing ser-

vices and supplies, hiring a new employee, and paying suppliers. Each demands a

set of tasks and each draws on diverse resources within the business.

Every business process has a defined customer—a person or group that receives

the outcome (e.g., an idea, a report, a design, a product). In addition, business

processes cross organizational boundaries. They require that different organizational

groups participate in the “logically related tasks” that define the process.

In Chapter 10, we noted that every system is actually a hierarchy of subsys-

tems. A business is no exception. The overall business is segmented in the following

manner:

The business

business systems

business process

business subprocesses

Each business system (also called business function) is composed of one or more busi-

ness processes, and each business process is defined by a set of subprocesses.

BPR can be applied at any level of the hierarchy, but as the scope of BPR broad-

ens (i.e., as we move upward in the hierarchy), the risks associated with BPR grow

dramatically. For this reason, most BPR efforts focus on individual processes or sub-

processes.

30.1.2 Principles of Business Process Reengineering

In many ways, BPR is identical in focus and scope to business process engineering

(Chapter 10). In an ideal setting, BPR should occur in a top-down manner, beginning

with the identification of major business objectives and goals and culminating with

a much more detailed specification of the tasks that define a specific business process.

Hammer [HAM90] suggests a number of principles that guide BPR activities when

they begin at the top (business) level:

Organize around outcomes, not tasks. Many companies have com-

partmentalized business activities so that no single person (or organiza-

tion) has responsibility (or control) of a business outcome. It such cases, it

is difficult to determine the status of work and even more difficult to debug

process problems if they do occur. BPR should design processes that avoid

this problem.

Have those who use the output of the process perform the process.

The intent of this recommendation is to allow those who need business out-

put to control all of the variables that allow them to get the output in a timely

manner. The fewer separate constituencies involved in a process, the

smoother is the road to a rapid outcome. 
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As a software
engineer, your
reengineering work
occurs at the bottom
of this hierarchy. Be
sure, however, that
someone has given
serious thought to the
level above. If this
hasn’t been done,
your work is at risk.

WebRef
Extensive information on
business process
reengineering can be
found at 
www.brint.com/
BPR.htm
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Incorporate information processing work into the real work that pro-

duces the raw information. As IT becomes more distributed, it is possible

to locate most information processing within the organization that produces

the raw data. This localizes control, reduces communication time, and puts

computing power in the hands of those that have a vested interest in the

information that is produced. 

Treat geographically dispersed resources as though they were cen-

tralized. Computer-based communications have become so sophisticated

that geographically diverse groups can be placed in the same “virtual office.”

For example, instead of running three engineering shifts at a single location,

a global company can run one shift in Europe, a second shift in North Amer-

ica, and a third shift in Asia. In each case, engineers will work during daylight

hours and communicate via high-bandwidth networks. 

Link parallel activities instead of integrating their results. When dif-

ferent constituencies perform work in parallel, it is essential to design a

process that demands continuing communication and coordination. Other-

wise, integration problems are sure to result.

Put the decision point where the work is performed, and build con-

trol into the process. Using software design jargon, this principle suggests

a flatter organizational architecture with reduced factoring. 

Capture data once, at its source. Data should be stored on-line so that

once collected it need never be re-entered. 

Each of these principles represents a “big picture” view of BPR. Guided by these

principles, business planners and process designers must begin process redesign. In

the next section, we examine the process of BPR in a bit more detail. 

30.1.3 A BPR Model

Like most engineering activities, business process reengineering is iterative. Busi-

ness goals and the processes that achieve them must be adapted to a changing busi-

ness environment. For this reason, there is no start and end to BPR—it is an

evolutionary process. A model for business process reengineering is depicted in Fig-

ure 30.1. The model defines six activities:

Business definition. Business goals are identified within the context of four

key drivers: cost reduction, time reduction, quality improvement, and personnel

development and empowerment. Goals may be defined at the business level or

for a specific component of the business.

Process identification. Processes that are critical to achieving the goals

defined in the business definition are identified. They may then be ranked by

importance, by need for change, or in any other way that is appropriate for

the reengineering activity.

“As soon as we are
shown the existence
of something old in
a new thing, we are
pacified.”
Friedrich Wilhelm
Nietzsche 
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Process evaluation. The existing process is thoroughly analyzed and mea-

sured. Process tasks are identified; the costs and time consumed by process

tasks are noted; and quality/performance problems are isolated.

Process specification and design. Based on information obtained during

the first three BPR activities, use-cases (Chapter 11) are prepared for each

process that is to be redesigned. Within the context of BPR, use-cases identify

a scenario that delivers some outcome to a customer. With the use-case as

the specification of the process, a new set of tasks (which conform to the

principles noted in Section 30.2.1) are designed for the process.

Prototyping.  A redesigned business process must be prototyped before it is

fully integrated into the business. This activity “tests” the process so that

refinements can be made.

Refinement and instantiation. Based on feedback from the prototype, the

business process is refined and then instantiated within a business system.

These BPR activities are sometimes used in conjunction with workflow analysis

tools. The intent of these tools is to build a model of existing workflow in an effort to

better analyze existing processes. In addition, the modeling techniques commonly

associated with business process engineering activities such as information strategy

planning and business area analysis (Chapter 10) can be used to implement the first

four activities described in the process model.
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30.1.4 Words of Warning

It is not uncommon that a new business approach—in this case, BPR—is at first hyped

as a panacea, and then criticized so severely that it becomes a pariah. Over the years,

debate has raged about the efficacy of BPR (e.g., [BLE93], [DIC95]). In an excellent

discussion of the case for and against BPR, Weisz [WEI95] summarizes the argument

in the following way:

It is tempting to bash BPR as another silver-bullet fad. From several points of view—sys-

tems thinking, peopleware, simple history—you’d have to predict high failure rates for the

concept, rates which seem to be borne out by empirical evidence. For many companies, the

silver bullet has apparently missed. For others, though, the reengineering effort has evi-

dently been fruitful.

BPR can work, if it is applied by motivated, trained people who recognize that process

reengineering is a continuous activity. If BPR is conducted effectively, information

systems are better integrated into the business process. Reengineering older appli-

cations can be examined in the context of a broad-based business strategy, and pri-

orities for software reengineering can be established intelligently.

But even if business reengineering is a strategy that is rejected by a company, soft-

ware reengineering is something that must be done. Tens of thousands of legacy sys-

tems—applications that are crucial to the success of businesses large and small—are

in dire need of refurbishing or rebuilding.

30.2 SOFTWARE REENGINEERING

The scenario is all too common: An application has served the business needs of a

company for 10 or 15 years. During that time it has been corrected, adapted, and

enhanced many times. People approached this work with the best intentions, but

good software engineering practices were always shunted to the side (the press of

other matters). Now the application is unstable. It still works, but every time a change

is attempted, unexpected and serious side effects occur. Yet the application must con-

tinue to evolve. What to do?

Unmaintainable software is not a new problem. In fact, the broadening emphasis

on software reengineering has been spawned by a software maintenance “iceberg”

that has been building for more than three decades.

30.2.1 Software Maintenance

Thirty years ago, software maintenance was characterized [CAN72] as an "iceberg."

We hope that what was immediately visible is all there is to it, but we know that an

enormous mass of potential problems and cost lies under the surface. In the early

1970s, the maintenance iceberg was big enough to sink an aircraft carrier. Today, it

could easily sink the entire navy!

WebRef
The SEI offers a variety of
software reengineering
resources at 
www.sei.cmu.edu/
reengineering/
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The maintenance of existing software can account for over 60 percent of all effort

expended by a development organization, and the percentage continues to rise as

more software is produced [HAN93]. Uninitiated readers may ask why so much main-

tenance is required and why so much effort is expended. Osborne and Chikofsky

[OSB90] provide a partial answer:

Much of the software we depend on today is on average 10 to 15 years old. Even when

these programs were created using the best design and coding techniques known at the

time [and most were not], they were created when program size and storage space were

principle concerns. They were then migrated to new platforms, adjusted for changes in

machine and operating system technology and enhanced to meet new user needs—all with-

out enough regard to overall architecture.

The result is the poorly designed structures, poor coding, poor logic, and poor docu-

mentation of the software systems we are now called on to keep running . . .

The ubiquitous nature of change underlies all software work. Change is inevitable

when computer-based systems are built; therefore, we must develop mechanisms

for evaluating, controlling, and making modifications.

Upon reading the preceding paragraphs, a reader may protest: "but I don't spend

60 percent of my time fixing mistakes in the programs I develop." Software mainte-

nance is, of course, far more than "fixing mistakes." We may define maintenance by

describing four activities [SWA76] that are undertaken after a program is released for

use. In Chapter 2, we defined four different maintenance activities: corrective main-

tenance, adaptive maintenance, perfective maintenance or enhancement, and preven-

tive maintenance or reengineering. Only about 20 percent of all maintenance work is

spent “fixing mistakes.” The remaining 80 percent is spent adapting existing systems

to changes in their external environment, making enhancements requested by users,

and reengineering an application for future use. When maintenance is considered to

encompass all of these activities, it is relatively easy to see why it absorbs so much

effort.

30.2.2 A Software Reengineering Process Model

Reengineering takes time; it costs significant amounts of money; and it absorbs

resources that might be otherwise occupied on immediate concerns. For all of these

reasons, reengineering is not accomplished in a few months or even a few years.

Reengineering of information systems is an activity that will absorb information tech-

nology resources for many years.  That’s why every organization needs a pragmatic

strategy for software reengineering. 

A workable strategy is encompassed in a reengineering process model. We’ll dis-

cuss the model later in this section, but first, some basic principles. 

Reengineering is a rebuilding activity, and we can better understand the reengi-

neering of information systems if we consider an analogous activity: the rebuilding

of a house. Consider the following situation.
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the more difficult a
program is to
understand, the
more difficult it is to
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You have purchased a house in another state. You’ve never actually seen the prop-

erty, but you acquired it at an amazingly low price, with the warning that it might

have to be completely rebuilt. How would you proceed? 

• Before you can start rebuilding, it would seem reasonable to inspect the

house. To determine whether it is in need of rebuilding, you (or a profes-

sional inspector) would create a list of criteria so that your inspection would

be systematic. 

• Before you tear down and rebuild the entire house, be sure that the structure

is weak. If the house is structurally sound, it may be possible to “remodel”

without rebuilding (at much lower cost and in much less time).

• Before you start rebuilding be sure you understand how the original was

built. Take a peek behind the walls. Understand the wiring, the plumbing,

and the structural internals. Even if you trash them all, the insight you’ll gain

will serve you well when you start construction.

• If you begin to rebuild, use only the most modern, long-lasting materials.

This may cost a bit more now, but it will help you to avoid expensive and

time-consuming maintenance later.

• If you decide to rebuild, be disciplined about it. Use practices that will result

in high quality—today and in the future.

Although these principles focus on the rebuilding of a house, they apply equally

well to the reengineering of computer-based systems and applications.

To implement these principles, we apply a software reengineering process model

that defines six activities, shown in Figure 30.2.  In some cases, these activities occur

in a linear sequence, but this is not always the case. For example, it may be that

reverse engineering (understanding the internal workings of a program) may have

to occur before document restructuring can commence. 

The reengineering paradigm shown in the figure is a cyclical model. This means

that each of the activities presented as a part of the paradigm may be revisited. For

any particular cycle, the process can terminate after any one of these activities.

Inventory analysis. Every software organization should have an inventory of all

applications. The inventory can be nothing more than a spreadsheet model contain-

ing information that provides a detailed description (e.g., size, age, business critical-

ity) of every active application. By sorting this information according to business

criticality, longevity, current maintainability, and other locally important criteria, can-

didates for reengineering appear. Resources can then be allocated to candidate appli-

cations for reengineering work.

It is important to note that the inventory should be revisited on a regular cycle.

The status of applications (e.g., business criticality) can change as a function of time,

and as a result, priorities for reengineering will shift.

Inventory Analysis

The steps noted here
for a house are
“obvious.” Be sure
that your consideration
of legacy software
applies steps that are
just as obvious. Think
about it. A lot more
money is at stake.
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Document restructuring. Weak documentation is the trademark of many legacy

systems. But what do we do about it? What are our options?

1. Creating documentation is far too time consuming. If the system works, we’ll live

with what we have. In some cases, this is the correct approach. It is not possi-

ble to re-create documentation for hundreds of computer programs. If a pro-

gram is relatively static, is coming to the end of its useful life, and is unlikely

to undergo significant change, let it be!

2. Documentation must be updated, but we have limited resources. We’ll use a

“document when touched” approach. It may not be necessary to fully redocu-

ment an application. Rather, those portions of the system that are currently

undergoing change are fully documented. Over time, a collection of useful

and relevant documentation will evolve.

3. The system is business critical and must be fully redocumented. Even in this

case, an intelligent approach is to pare documentation to an essential mini-

mum.

Each of these options is viable. A software organization must choose the one that is

most appropriate for each case.

Reverse engineering. The term reverse engineering has its origins in the hardware

world. A company disassembles a competitive hardware product in an effort to under-

stand its competitor's design and manufacturing "secrets." These secrets could be

easily understood if the competitor's design and manufacturing specifications were

obtained. But these documents are proprietary and unavailable to the company doing
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the reverse engineering. In essence, successful reverse engineering derives one or

more design and manufacturing specifications for a product by examining actual spec-

imens of the product.

Reverse engineering for software is quite similar. In most cases, however, the pro-

gram to be reverse engineered is not a competitor's. Rather, it is the company's own

work (often done many years earlier). The "secrets" to be understood are obscure

because no specification was ever developed. Therefore, reverse engineering for soft-

ware is the process of analyzing a program in an effort to create a representation of

the program at a higher level of abstraction than source code. Reverse engineering

is a process of design recovery. Reverse engineering tools extract data, architectural,

and procedural design information from an existing program.

Code restructuring. The most common type of reengineering (actually, the use of

the term reengineering is questionable in this case) is code restructuring. Some legacy

systems have a relatively solid program architecture, but individual modules were

coded in a way that makes them difficult to understand, test, and maintain. In such

cases, the code within the suspect modules can be restructured.

To accomplish this activity, the source code is analyzed using a restructuring tool.

Violations of structured programming constructs are noted and code is then restruc-

tured (this can be done automatically). The resultant restructured code is reviewed

and tested to ensure that no anomalies have been introduced. Internal code docu-

mentation is updated.

Data restructuring. A program with weak data architecture will be difficult to adapt

and enhance. In fact, for many applications, data architecture has more to do with

the long-term viability of a program that the source code itself.

Unlike code restructuring, which occurs at a relatively low level of abstraction,

data structuring is a full-scale reengineering activity. In most cases, data restructur-

ing begins with a reverse engineering activity. Current data architecture is dissected

and necessary data models are defined (Chapter 12). Data objects and attributes are

identified, and existing data structures are reviewed for quality.

When data structure is weak (e.g., flat files are currently implemented, when a rela-

tional approach would greatly simplify processing), the data are reengineered.

Because data architecture has a strong influence on program architecture and the

algorithms that populate it, changes to the data will invariably result in either archi-

tectural or code-level changes.

Forward engineering. In an ideal world, applications would be rebuilt using a auto-

mated “reengineering engine.” The old program would be fed into the engine, ana-

lyzed, restructured, and then regenerated in a form that exhibited the best aspects of

software quality. In the short term, it is unlikely that such an “engine” will appear, but

CASE vendors have introduced tools that provide a limited subset of these capabili-

WebRef
A vast array of resources
for the reengineering
community can be
obtained at 
www.comp.lancs.ac.
uk/projects/
RenaissanceWeb/



CHAPTER 30 REENGINEERING

ties that addresses specific application domains (e.g., applications that are imple-

mented using a specific database system). More important, these reengineering tools

are becoming increasingly more sophisticated.

Forward engineering, also called renovation or reclamation [CHI90], not only recov-

ers design information from existing software, but uses this information to alter or

reconstitute the existing system in an effort to improve its overall quality. In most

cases, reengineered software reimplements the function of the existing system and

also adds new functions and/or improves overall performance.

30.3 REVERSE ENGINEERING

Reverse engineering conjures an image of the "magic slot." We feed an unstructured,

undocumented source listing into the slot and out the other end comes full docu-

mentation for the computer program. Unfortunately, the magic slot doesn't exist.

Reverse engineering can extract design information from source code, but the abstrac-

tion level, the completeness of the documentation, the degree to which tools and a

human analyst work together, and the directionality of the process are highly vari-

able [CAS88].

The abstraction level of a reverse engineering process and the tools used to effect

it refers to the sophistication of the design information that can be extracted from

source code. Ideally, the abstraction level should be as high as possible. That is, the

reverse engineering process should be capable of deriving procedural design repre-

sentations (a low-level abstraction), program and data structure information (a some-

what higher level of abstraction), data and control flow models (a relatively high level

of abstraction), and entity relationship models (a high level of abstraction). As the

abstraction level increases, the software engineer is provided with information that

will allow easier understanding of the program.

The completeness of a reverse engineering process refers to the level of detail that

is provided at an abstraction level. In most cases, the completeness decreases as the

abstraction level increases. For example, given a source code listing, it is relatively

easy to develop a complete procedural design representation. Simple data flow rep-

resentations may also be derived, but it is far more difficult to develop a complete set

of data flow diagrams or entity-relationship models.

Completeness improves in direct proportion to the amount of analysis performed

by the person doing reverse engineering. Interactivity refers to the degree to which

the human is "integrated" with automated tools to create an effective reverse engi-

neering process. In most cases, as the abstraction level increases, interactivity must

increase or completeness will suffer.

If the directionality of the reverse engineering process is one way, all information

extracted from the source code is provided to the software engineer who can then

use it during any maintenance activity. If directionality is two way, the information is
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fed to a reengineering tool that attempts to restructure or regenerate the old 

program.

The reverse engineering process is represented in Figure 30.3. Before reverse engi-

neering activities can commence, unstructured (“dirty”) source code is restructured

(Section 30.4.1) so that it contains only the structured programming constructs.2 This

makes the source code easier to read and provides the basis for all the subsequent

reverse engineering activities.

The core of reverse engineering is an activity called extract abstractions. The engi-

neer must evaluate the old program and from the (often undocumented) source code,

extract a meaningful specification of the processing that is performed, the user inter-

face that is applied, and the program data structures or database that is used.

30.3.1 Reverse Engineering to Understand Processing

The first real reverse engineering activity begins with an attempt to understand and

then extract procedural abstractions represented by the source code. To understand

procedural abstractions, the code is analyzed at varying levels of abstraction: sys-

tem, program, component, pattern, and statement.

Refine &
simplify

Final specification

Extract
abstractions

Initial specification

Restructure
code

Clean source code

Dirty source code

Database

Interface

Processing

FIGURE 30.3
The reverse
engineering
process

2 Code can be restructured automatically using a “restructuring engine”—a CASE tool that restruc-
tures source code.
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CHAPTER 30 REENGINEERING

The overall functionality of the entire application system must be understood before

more detailed reverse engineering work occurs. This establishes a context for further

analysis and provides insight into interoperability issues among applications within

the system. Each of the programs that make up the application system represents a

functional abstraction at a high level of detail. A block diagram, representing the

interaction between these functional abstractions, is created. Each component per-

forms some subfunction and represents a defined procedural abstraction. A processing

narrative for each component is created. In some situations, system, program and

component specifications already exist. When this is the case, the specifications are

reviewed for conformance to existing code.3

Things become more complex when the code inside a component is considered.

The engineer looks for sections of code that represent generic procedural patterns.

In almost every component, a section of code prepares data for processing (within

the module), a different section of code does the processing, and another section of

code prepares the results of processing for export from the component. Within each

of these sections, we can encounter smaller patterns; for example, data validation

and bounds checking often occur within the section of code that prepares data for

processing.

For large systems, reverse engineering is generally accomplished using a semi-

automated approach. CASE tools are used to “parse” the semantics of existing code.

The output of this process is then passed to restructuring and forward engineering

tools to complete the reengineering process.

30.3.2 Reverse Engineering to Understand Data

Reverse engineering of data occurs at different levels of abstraction. At the program

level, internal program data structures must often be reverse engineered as part of

an overall reengineering effort. At the system level, global data structures (e.g., files,

databases) are often reengineered to accommodate new database management par-

adigms (e.g., the move from flat file to relational or object-oriented database systems).

Reverse engineering of the current global data structures sets the stage for the intro-

duction of a new systemwide database. 

Internal data structures. Reverse engineering techniques for internal program

data focus on the definition of classes of objects.4 This is accomplished by examin-

ing the program code with the intent of grouping related program variables. In many

cases, the data organization within the code identifies abstract data types. For exam-

ple, record structures, files, lists, and other data structures often provide an initial

indicator of classes.
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3 Often, specifications written early in the life history of a program are never updated. As changes
are made, the code no longer conforms to the specification.

4 For a complete discussion of these object-oriented concepts, see Part Four of this book.
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Breuer and Lano [BRE91] suggest the following approach for reverse engineering

of classes:

1. Identify flags and local data structures within the program that record impor-

tant information about global data structures (e.g., a file or database).

2. Define the relationship between flags and local data structures and the

global data structures. For example, a flag may be set when a file is empty; a

local data structure may serve as a buffer that contains the last 100 records

acquired from a central database.

3. For every variable (within the program) that represents an array or file, list all

other variables that have a logical connection to it.

These steps enable a software engineer to identify classes within the program that

interact with the global data structures. 

Database structure. Regardless of its logical organization and physical structure,

a database allows the definition of data objects and supports some method for estab-

lishing relationships among the objects. Therefore, reengineering one database schema

into another requires an understanding of existing objects and their relationships.

The following steps [PRE94] may be used to define the existing data model as a

precursor to reengineering a new database model:

1. Build an initial object model. The classes defined as part of the model

may be acquired by reviewing records in a flat file database or tables in a

relational schema. The items contained in records or tables become attrib-

utes of a class.

2. Determine candidate keys. The attributes are examined to determine

whether they are used to point to another record or table. Those that serve as

pointers become candidate keys.

3. Refine the tentative classes. Determine whether similar classes can be

combined into a single class.

4. Define generalizations. Examine classes that have many similar attributes

to determine whether a class hierarchy should be constructed with a general-

ization class at its head.

5. Discover associations. Use techniques that are analogous to the CRC

approach (Chapter 21) to establish associations among classes.

Once information defined in the preceding steps is known, a series of transforma-

tions [PRE94] can be applied to map the old database structure into a new database

structure.

30.3.3 Reverse Engineering User Interfaces

Sophisticated GUIs have become de rigueur for computer-based products and sys-

tems of every type. Therefore, the redevelopment of user interfaces has become one

Relatively insignificant
compromises in data
structures can lead to
potentially catastrophic
problems in future
years. Consider the
Y2K problem as an
example.

What steps
can be

applied to reverse
engineer an
existing database
structure?

?
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of the most common types of reengineering activity. But before a user interface can

be rebuilt, reverse engineering should occur.

To fully understand an existing user interface (UI), the structure and behavior of

the interface must be specified. Merlo and his colleagues [MER93] suggest three basic

questions that must be answered as reverse engineering of the UI commences:

• What are the basic actions (e.g., keystrokes and mouse clicks) that the inter-

face must process?

• What is a compact description of the behavioral response of the system to

these actions?

• What is meant by a “replacement,” or more precisely, what concept of equiv-

alence of interfaces is relevant here?

Behavioral modeling notation (Chapter 12) can provide a means for developing

answers to the first two questions. Much of the information necessary to create a

behavioral model can be obtained by observing the external manifestation of the

existing interface. But additional information necessary to create the behavioral model

must extracted from the code.

It is important to note that a replacement GUI may not mirror the old interface

exactly (in fact, it may be radically different). It is often worthwhile to develop new

interaction metaphors. For example, an old UI requests that a user provide a scale

factor (ranging from 1 to 10) to shrink or magnify a graphical image. A reengineered

GUI might use a slide-bar and mouse to accomplish the same function.

30.4 RESTRUCTURING

Software restructuring modifies source code and/or data in an effort to make it

amenable to future changes. In general, restructuring does not modify the overall

program architecture. It tends to focus on the design details of individual modules

and on local data structures defined within modules. If the restructuring effort extends

beyond module boundaries and encompasses the software architecture, restructur-

ing becomes forward engineering (Section 30.5).

Arnold [ARN89] defines a number of benefits that can be achieved when software

is restructured:

• Programs have higher quality—better documentation, less complexity, and

conformance to modern software engineering practices and standards.

• Frustration among software engineers who must work on the program is

reduced, thereby improving productivity and making learning easier.

• Effort required to perform maintenance activities is reduced.

• Software is easier to test and debug.

Restructuring occurs when the basic architecture of an application is solid, even

though technical internals need work. It is initiated when major parts of the 
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software are serviceable and only a subset of all modules and data need extensive

modification.5

30.4.1 Code Restructuring

Code restructuring is performed to yield a design that produces the same function

but with higher quality than the original program. In general, code restructuring

techniques (e.g., Warnier's logical simplification techniques [WAR74]) model pro-

gram logic using Boolean algebra and then apply a series of transformation rules

that yield restructured logic. The objective is to take "spaghetti-bowl" code and

derive a procedural design that conforms to the structured programming philoso-

phy (Chapter 16). 

Other restructuring techniques have also been proposed for use with reengineer-

ing tools. A resource exchange diagram maps each program module and the resources

(data types, procedures and variables) that are exchanged between it and other mod-

ules. By creating representations of resource flow, the program architecture can be

restructured to achieve minimum coupling among modules.

30.4.2 Data Restructuring

Before data restructuring can begin, a reverse engineering activity called analysis of

source code must be conducted. All programming language statements that contain

data definitions, file descriptions, I/O, and interface descriptions are evaluated. The

intent is to extract data items and objects, to get information on data flow, and to

understand the existing data structures that have been implemented. This activity is

sometimes called data analysis [RIC89].

Once data analysis has been completed, data redesign commences. In its simplest

form, a data record standardization step clarifies data definitions to achieve consis-

tency among data item names or physical record formats within an existing data

structure or file format. Another form of redesign, called data name rationalization,

ensures that all data naming conventions conform to local standards and that aliases

are eliminated as data flow through the system.

When restructuring moves beyond standardization and rationalization, physical

modifications to existing data structures are made to make the data design more

effective. This may mean a translation from one file format to another, or in some

cases, translation from one type of database to another.  

30.5 FORWARD ENGINEERING

A program with control flow that is the graphic equivalent of a bowl of spaghetti, with

"modules" that are 2,000 statements long, with few meaningful comment lines in

5 It is sometimes difficult to make a distinction between extensive restructuring and redevelop-
ment. Both are reengineering. 

Although code
restructuring can
alleviate immediate
problems associated
with debugging or
small changes, it is not
reengineering. Real
benefit is achieved
only when data and
architecture are
restructured.
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290,000 source statements and no other documentation must be modified to accom-

modate changing user requirements. We have the following options:

1. We can struggle through modification after modification, fighting the implicit

design and source code to implement the necessary changes.

2. We can attempt to understand the broader inner workings of the program in

an effort to make modifications more effectively.

3. We can redesign, recode, and test those portions of the software that require

modification, applying a software engineering approach to all revised seg-

ments.

4. We can completely redesign, recode, and test the program, using CASE

(reengineering) tools to assist us in understanding the current design. 

There is no single "correct" option. Circumstances may dictate the first option even

if the others are more desirable.

Rather than waiting until a maintenance request is received, the development or

support organization uses the results of inventory analysis to select a program that

(1) will remain in use for a preselected number of years, (2) is currently being used

successfully, and (3) is likely to undergo major modification or enhancement in the

near future. Then, option 2, 3, or 4 is applied.

This preventative maintenance approach was pioneered by Miller [MIL81] under

the title structured retrofit. This concept is defined as "the application of today's method-

ologies to yesterday's systems to support tomorrow's requirements."

At first glance, the suggestion that we redevelop a large program when a working

version already exists may seem quite extravagant. Before passing judgment, con-

sider the following points:

1. The cost to maintain one line of source code may be 20 to 40 times the cost

of initial development of that line.

2. Redesign of the software architecture (program and/or data structure), using

modern design concepts, can greatly facilitate future maintenance.

3. Because a prototype of the software already exists, development productivity

should be much higher than average.

4. The user now has experience with the software. Therefore, new require-

ments and the direction of change can be ascertained with greater ease.

5. CASE tools for reengineering will automate some parts of the job.

6. A complete software configuration (documents, programs, and data) will

exist upon completion of preventive maintenance.

When a software development organization sells software as a product, preven-

tive maintenance is seen in "new releases" of a program. A large in-house software

developer (e.g., a business systems software development group for a large consumer
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products company) may have 500–2000 production programs within its domain of

responsibility. These programs can be ranked by importance and then reviewed as

candidates for preventive maintenance.

The forward engineering process applies software engineering principles, con-

cepts, and methods to re-create an existing application. In most cases, forward engi-

neering does not simply create a modern equivalent of an older program. Rather,

new user and technology requirements are integrated into the reengineering effort.

The redeveloped program extends the capabilities of the older application.

30.5.1 Forward Engineering for Client/Server Architectures

Over the past decade many mainframe applications have been reengineered to accom-

modate client/server architectures. In essence, centralized computing resources

(including software) are distributed among many client platforms. Although a vari-

ety of different distributed environments can be designed, the typical mainframe appli-

cation that is reengineered into a client/server architecture has the following features:

• Application functionality migrates to each client computer.

• New GUI interfaces are implemented at the client sites.

• Database functions are allocated to the server.

• Specialized functionality (e.g., compute-intensive analysis) may remain at the

server site.

• New communications, security, archiving, and control requirements must be

established at both the client and server sites.

It is important to note that the migration from mainframe to c/s computing requires

both business and software reengineering. In addition, an “enterprise network infra-

structure” [JAY94] should be established.

Reengineering for c/s applications begins with a thorough analysis of the busi-

ness environment that encompasses the existing mainframe. Three layers of abstrac-

tion (Figure 30.4) can be identified. The database sits at the foundation of a client/server

architecture and manages transactions and queries from server applications. Yet these

transactions and queries must be controlled within the context of a set of business

rules (defined by an existing or reengineered business process). Client applications

provide targeted functionality to the user community.

The functions of the existing database management system and the data archi-

tecture of the existing database must be reverse engineered as a precursor to the

redesign of the database foundation layer. In some cases a new data model (Chap-

ter 12) is created. In every case, the c/s database is reengineered to ensure that trans-

actions are executed in a consistent manner, that all updates are performed only by

authorized users, that core business rules are enforced (e.g., before a vendor record

is deleted, the server ensures that no related accounts payable, contracts, or com-

XRef
Client/server software
engineering is
discussed in  
Chapter 28.

In some cases, c/s or
OO systems designed
to replace a legacy
application should be
approached as a new
development project.
Reengineering enters
the picture only when
elements of an old
system are to be
integrated with the
new architecture. In
some cases, you may
be better off rejecting
the old and creating
identical new
functionality.
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munications exist for that vendor), that queries can be accommodated efficiently, and

that full archiving capability has been established.

The business rules layer represents software resident at both the client and the

server. This software performs control and coordination tasks to ensure that trans-

actions and queries between the client application and the database conform to the

the established business process.

The client applications layer implements business functions that are required by

specific groups of end-users. In many instances, a mainframe application is segmented

into a number of smaller, reengineered desktop applications. Communication among

the desktop applications (when necessary) is controlled by the business rules layer. 

A comprehensive discussion of client/server software design and reengineering

is best left to books dedicated to the subject. The interested reader should see [VAS93],

[INM93], and [BER92].

30.5.2 Forward Engineering for Object-Oriented Architectures

Object-oriented software engineering has become the development paradigm of

choice for many software organizations. But what about existing applications that

were developed using conventional methods? In some cases, the answer is to leave

such applications “as is.” In others, older applications must be reengineered so that

they can be easily integrated into large, object-oriented systems.
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Reengineering conventional software into an object-oriented implementation uses

many of the same techniques discussed in Part Four of this book. First, the existing

software is reverse engineered so that appropriate data, functional, and behavioral

models can be created. If the reengineered system extends the functionality or behav-

ior of the original application, use-cases (Chapters 11 and 21) are created. The data

models created during reverse engineering are then used in conjunction with CRC

modeling (Chapter 21) to establish the basis for the definition of classes. Class hier-

archies, object-relationship models, object-behavior models, and subsystems are

defined, and object-oriented design commences.

As object-oriented forward engineering progresses from analysis to design, a CBSE

process model (Chapter 27) can be invoked. If the existing application exists within

a domain that is already populated by many object-oriented applications, it is likely

that a robust component library exists and can be used during forward engineering.

For those classes that must be engineered from scratch, it may be possible to reuse

algorithms and data structures from the existing conventional application. However,

these must be redesigned to conform to the object-oriented architecture. 

30.5.3 Forward Engineering User Interfaces

As applications migrate from the mainframe to the desktop, users are no longer will-

ing to tolerate arcane, character-based user interfaces. In fact, a significant portion

of all effort expended in the transition from mainframe to client/server computing

can be spent in the reengineering of client application user interfaces.

Merlo and his colleagues [MER95] suggest the following model for reengineering

user interfaces:

1. Understand the original interface and the data that move between it

and the remainder of the application. The intent is to understand how

other elements of a program interact with existing code that implements the

interface. If a new GUI is to be developed, the data that flow between the GUI

and the remaining program must be consistent with the data that currently

flow between the character-based interface and the program.

2. Remodel the behavior implied by the existing interface into a series

of abstractions that have meaning in the context of a GUI. Although

the mode of interaction may be radically different, the business behavior

exhibited by users of the old and new interfaces (when considered in terms

of a usage scenario) must remain the same. A redesigned interface must still

allow a user to exhibit the appropriate business behavior. For example, when

a database query is to be made, the old interface may require a long series of

text-based commands to specify the query. The reengineered GUI may

streamline the query to a small sequence of mouse picks, but the intent and

content of the query remain unchanged.

What steps
should we

follow to
reengineer a user
interface?

?
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3. Introduce improvements that make the mode of interaction more

efficient. The ergonomic failings of the existing interface are studied and

corrected in the design of the new GUI.

4. Build and integrate the new GUI. The existence of class libraries and

fourth generation tools can reduce the effort required to build the GUI signifi-

cantly. However, integration with existing application software can be more

time consuming. Care must be taken to ensure that the GUI does not propa-

gate adverse side effects into the remainder of the application.

30.6 THE ECONOMICS OF REENGINEERING

In a perfect world, every unmaintainable program would be retired immediately, to

be replaced by high-quality, reengineered applications developed using modern soft-

ware engineering practices. But we live in a world of limited resources. Reengineer-

ing drains resources that can be used for other business purposes. Therefore, before

an organization attempts to reengineer an existing application, it should perform a

cost/benefit analysis.

A cost/benefit analysis model for reengineering has been proposed by Sneed

[SNE95]. Nine parameters are defined:

P1 = current annual maintenance cost for an application.

P2 = current annual operation cost for an application.

P3 = current annual business value of an application.

P4 = predicted annual maintenance cost after reengineering.

P5 = predicted annual operations cost after reengineering.

P6 = predicted annual business value after reengineering.

P7 = estimated reengineering costs.

P8 = estimated reengineering calendar time.

P9 = reengineering risk factor (P9 = 1.0 is nominal).

L = expected life of the system.

The cost associated with continuing maintenance of a candidate application (i.e.,

reengineering is not performed) can be defined as

Cmaint = [P3 � (P1 + P2)] � L (30-1)

The costs associated with reengineering are defined using the following relationship:

Creeng = [P6 � (P4 + P5)� (L � P8) � (P7 � P9)] ` (30-2)

Using the costs presented in equations (30-1) and (30-2), the overall benefit of reengi-

neering can be computed as

cost benefit = Creeng � Cmaint (30-3)
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The cost/benefit analysis presented in the equations can be performed for all high-

priority applications identified during inventory analysis (Section 30.2.2). Those appli-

cations that show the highest cost/benefit can be targeted for reengineering, while

work on others can be postponed until resources are available.

30.7 SUMMARY

Reengineering occurs at two different levels of abstraction. At the business level,

reengineering focuses on the business process with the intent of making changes to

improve competitiveness in some area of the business. At the software level, reengi-

neering examines information systems and applications with the intent of restruc-

turing or reconstructing them so that they exhibit higher quality.

Business process reengineering defines business goals, identifies and evaluates

existing business processes (in the context of defined goals), specifies and designs

revised processes, and prototypes, refines, and instantiates them within a business.

BPR has a focus that extends beyond software. The result of BPR is often the defini-

tion of ways in which information technologies can better support the business.

Software reengineering encompasses a series of activities that include inventory

analysis, document restructuring, reverse engineering, program and data restruc-

turing, and forward engineering. The intent of these activities is to create versions of

existing programs that exhibit higher quality and better maintainability—programs

that will be viable well into the twenty-first century.

Inventory analysis enables an organization to assess each application systemati-

cally, with the intent of determining which are candidates for reengineering. Docu-

ment restructuring creates a framework of documentation that is necessary for the

long-term support of an application. Reverse engineering is the process of analyzing

a program in an effort to extract data, architectural, and procedural design informa-

tion. Finally, forward engineering reconstructs a program using modern software

engineering practices and information learned during reverse engineering.

The cost/benefit of reengineering can be determined quantitatively. The cost of

the status quo, that is, the cost associated with ongoing support and maintenance of

an existing application, is compared to the projected costs of reengineering and the

resultant reduction in maintenance costs. In almost every case in which a program

has a long life and currently exhibits poor maintainability, reengineering represents

a cost-effective business strategy.
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PROBLEMS AND POINTS TO PONDER

30.1. Consider any job that you’ve held in the last five years. Describe the business

process in which you played a part. Use the BPR model described in Section 30.1.3

to recommend changes to the process in an effort to make it more efficient.

30.2. Do some research on the efficacy of business process reengineering. Present

pro and con arguments for this approach.

30.3. Your instructor will select one of the programs that everyone in the class has

developed during this course. Exchange your program randomly with someone else

in the class. Do not explain or walk through the program. Now, implement an enhance-

ment (specified by your instructor) in the program you have received.

a. Perform all software engineering tasks including a brief walkthrough (but

not with the author of the program).

b. Keep careful track of all errors encountered during testing.

c. Discuss your experiences in class.

30.4. Explore the inventory analysis checklist presented at the SEPA Web site and

attempt to develop a quantitative software rating system that could be applied to

existing programs in an effort to pick candidate programs for reengineering. Your

system should extend beyond economic analysis presented in Section 30.6.

30.5. Suggest alternatives to paper and ink or conventional electronic documenta-

tion that could serve as the basis for document restructuring. (Hint: Think of new

descriptive technologies that could be used to communicate the intent of the soft-

ware.)

30.6. Some people believe that artificial intelligence technology will increase the

abstraction level of the reverse engineering process. Do some research on this sub-

ject (i.e., the use of AI for reverse engineering) and write a brief paper that takes a

stand on this point.

30.7. Why is completeness difficult to achieve as abstraction level increases?

30.8. Why must interactivity increase if completeness is to increase?

30.9. Get product literature on three reverse engineering tools and present their

characteristics in class.

30.10. There is a subtle difference between restructuring and forward engineering.

What is it?
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30.11. Research the literature to find one or more papers that discuss case studies

of mainframe to client/server reengineering. Present a summary.

30.12. How would you determine P4 through P7 in the cost-benefit model presented

in Section 30.6?

FURTHER READINGS AND INFORMATION SOURCES

Like many hot topics in the business community, the hype surrounding business

process reengineering has given way to a more pragmatic view of the subject. Ham-

mer and Champy (Reengineering the Corporation, HarperCollins, 1993) precipitated

early interest with their best selling book. Later, Hammer (Beyond Reengineering: How

the Processed-Centered Organization Is Changing Our Work and Our Lives, Harper-

Collins 1997) refined his view by focusing on “process-centered” issues.

Books by Andersen (Business Process Improvement Toolbox, American Society for

Quality, 1999),  Harrington et al. (Business Process Improvement Workbook, McGraw-

Hill, 1997), Hunt (Process Mapping: How to Reengineer Your Business Processes, Wiley,

1996), and Carr and Johansson (Best Practices in Reengineering: What Works and What

Doesn't in the Reengineering Process, McGraw-Hill, 1995) present case studies and

detailed guidelines for BPR. 

Feldmann (The Practical Guide to Business Process Reengineering Using IDEF0, Dorset

House, 1998) discusses a modeling notation that assists in BPR. Berztiss (Software Meth-

ods for Business Reengineering, Springer, 1996) and Spurr et al. (Software Assistance for

Business Reengineering, Wiley, 1994) discuss tools and techniques that facilitate BPR. 

Relatively few books have been dedicated to software reengineering. Rada (Reengi-

neering Software: How to Reuse Programming to Build New, State-of-the-Art Software,

Fitzroy Dearborn Publishers, 1999) focuses on reengineering at a technical level.

Miller (Reengineering Legacy Software Systems, Digital Press, 1998) “provides a frame-

work for keeping application systems synchronized with business strategies and tech-

nology changes.” Umar (Application (Re)Engineering: Building Web-Based Applications

and Dealing with Legacies, Prentice-Hall, 1997) provides worthwhile guidance for orga-

nizations that want to transform legacy systems into a Web-based environment. Cook

(Building Enterprise Information Architectures: Reengineering Information Systems, Pren-

tice-Hall, 1996) discusses the bridge between BPR and information technology. Aiken

(Data Reverse Engineering, McGraw-Hill, 1996) discusses how to reclaim, reorganize,

and reuse organizational data. Arnold (Software Reengineering, IEEE Computer Soci-

ety Press, 1993) has put together an excellent anthology of early papers that focus on

software reengineering technologies. 

A wide variety of information sources on business process reengineering and soft-

ware reengineering is available on the Internet. An up-to-date list of World Wide Web

references can be found at the SEPA Web site:

http://www.mhhe.com/engcs/compsci/pressman/resources/

reengineering.mhtml
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Everyone has heard the old saying about the shoemaker's children: The
shoemaker is so busy making shoes for others that his children don't have
shoes of their own. Prior to the 1990s, many software developers were

the "shoemaker's children." Although these technical professionals built com-
plex systems and products that automated the work of others, they used very
little automation themselves. 

Today, software engineers have their first new pair of shoes—computer-aided
software engineering (CASE). The shoes don't come in as many varieties as
they would like, haven’t lived up to the many exaggerated promises made by
their manufacturers, are often a bit stiff and sometimes uncomfortable, don't
provide enough sophistication for those who are stylish, and don't always match
other garments that software developers use, but they provide an absolutely
essential piece of apparel for the software engineer's wardrobe and will, over
time, become more comfortable, more useable, and more adaptable to the needs
of individual practitioners.

In earlier chapters of this book we have attempted to provide a reasonable
understanding of the underpinnings of software engineering technology. In this
chapter, the focus shifts to the tools and environments that will help to auto-
mate the software process. 

31 COMPUTER-AIDED
SOFTWARE ENGINEERING

What is it? Computer-aided soft-

ware engineering (CASE) tools

assist software engineering man-

agers and practitioners in every activity associ-

ated with the software process. They automate

project management activities, manage all work

products produced throughout the process, and

assist engineers in their analysis, design, coding

and test work. CASE tools can be integrated within

a sophisticated environment.

Who does it? Project managers and software engi-

neers use CASE.

Why is it important? Software engineering is difficult.

Tools that reduce the amount of effort required to

produce a work product or accomplish some pro-

ject milestone have substantial benefit. But there’s

something that’s even more important. Tools can

provide new ways of looking at software engi-

neering information—ways that improve the

insight of the engineer doing the work. This leads

to better decisions and higher software quality.

What are the steps? CASE is used in conjunction with

the process model that is chosen. If a full tool set

is available, CASE will be used during virtually

every step of the software process.

What is the work product? CASE tools assist a soft-

ware engineer in producing high-quality work

products. In addition, the availability of automa-

tion allows the CASE user to produce additional

customized work products that could not be 

Q U I C K
L O O K
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31.1 WHAT IS  CASE?

A good workshop for any craftsperson—a mechanic, a carpenter, or a software engi-

neer—has three primary characteristics: (1) a collection of useful tools that will help

in every step of building a product, (2) an organized layout that enables tools to be

found quickly and used efficiently, and (3) a skilled artisan who understands how to

use the tools in an effective manner. Software engineers now recognize that they

need more and varied tools along with an organized and efficient workshop in which

to place the tools.

The workshop for software engineering has been called an integrated project sup-

port environment (discussed later in this chapter) and the tools that fill the workshop

are collectively called computer-aided software engineering. 

CASE provides the software engineer with the ability to automate manual activi-

ties and to improve engineering insight. Like computer-aided engineering and design

tools that are used by engineers in other disciplines, CASE tools help to ensure that

quality is designed in before the product is built.

31.2 BUILDING BLOCKS FOR CASE

Computer aided software engineering can be as simple as a single tool that supports

a specific software engineering activity or as complex as a complete "environment"

that encompasses tools, a database, people, hardware, a network, operating systems,

standards, and myriad other components. The building blocks for CASE are illustrated

in Figure 31.1. Each building block forms a foundation for the next, with tools sitting

at the top of the heap. It is interesting to note that the foundation for effective CASE

environments has relatively little to do with software engineering tools themselves.

Rather, successful environments for software engineering are built on an environ-

ment architecture that encompasses appropriate hardware and systems software. In

addition, the environment architecture must consider the human work patterns that

are applied during the software engineering process.

The environment architecture, composed of the hardware platform and system

support (including networking software, database management, and object man-

agement services), lays the ground work for CASE. But the CASE environment itself

easily or practically produced

without tool support.

How do I ensure that I’ve done it
right? Use tools to complement solid software engi-

neering practices—not to replace them. Before

tools can be used effectively, a software process

framework must be established, software engi-

neering concepts and methods must be learned,

and software quality must be emphasized. Only

then will CASE provide benefit.

Q U I C K
L O O K

“The most valuable
CASE tools are those
that contribute
information to the
development
process.”
Robert Dixon 
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demands other building blocks. A set of portability services provides a bridge between

CASE tools and their integration framework and the environment architecture. The

integration framework is a collection of specialized programs that enables individual

CASE tools to communicate with one another, to create a project database, and to

exhibit the same look and feel to the end-user (the software engineer). Portability ser-

vices allow CASE tools and their integration framework to migrate across different

hardware platforms and operating systems without significant adaptive maintenance.

The building blocks depicted in Figure 31.1 represent a comprehensive founda-

tion for the integration of CASE tools. However, most CASE tools in use today have

not been constructed using all these building blocks. In fact, some CASE tools remain

"point solutions." That is, a tool is used to assist in a particular software engineering

activity (e.g., analysis modeling) but does not directly communicate with other tools,

is not tied into a project database, is not part of an integrated CASE environment (I-

CASE). Although this situation is not ideal, a CASE tool can be used quite effectively,

even if it is a point solution.

The relative levels of CASE integration are shown in Figure 31.2. At the low end

of the integration spectrum is the individual (point solution) tool. When individual

tools provide facilities for data exchange (most do), the integration level is improved

slightly. Such tools produce output in a standard format that should be compatible

with other tools that can read the format. In some cases, the builders of comple-

mentary CASE tools work together to form a bridge between the tools (e.g., an analy-

sis and design tool that is coupled with a code generator). Using this approach, the

synergy between the tools can produce end products that would be difficult to cre-

ate using either tool separately. Single-source integration occurs when a single CASE

tools vendor integrates a number of different tools and sells them as a package.

Although this approach is quite effective, the closed architecture of most single-source

environments precludes easy addition of tools from other vendors. 
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At the high end of the integration spectrum is the integrated project support envi-

ronment (IPSE). Standards for each of the building blocks described previously have

been created. CASE tool vendors use IPSE standards to build tools that will be com-

patible with the IPSE and therefore compatible with one another.

31.3 A TAXONOMY OF CASE TOOLS

A number of risks are inherent whenever we attempt to categorize CASE tools. There

is a subtle implication that to create an effective CASE environment, one must imple-

ment all categories of tools—this is simply not true. Confusion (or antagonism) can

be created by placing a specific tool within one category when others might believe

it belongs in another category. Some readers may feel that an entire category has

been omitted—thereby eliminating an entire set of tools for inclusion in the overall

CASE environment. In addition, simple categorization tends to be flat—that is, we do

not show the hierarchical interaction of tools or the relationships among them. But

even with these risks, it is necessary to create a taxonomy of CASE tools—to better

understand the breadth of CASE and to better appreciate where such tools can be

applied in the software engineering process.

CASE tools can be classified by function, by their role as instruments for managers

or technical people, by their use in the various steps of the software engineering

process, by the environment architecture (hardware and software) that supports them,

or even by their origin or cost [QED89]. The taxonomy presented here uses function

as a primary criterion.

Individual tool
(point solution)

Tool bridges &
partnerships

Data exchange Single source

IPSE

FIGURE 31.2
Integration
options

CASE Tools
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Business process engineering tools. By modeling the strategic information require-

ments of an organization, business process engineering tools provide a "meta-model"

from which specific information systems are derived. Rather than focusing on the

requirements of a specific application, business information is modeled as it moves

between various organizational entities within a company. The primary objective for

tools in this category is to represent business data objects, their relationships, and

how these data objects flow between different business areas within a company.

Process modeling and management tools. If an organization works to improve

a business (or software) process, it must first understand it. Process modeling tools

(also called process technology tools) are used to represent the key elements of a

process so that it can be better understood. Such tools can also provide links to process

descriptions that help those involved in the process to understand the work tasks that

are required to perform it. Process management tools provide links to other tools that

provide support to defined process activities.  

Project planning tools. Tools in this category focus on two primary areas: soft-

ware project effort and cost estimation and project scheduling. Estimation tools com-

pute estimated effort, project duration, and recommended number of people for a

project. Project scheduling tools enable the manager to define all project tasks (the

work breakdown structure), create a task network (usually using graphical input),

represent task interdependencies, and model the amount of parallelism possible for

the project. 

Risk analysis tools. Identifying potential risks and developing a plan to mitigate,

monitor, and manage them is of paramount importance in large projects. Risk analy-

sis tools enable a project manager to build a risk table by providing detailed guid-

ance in the identification and analysis of risks.

Project management tools. The project schedule and project plan must be tracked

and monitored on a continuing basis. In addition, a manager should use tools to col-

lect metrics that will ultimately provide an indication of software product quality.

Tools in the category are often extensions to project planning tools. 

Requirements tracing tools. When large systems are developed, things "fall into

the cracks." That is, the delivered system does not fully meet customer specified

requirements. The objective of requirements tracing tools is to provide a systematic

approach to the isolation of requirements, beginning with the customer request for

proposal or specification. The typical requirements tracing tool combines human-

interactive text evaluation with a database management system that stores and cat-

egorizes each system requirement that is "parsed" from the original RFP or

specification. 

Metrics and management tools. Software metrics improve a manager's ability to

control and coordinate the software engineering process and a practitioner's ability
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to improve the quality of the software that is produced. Today's metrics or measure-

ment tools focus on process and product characteristics. Management-oriented tools

capture project specific metrics (e.g., LOC/person-month, defects per function point)

that provide an overall indication of productivity or quality. Technically oriented tools

determine technical metrics that provide greater insight into the quality of design or

code. 

Documentation tools. Document production and desktop publishing tools sup-

port nearly every aspect of software engineering and represent a substantial "lever-

age" opportunity for all software developers. Most software development organizations

spend a substantial amount of time developing documents, and in many cases the

documentation process itself is quite inefficient. It is not unusual for a software devel-

opment organization to spend as much as 20 or 30 percent of all software develop-

ment effort on documentation. For this reason, documentation tools provide an

important opportunity to improve productivity.

System software tools. CASE is a workstation technology. Therefore, the CASE

environment must accommodate high-quality network system software, object man-

agement services, distributed component support, electronic mail, bulletin boards,

and other communication capabilities. 

Quality assurance tools. The majority of CASE tools that claim to focus on qual-

ity assurance are actually metrics tools that audit source code to determine compli-

ance with language standards. Other tools extract technical metrics (Chapters 19 and

24) in an effort to project the quality of the software that is being built.

Database management tools. Database management software serves as a foun-

dation for the establishment of a CASE database (repository) that we have called the

project database. Given the emphasis on configuration objects, database management

tools for CASE are evolving from relational database management systems to object-

oriented database management systems.

Software configuration management tools. Software configuration manage-

ment lies at the kernel of every CASE environment. Tools can assist in all five major

SCM tasks—identification, version control, change control, auditing, and status

accounting. The CASE database provides a mechanism for identifying each config-

uration item and relating it to other items; the change control process can be imple-

mented with the aid of specialized tools; easy access to individual configuration

items facilitates the auditing process; and CASE communication tools can greatly

improve status accounting (reporting information about changes to all who need to

know).

Analysis and design tools. Analysis and design tools enable a software engineer

to create models of the system to be built. The models contain a representation of

data, function, and behavior (at the analysis level) and characterizations of data, archi-
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tectural, component-level, and interface design.1 By performing consistency and valid-

ity checking on the models, analysis and design tools provide a software engineer

with some degree of insight into the analysis representation and help to eliminate

errors before they propagate into the design, or worse, into implementation itself.

PRO/SIM tools. PRO/SIM (prototyping and simulation) tools [NIC90] provide the

software engineer with the ability to predict the behavior of a real-time system prior

to the time that it is built. In addition, these tools enable the software engineer to

develop mock-ups of the real-time system, allowing the customer to gain insight into

the function, operation and response prior to actual implementation. 

Interface design and development tools. Interface design and development tools

are actually a tool kit of software components (classes) such as menus, buttons, win-

dow structures, icons, scrolling mechanisms, device drivers, and so forth. However,

these tool kits are being replaced by interface prototyping tools that enable rapid on-

screen creation of sophisticated user interfaces that conform to the interfacing stan-

dard that has been adopted for the software.

Prototyping tools. A variety of different prototyping tools can be used. Screen

painters enable a software engineer to define screen layout rapidly for interactive

applications. More sophisticated CASE prototyping tools enable the creation of a data

design, coupled with both screen and report layouts. Many analysis and design tools

have extensions that provide a prototyping option. PRO/SIM tools generate skeleton

Ada and C source code for engineering (real-time) applications. Finally, a variety of

fourth generation tools have prototyping features.

Programming tools. The programming tools category encompasses the compil-

ers, editors, and debuggers that are available to support most conventional pro-

gramming languages. In addition, object-oriented programming environments, fourth

generation languages, graphical programming environments, application generators,

and database query languages also reside within this category. 

Web development tools. The activities associated with Web engineering are sup-

ported by a variety of tools for WebApp development. These include tools that assist

in the generation of text, graphics, forms, scripts, applets, and other elements of a

Web page. 

Integration and testing tools. In their directory of software testing tools, Software

Quality Engineering [SQE95] defines the following testing tools categories:

• Data acquisition—tools that acquire data to be used during testing.

• Static measurement—tools that analyze source code without executing test

cases.
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• Dynamic measurement—tools that analyze source code during execution.

• Simulation—tools that simulate function of hardware or other externals.

• Test management—tools that assist in the planning, development, and control

of testing.

• Cross-functional tools—tools that cross the bounds of the preceding categories.

It should be noted that many testing tools have features that span two or more of the

categories.

Static analysis tools. Static testing tools assist the software engineer in deriving

test cases. Three different types of static testing tools are used in the industry: code-

based testing tools, specialized testing languages, and requirements-based testing

tools. Code-based testing tools accept source code (or PDL) as input and perform a

number of analyses that result in the generation of test cases. Specialized testing lan-

guages (e.g., ATLAS) enable a software engineer to write detailed test specifications

that describe each test case and the logistics for its execution. Requirements-based

testing tools isolate specific user requirements and suggest test cases (or classes of

tests) that will exercise the requirements. 

Dynamic analysis tools. Dynamic testing tools interact with an executing pro-

gram, checking path coverage, testing assertions about the value of specific variables,

and otherwise instrumenting the execution flow of the program. Dynamic tools can

be either intrusive or nonintrusive. An intrusive tool changes the software to be tested

by inserting probes (extra instructions) that perform the activities just mentioned.

Nonintrusive testing tools use a separate hardware processor that runs in parallel with

the processor containing the program that is being tested. 

Test management tools. Test management tools are used to control and coordi-

nate software testing for each of the major testing steps. Tools in this category man-

age and coordinate regression testing, perform comparisons that ascertain differences

between actual and expected output, and conduct batch testing of programs with

interactive human/computer interfaces. In addition to the functions noted, many test

management tools also serve as generic test drivers. A test driver reads one or more

test cases from a testing file, formats the test data to conform to the needs of the soft-

ware under test, and then invokes the software to be tested.

Client/server testing tools. The c/s environment demands specialized testing

tools that exercise the graphical user interface and the network communications

requirements for client and server. 

Reengineering tools. Tools for legacy software address a set of maintenance activ-

ities that currently absorb a significant percentage of all software-related effort. The

reengineering tools category can be subdivided into the following functions:
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• Reverse engineering to specification tools take source code as input and gener-

ate graphical structured analysis and design models, where-used lists, and

other design information.

• Code restructuring and analysis tools analyze program syntax, generate a con-

trol flow graph, and automatically generate a structured program.

• On-line system reengineering tools are used to modify on-line database sys-

tems (e.g., convert IDMS or DB2 files into entity-relationship format).

These tools are limited to specific programming languages (although most major 

languages are addressed) and require some degree of interaction with the software

engineer.

31.4 INTEGRATED CASE ENVIRONMENTS

Although benefits can be derived from individual CASE tools that address sepa-

rate software engineering activities, the real power of CASE can be achieved only

through integration. The benefits of integrated CASE (I-CASE) include (1) smooth

transfer of information (models, programs, documents, data) from one tool to

another and one software engineering step to the next; (2) a reduction in the effort

required to perform umbrella activities such as software configuration manage-

ment, quality assurance, and document production; (3) an increase in project con-

trol that is achieved through better planning, monitoring, and communication; and

(4) improved coordination among staff members who are working on a large soft-

ware project.

But I-CASE also poses significant challenges. Integration demands consistent rep-

resentations of software engineering information, standardized interfaces between

tools, a homogeneous mechanism for communication between the software engi-

neer and each tool, and an effective approach that will enable I-CASE to move among

various hardware platforms and operating systems. Comprehensive I-CASE envi-

ronments have emerged more slowly than originally expected. However, integrated

environments do exist and are becoming more powerful as the years pass.

The term integration implies both combination and closure. I-CASE combines a vari-

ety of different tools and a spectrum of information in a way that enables closure of

communication among tools, between people, and across the software process. Tools

are integrated so that software engineering information is available to each tool that

needs it; usage is integrated so that a common look and feel is provided for all tools;

a development philosophy is integrated, implying a standardized software engineer-

ing approach that applies modern practice and proven methods.

To define integration in the context of the software engineering process, it is nec-

essary to establish a set of requirements [FOR89a] for I-CASE: An integrated CASE

environment should
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• Provide a mechanism for sharing software engineering information among

all tools contained in the environment.

• Enable a change to one item of information to be tracked to other related

information items.

• Provide version control and overall configuration management for all soft-

ware engineering information.

• Allow direct, nonsequential access to any tool contained in the environment.

• Establish automated support for the software process model that has been

chosen, integrating CASE tools and software configuration items (SCIs) into a

standard work breakdown structure.

• Enable the users of each tool to experience a consistent look and feel at the

human/computer interface.

• Support communication among software engineers.

• Collect both management and technical metrics that can be used to improve

the process and the product.

To achieve these requirements, each of the building blocks of a CASE architecture

(Figure 31.1) must fit together in a seamless fashion. The foundation building blocks—

environment architecture, hardware platform, and operating system—must be "joined"

through a set of portability services to an integration framework that achieves these

requirements.

31.5 THE INTEGRATION ARCHITECTURE

A software engineering team uses CASE tools, corresponding methods, and a process

framework to create a pool of software engineering information. The integration

framework facilitates transfer of information into and out of the pool. To accomplish

this, the following architectural components must exist: a database must be created

(to store the information); an object management system must be built (to manage

changes to the information); a tools control mechanism must be constructed (to coor-

dinate the use of CASE tools); a user interface must provide a consistent pathway

between actions made by the user and the tools contained in the environment. Most

models (e.g.,  [FOR90], [SHA95]) of the integration framework represent these com-

ponents as layers. A simple model of the framework, depicting only the components

just noted is shown in Figure 31.3. 

The user interface layer (Figure 31.3) incorporates a standardized interface tool kit

with a common presentation protocol. The interface tool kit contains software for

human/computer interface management and a library of display objects. Both pro-

vide a consistent mechanism for communication between the interface and individ-

ual CASE tools. The presentation protocol is the set of guidelines that gives all CASE
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tools the same look and feel. Screen layout conventions, menu names and organi-

zation, icons, object names, the use of the keyboard and mouse, and the mechanism

for tools access are all defined as part of the presentation protocol.

The tools layer incorporates a set of tools management services with the CASE

tools themselves. Tools management services (TMS) control the behavior of tools within

the environment. If multitasking is used during the execution of one or more tools,

TMS performs multitask synchronization and communication, coordinates the flow

of information from the repository and object management system into the tools,

accomplishes security and auditing functions, and collects metrics on tool usage.  

The object management layer (OML) performs the configuration management func-

tions described in Chapter 9. In essence, software in this layer of the framework archi-

tecture provides the mechanism for tools integration. Every CASE tool is "plugged

into" the object management layer. Working in conjunction with the CASE reposi-

tory, the OML provides integration services—a set of standard modules that couple

tools with the repository. In addition, the OML provides configuration management

services by enabling the identification of all configuration objects, performing version

control, and providing support for change control, audits, and status accounting.

The shared repository layer is the CASE database and the access control functions

that enable the object management layer to interact with the database. Data inte-

gration is achieved by the object management and shared repository layers and is

discussed in greater detail later in this chapter.

835

CASE
tool

User interface layer
Interface tool kit
Presentation protocol

Tools management services

Object management layer
Integration services
Configuration management services

Shared repository layer
CASE database
Access control functions

Tools layer

FIGURE 31.3
Architectural
model for the
integration
framework

WebRef
Resources for CASE tool
integration and integrated
software engineering
environments can be
obtained at 
see.cs.flinders.edu.
au/seweb/ti/



PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING836

31.6 THE CASE REPOSITORY

Webster's Dictionary defines the word repository as "any thing or person thought of as

a center of accumulation or storage." During the early history of software develop-

ment, the repository was indeed a person—the programmer who had to remember

the location of all information relevant to a software project, who had to recall infor-

mation that was never written down and reconstruct information that had been lost.

Sadly, using a person as "the center for accumulation and storage" (although it con-

forms to Webster's definition), does not work very well. Today, the repository is a

"thing"—a database that acts as the center for both accumulation and storage of soft-

ware engineering information. The role of the person (the software engineer) is to

interact with the repository using CASE tools that are integrated with it.

In this book, a number of different terms have been used to refer to the storage

place for software engineering information: CASE database, project database, inte-

grated project support environment (IPSE) database, requirements dictionary (a limited

database), and repository. Although there are subtle differences between some of

these terms, all refer to the center for accumulation and storage.

31.6.1 The Role of the Repository in I-CASE

The repository for an I-CASE environment is the set of mechanisms and data struc-

tures that achieve data/tool and data/data integration. It provides the obvious func-

tions of a database management system, but in addition, the repository performs or

precipitates the following functions [FOR89b]:

• Data integrity includes functions to validate entries to the repository, ensure

consistency among related objects, and automatically perform "cascading"

modifications when a change to one object demands some change to objects

related to it.

• Information sharing provides a mechanism for sharing information among

multiple developers and between multiple tools, manages and controls multi-

user access to data and locks or unlocks objects so that changes are not

inadvertently overlaid on one another.

• Data/tool integration establishes a data model that can be accessed by all

tools in the I-CASE environment, controls access to the data, and performs

appropriate configuration management functions.

• Data/data integration is the database management system that relates data

objects so that other functions can be achieved.

• Methodology enforcement defines an entity-relationship model stored in the

repository that implies a specific paradigm for software engineering; at a

minimum, the relationships and objects define a set of steps that must be

conducted to build the contents of the repository.

What
functions 

are performed by
the services that
are coupled with
the CASE
repository?

?
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• Document standardization is the definition of objects in the database that

leads directly to a standard approach for the creation of software engineering

documents.

To achieve these functions, the repository is defined in terms of a meta-model. The

meta-model determines how information is stored in the repository, how data can be

accessed by tools and viewed by software engineers, how well data security and

integrity can be maintained, and how easily the existing model can be extended to

accommodate new needs [WEL89].

The meta-model is the template into which software engineering information is

placed. A detailed discussion of these models is beyond the scope of this book. For

further information, the interested reader should see [WEL89], [SHA95], and [GRI95].

31.6.2 Features and Content

The features and content of the repository are best understood by looking at it from

two perspectives: what is to be stored in the repository and what specific services are

provided by the repository. In general, the types of things to be stored in the reposi-

tory include

• The problem to be solved.

• Information about the problem domain.

• The system solution as it emerges.

• Rules and instructions pertaining to the software process (methodology)

being followed.

• The project plan, resources, and history.

• Information about the organizational context.

A detailed list of types of representations, documents and deliverables that are

stored in the CASE repository is included in Table 31.1.

A robust CASE repository provides two different classes of services: (1) the same

types of services that might be expected from any sophisticated database manage-

ment system and (2) services that are specific to the CASE environment.

Many repository requirements are the same as those of typical applications built

on a commercial database management system (DBMS). In fact, most of today's CASE

repositories employ a DBMS (usually relational or object oriented) as the basic data

management technology. The DBMS features that support the management of soft-

ware development information include

• Nonredundant data storage. Each object is stored only once, but is accessible

by all CASE tools that need it.

• High-level access. A common data access mechanism is implemented so data

handling facilities do not have to be duplicated in each CASE tool.
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• Data independence. CASE tools and the target applications are isolated from

physical storage so they are not affected when the hardware configuration is

changed.

• Transaction control. The repository implements record locking, two-stage

commits, transaction logging, and recovery procedures to maintain the

integrity of the data when there are concurrent users.

• Security. The repository provides mechanisms to control who can view and

modify information contained within it.

• Ad hoc data queries and reports. The repository allows direct access to its

contents through a convenient user interface such as SQL or a forms-

oriented "browser," enabling user-defined analysis beyond the standard

reports provided with the CASE tool set.

• Openness. Repositories usually provide a simple import/export mechanism

to enable bulk loading or transfer.

• Multiuser support. A robust repository must permit multiple developers to

work on an application at the same time. It must manage concurrent access

to the database by multiple tools and users with access arbitration and lock-

TABLE 31.1 Case Repository Contents [FOR89B]

Enterprise information Construction
Organizational structure Source code; Object code
Business area analyses System build instructions
Business functions Binary images
Business rules Configuration dependencies
Process models (scenarios) Change information
Information architecture

Validation and verification
Application design Test plan; Test data cases

Methodology rules Regression test scripts
Graphical representations Test results
System diagrams Statistical analyses
Naming standards Software quality metrics
Referential integrity rules
Data structures Project management information
Process definitions Project plans
Class definitions Work breakdown structure
Menu trees Estimates; Schedules
Performance criteria Resource loading; Problem reports
Timing constraints Change requests; Status reports
Screen definitions Audit information
Report definitions
Logic definitions System documentation
Behavioral logic Requirements documents
Algorithms External/internal designs
Transformation rules User manuals
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ing at the file or record level. For environments based on networking, multi-

user support also implies that the repository can interface with common net-

working protocols (object request brokers) and facilities.

The CASE environment also places special demands on the repository that go

beyond what is directly available in a commercial DBMS. The special features of CASE

repositories include

• Storage of sophisticated data structures. The repository must accommodate

complex data types such as diagrams, documents, and files, as well as simple

data elements.  A repository also includes an information model (or meta-

model) describing the structure, relationships and semantics of the data

stored in it. The meta-model must be extensible so that new representations

and unique organizational information can be accommodated. The reposi-

tory not only stores models and descriptions of systems under development,

but also associated meta-data (i.e., additional information describing the

software engineering data itself, such as when a particular design compo-

nent was created, what its current status is, and what other components it

depends upon).

• Integrity enforcement. The repository information model also contains rules,

or policies, describing valid business rules and other constraints and require-

ments on information being entered into the repository (directly or via a

CASE tool). A facility called a trigger may be employed to activate the rules

associated with an object whenever it is modified, making it possible to

check the validity of design models in real time.

• Semantics-rich tool interface. The repository information model (meta-model)

contains semantics that enable a variety of tools to interpret the meaning of

the data stored in the repository. For example, a data flow diagram created by

a CASE tool is stored in the repository in a form based on the information

model and independent of any internal representations used by the tool itself.

Another CASE tool can then interpret the contents of the repository and use

the information as needed for its task. Thus, the semantics stored in the

repository permit data sharing among a variety of tools, as opposed to spe-

cific tool-to-tool conversions or "bridges."

• Process/project management. A repository contains information not only

about the software application itself, but also about the characteristics of

each particular project and the organization's general process for software

development (phases, tasks, and deliverables). This opens up possibilities for

automated coordination of technical development activity with the project

management activity. For example, updating the status of project tasks could

be done automatically or as a by-product of using the CASE tools. Status

updating can be made very easy for developers to perform without having to
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leave the normal development environment. Task assignment and queries

can also be handled by e-mail. Problem reports, maintenance tasks, change

authorization, and repair status can be coordinated and monitored via tools

accessing the repository.

The following repository features are all encompassed by software configuration

management (Chapter 9). They are re-examined here to emphasize their interrela-

tionship to I-CASE environments:

Versioning. As a project progresses, many versions of individual work prod-

ucts will be created. The repository must be able to save all of these versions

to enable effective management of product releases and to permit developers

to go back to previous versions during testing and debugging.

The CASE repository must be able to control a wide variety of object

types, including text, graphics, bit maps, complex documents, and unique

objects like screen and report definitions, object files, test data, and results. A

mature repository tracks versions of objects with arbitrary levels of granular-

ity, for example, a single data definition or a cluster of modules can be

tracked.

To support parallel development, the version control mechanism should

permit multiple derivatives (variants) from a single predecessor. Thus, a

developer could be working on two possible solutions to a design problem at

the same time, both generated from the same starting point.

Dependency tracking and change management. The repository man-

ages a wide variety of relationships among the data elements stored in it.

These include relationships between enterprise entities and processes,

among the parts of an application design, between design components and

the enterprise information architecture, between design elements and deliv-

erables, and so on. Some of these relationships are merely associations, and

some are dependencies or mandatory relationships. Maintaining these rela-

tionships among development objects is called link management.

The ability to keep track of all of these relationships is crucial to the

integrity of the information stored in the repository and to the generation of

deliverables based on it, and it is one of the most important contributions of

the repository concept to the improvement of the software development

process. Among the many functions that link management supports is the

ability to identify and assess the effects of change. As designs evolve to meet

new requirements, the ability to identify all objects that might be affected

enables more accurate assessment of cost, downtime, and degree of diffi-

culty.  It also helps prevent unexpected side effects that would otherwise lead

to defects and system failures.

Link management helps the repository mechanism ensure that design

information is correct by keeping the various portions of a design synchro-

The repository’s ability
to track relationships
among configuration
objects is one of its
most important
features. The impact of
change can be tracked
if this feature is
available.
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nized. For example, if a data flow diagram is modified, the repository can

detect whether related data dictionaries, screen definitions, and code mod-

ules also require modification and can bring affected components to the

developer's attention.

Requirements tracing. This special function depends on link management

and provides the ability to track all the design components and deliverables

that result from a specific requirement specification (forward tracking). In

addition, it provides the ability to identify which requirement generated any

given deliverable (backward tracking). 

Configuration management. A configuration management facility works

closely with the link management and versioning facilities to keep track of a

series of configurations representing specific project milestones or production

releases. Version management provides the needed versions, and link man-

agement keeps track of interdependencies. 

Audit trails. An audit trail establishes additional information about when,

why, and by whom changes are made. Information about the source of

changes can be entered as attributes of specific objects in the repository. A

repository trigger mechanism is helpful for prompting the developer or the

tool that is being used to initiate entry of audit information (such as the rea-

son for a change) whenever a design element is modified.

31.7 SUMMARY

Computer-aided software engineering tools span every activity in the software process

and those umbrella activities that are applied throughout the process. CASE com-

bines a set of building blocks that begin at the hardware and operating system soft-

ware level and end with individual tools.

In this chapter, we consider a taxonomy of CASE tools. Categories encompass both

management and technical activities that span most software application areas. Each

category of tool is considered a "point solution." 

The I-CASE environment combines integration mechanisms for data, tools, and

human/computer interaction. Data integration can be achieved through direct

exchange of information, through common file structures, by data sharing or inter-

operability, or through the use of a full I-CASE repository. Tools integration can be

custom designed by vendors who work together or achieved through management

software provided as part of the repository. Human/computer integration is achieved

through interface standards that have become commonplace throughout the indus-

try. An integration architecture is designed to facilitate the integration of users with

tools, tools with tools, tools with data, and data with data.

The CASE repository has been referred to as a "software bus." Information 

moves through it, passing from tool to tool as software engineering progresses. But
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the repository is much more than a "bus." It is also a storage place that combines

sophisticated mechanisms for integrating CASE tools and thereby improving the

process through which software is developed. The repository is a relational or object-

oriented database that is "the center of accumulation and storage" for software engi-

neering information. 
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PROBLEMS AND POINTS TO PONDER

31.1. Make a list of all software development tools that you use. Organize them

according to the taxonomy presented in this chapter.

31.2. Using the ideas introduced in Chapters 13 through 16, how would you sug-

gest that portability services be built?

31.3. Build a paper prototype for a project management tool that encompasses the

categories noted in Section 31.3. Use Part Two of this book for additional guidance.

31.4. Do some research on object-oriented database management systems. Discuss

why OODMS would be ideal for SCM tools.

31.5. Gather product information on at least three CASE tools in a category speci-

fied by your instructor. Develop a matrix that compares features.

31.6. Are there situations in which dynamic testing tools are "the only way to go"?

If so, what are they?
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31.7. Discuss other human activities in which the integration of a set of tools has

provided substantially more benefit than the use of each of the tools individually. Do

not use examples from computing.

31.8. Describe what is meant by data/tool integration in your own words.

31.9. In a number of places in this chapter, the terms meta-model and meta-data

are used. Describe what these terms mean in your own words.

31.10. Can you think of additional configuration items that might be included in the

repository contents shown in Table 31.1? Make a list.

FURTHER READINGS AND INFORMATION SOURCES

A number of books on CASE were published in the 1980s and early 1990s in an effort

to capitalize on the high degree of interest in the industry at that time. Subsequently,

few books on the subject have appeared. Among the early offerings that still have

value are

Bergin, T. et al., Computer-Aided Software Engineering: Issues and Trends for the 1990s and

Beyond, Idea Group Publishing, 1993.

Braithwaite, K.S., Application Development Using CASE Tools, Academic Press, 1990.

Brown, A.W.,  D.J. Carney, and E.J. Morris, Principles of CASE Tool Integration, Oxford Univer-

sity Press, 1994. 
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Lewis, T.G., Computer-Aided Software Engineering, Van Nostrand-Reinhold, 1990.

Mylls, R., Information Engineering: CASE Practices and Techniques, Wiley, 1993. 

An anthology by Chikofsky (Computer-Aided Software Engineering, 2nd ed., IEEE

Computer Society, 1992) contains a useful collection of early papers on CASE and

software development environments. Muller and his colleagues (Computer-Aided Soft-

ware Engineering, Kluwer Academic Publishers, 1996) have edited a collection of that

describes CASE research in the mid-1990s. The best sources of current information

on CASE tools are the Internet, technical periodicals, and industry newsletters.

IEEE Standard 1209 (Evaluation and Selection of CASE Tools) presents a set of guide-

lines for evaluating CASE tools for “project management processes, pre-development

processes, development processes, post-development processes, and integral

processes.” A detailed report by Wallnau and Feiler (Tool Integration and Environment

Architectures, Software Engineering Institute, CMU/SEI-91-TR-11, May 1991), although

dated, remains one of the best discussions of CASE environments readily available.

A wide variety of information sources on CASE is available on the Internet. An up-

to-date list of World Wide Web references can be found at the SEPA Web site:

http://www.mhhe.com/engcs/compsci/pressman/resources/CASE.mhtml 
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In the 31 chapters that have preceded this one, we explored a process for
software engineering. We presented both management procedures and tech-
nical methods, basic principles and specialized techniques, people-oriented

activities and tasks that are amenable to automation, paper and pencil nota-
tion and CASE tools. We argued that measurement, discipline, and an overrid-
ing focus on quality will result in software that meets the customer's needs,
software that is reliable, software that is maintainable, software that is better.
Yet, we have never promised that software engineering is a panacea.

As we begin our journey through a new century, software and systems tech-
nologies remain a challenge for every software professional and every com-
pany that builds computer-based systems. Although he wrote these words more
than a decade ago, Max Hopper [HOP90] describes the current state of affairs:

Because changes in information technology are becoming so rapid and unforgiving,
and the consequences of falling behind are so irreversible, companies will either
master the technology or die . . . Think of it as a technology treadmill. Companies
will have to run harder and harder just to stay in place.

Changes in software engineering technology are indeed "rapid and unforgiv-
ing," but at the same time progress is often quite slow. By the time a decision

32 THE ROAD AHEAD

What is it? The future is never

easy to predict—pundits, talking

heads, and industry experts not-

withstanding. The road ahead is littered with the

carcasses of exciting new technologies that never

really made it (despite the hype) and is often

shaped by more modest technologies that some-

how modify the direction and width of the thor-

oughfare. Therefore, we won’t try to predict the

future. Rather we’ll discuss some of the issues that

you’ll need to consider to understand how soft-

ware and software engineering will change in the

years ahead. 

Who does it? Everyone!

Why is it important? Why did ancient kings hire

soothsayers? Why do major multinational corpo-

rations hire consulting firms and think tanks to 

prepare forecasts? Why does a substantial 

percentage of the public read horoscopes? We

want to know what’s coming so we can ready

ourselves.

What are the steps? There is no formula for predict-

ing the road ahead. We attempt to do this by col-

lecting data, organizing it to provide useful

information, examining subtle associations to

extract knowledge, and from this knowledge, sug-

gest probable occurrences that predict how things

will be at some future time. 

What is the work product? A view of the near-term

future that may or may not be correct.

Q U I C K
L O O K
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is made to adopt a new method (or a new tool), conduct the training necessary to
understand its application, and introduce the technology into the software develop-
ment culture, something newer (and even better) has come along, and the process
begins anew.

In this chapter, we examine the road ahead. Our intent is not to explore every area
of research the holds promise. Nor is it to gaze into a "crystal ball" and prognosticate
about the future. Rather, we explore the scope of change and the way in which change
itself will affect the software engineering process in the years ahead.

32.1 THE IMPORTANCE OF SOFTWARE—REVISITED

The importance of computer software can be stated in many ways. In Chapter 1, soft-

ware was characterized as a differentiator. The function delivered by software differ-

entiates products, systems, and services and provides competitive advantage in the

marketplace. But software is more that a differentiator. The programs, documents,

and data that are software help to generate the most important commodity that any

individual, business, or government can acquire—information. Pressman and Her-

ron [PRE91] describe software in the following way:

Computer software is one of only a few key technologies that will have a significant

impact on nearly every aspect of modern society . . . It is a mechanism for automating busi-

ness, industry, and government, a medium for transferring new technology, a method of

capturing valuable expertise for use by others, a means for differentiating one company's

products from its competitors, and a window into a corporation's collective knowledge.

Software is pivotal to nearly every aspect of business. But in many ways, software is also

a hidden technology. We encounter software (often without realizing it) when we travel to

work, make any retail purchase, stop at the bank, make a phone call, visit the doctor, or

perform any of the hundreds of day-to-day activities that reflect modern life.

Software is pervasive, and yet, many people in positions of responsibility have little or

no real understanding of what it really is, how it's built, or what it means to the institutions

that they (and it) control. More importantly, they have little appreciation of the dangers and

opportunities that software offers.

The pervasiveness of software leads us to a simple conclusion: Whenever a tech-

nology has a broad impact—an impact that can save lives or endanger them, build

How do I ensure that I’ve done it
right? Predicting the road ahead

is an art, not a science. In fact, it’s

quite rare when a serious prediction about the

future is absolutely right or unequivocally wrong

(with the exception, thankfully, of predictions of

the end of the world). We look for trends and try

to extrapolate them ahead in time. We can assess

the correctness of the extrapolation only as time

passes.

Q U I C K
L O O K
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businesses or destroy them, inform government leaders or mislead them—it must be

"handled with care." 

32.2 THE SCOPE OF CHANGE

The changes in computing over the past 50 years have been driven by advances in

the "hard sciences"—physics, chemistry, materials science, engineering. During the

next few decades, revolutionary advances in computing may well be driven by "soft

sciences"—human psychology, biology, neurophysiology, sociology, philosophy, and

others. The gestation period for the computing technologies that may be derived from

these disciplines is very difficult to predict. 

The influence of the soft sciences may help mold the direction of computing research

in the hard sciences. For example, the design of "future computers" may be guided

more by an understanding of brain physiology than an understanding of conventional

microelectronics.

The changes that will affect software engineering over the next decade will be

influenced from four simultaneous sources: (1) the people who do the work, (2) the

process that they apply, (3) the nature of information, and (4) the underlying com-

puting technology. In the sections that follow, each of these components—people,

the process, information, and the technology—is examined in more detail.

32.3 PEOPLE AND THE WAY THEY BUILD SYSTEMS

The software required for high-technology systems becomes more and more com-

plex with each passing year, and the size of resultant programs increases propor-

tionally. The rapid growth in the size of the "average" program would present us with

few problems if it wasn't for one simple fact: As program size increases, the number

of people who must work on the program must also increase. 

Experience indicates that, as the number of people on a software project team increases,

the overall productivity of the group may suffer. One way around this problem is to cre-

ate a number of software engineering teams, thereby compartmentalizing people into

individual working groups. However, as the number of software engineering teams grows,

communication between them becomes as difficult and time consuming as communi-

cation between individuals. Worse, communication (between individuals or teams) tends

to be inefficient—that is, too much time is spent transferring too little information con-

tent, and all too often, important information "falls into the cracks."

If the software engineering community is to deal effectively with the communica-

tion dilemma, the road ahead for software engineers must include radical changes

in the way individuals and teams communicate with one another. E-mail, bulletin

boards, and centralized video conferencing are now commonplace as mechanisms

for connecting a large number of people to an information network. The importance
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of these tools in the context of software engineering work cannot be overempha-

sized. With an effective electronic mail or bulletin board system, the problem encoun-

tered by a software engineer in New York City may be solved with the help of a

colleague in Tokyo. In a very real sense, bulletin boards and specialized newsgroups

become knowledge repositories that allow the collective wisdom of a large group of

technologists to be brought to bear on a technical problem or management issue.

Video personalizes the communication. At its best, it enables colleagues at dif-

ferent locations (or on different continents) to “meet” on a regular basis. But video

also provides another benefit. It can be used as a repository for knowledge about the

software and to train newcomers on a project.

The evolution of intelligent agents will also change the work patterns of a soft-

ware engineer by dramatically extending the capabilities of software tools. Intelli-

gent agents will enhance the engineer's ability by cross-checking engineering work

products using domain-specific knowledge, performing clerical tasks, doing directed

research, and coordinating human-to-human communication.

Finally, the acquisition of knowledge is changing in profound ways. On the Inter-

net, a software engineer can subscribe to newsgroups that focus on technology areas

of immediate concern. A question posted within a newsgroup precipitates answers

from other interested parties around the globe. The World Wide Web provides a soft-

ware engineer with the world’s largest library of research papers and reports, tutori-

als, commentary, and references in software engineering.1

If past history is any indication, it is fair to say that people themselves will not

change. However, the ways in which they communicate, the environment in which

they work, the way in which they acquire knowledge, the methods and tools that they

use, the discipline that they apply, and therefore, the overall culture for software devel-

opment will change in significant and even profound ways. 

32.4 THE "NEW" SOFTWARE ENGINEERING PROCESS

It is reasonable to characterize the first two decades of software engineering prac-

tice as the era of "linear thinking." Fostered by the classic life cycle model, software

engineering was approached as a linear activity in which a series of sequential steps

could be applied in an effort to solve complex problems. Yet, linear approaches to

software development run counter to the way in which most systems are actually

built. In reality, complex systems evolve iteratively, even incrementally. It is for this

reason that a large segment of the software engineering community is moving toward

evolutionary models for software development.

Evolutionary process models recognize that uncertainty dominates most projects,

that timelines are often impossibly short, and that iteration provides the ability to

1 The SEPA Web site can provide you with electronic links to most important subjects presented in
this book.

“Future shock [is]
the shattering stress
and disorientation
that we induce in
individuals by
subjecting them to
too much change in
too short a time.”
Alvin Toffler 
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deliver a partial solution, even when a complete product is not possible within the

time allotted. Evolutionary models emphasize the need for incremental work prod-

ucts, risk analysis, planning and then plan revision, and customer feedback.

What activities must populate the evolutionary process? Over the past decade, the

Capability Maturity Model developed by the Software Engineering Institute [PAU93]

has had a substantial impact on efforts to improve software engineering practices.

The CMM has generated much debate (e.g., [BOL91], [GIL96]), and yet, it provides a

good indicator of the attributes that must exist when solid software engineering is

practiced.

Object technologies, coupled with component-based software engineering (Chap-

ter 27), are a natural outgrowth of the trend toward evolutionary process models.

Both will have a profound impact on software development productivity and prod-

uct quality. Component reuse provides immediate and compelling benefits. When

reuse is coupled with CASE tools for application prototyping, program increments

can be built far more rapidly than through the use of conventional approaches. Pro-

totyping draws the customer into the process. Therefore, it is likely that customers

and users will become much more involved in the development of software. This, in

turn, may lead to higher end-user satisfaction and better software quality overall.

The rapid growth in Web-based applications (WebApps) is changing both the soft-

ware engineering process and its participants. Again, we encounter an incremental,

evolutionary paradigm. But in the case of WebApps, immediacy, security, and aes-

thetics become dominant concerns. A Web engineering team melds technologists

with content specialists (e.g., artists, musicians, videographers) to build an informa-

tion source for a community of users that is both large and unpredictable. The soft-

ware that has grown out of Web engineering work has already resulted in radical

economic and cultural change. Although the basic concepts and principles discussed

in this book are applicable, the software engineering process must adapt to accom-

modate the Web.

32.5 NEW MODES FOR REPRESENTING INFORMATION

Over the past two decades, a subtle transition has occurred in the terminology that

is used to describe software development work performed for the business commu-

nity. Thirty years ago, the term data processing was the operative phrase for describ-

ing the use of computers in a business context. Today, data processing has given way

to another phrase—information technology—that implies the same thing but presents

a subtle shift in focus. The emphasis is not merely to process large quantities of data

but rather to extract meaningful information from this data. Obviously, this was always

the intent, but the shift in terminology reflects a far more important shift in manage-

ment philosophy.

When software applications are discussed today, the words data and information

occur repeatedly. We encounter the word knowledge in some artificial intelligence
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applications, but its use is relatively rare. Virtually no one discusses wisdom in the

context of computer software applications. 

Data is raw information—collections of facts that must be processed to be mean-

ingful. Information is derived by associating facts within a given context. Knowledge

associates information obtained in one context with other information obtained in a

different context. Finally, wisdom occurs when generalized principles are derived

from disparate knowledge. Each of these four views of "information" is represented

schematically in Figure 32.1.

To date, the vast majority of all software has been built to process data or infor-

mation. Software engineers are now equally concerned with systems that process

knowledge.2 Knowledge is two-dimensional. Information collected on a variety of

related and unrelated topics is connected to form a body of fact that we call knowl-

edge. The key is our ability to associate information from a variety of different sources

that may not have any obvious connection and combine it in a way that provides us

with some distinct benefit.

To illustrate the progression from data to knowledge, consider census data indi-

cating that the birthrate in 1996 in the United States was 4.9 million. This number

represents a data value. Relating this piece of data with birthrates for the preceding

40 years, we can derive a useful piece of information—aging "baby boomers" of the

1950s and early 1960s made a last gasp effort to have children prior to the end of

their child-bearing years. In addition “gen-Xers” have begun their childbearing years.

The census data can then be connected to other seemingly unrelated pieces of infor-

mation. For example, the current number of elementary school teachers who will

retire during the next decade, the number of college students graduating with degrees

Data:
no associativity

Information:
associativity within
one context

Knowledge:
associativity within
multiple contexts

Wisdom:
creation of generalized
principles based on
existing knowledge
from different sources

FIGURE 32.1
An 
“information”
spectrum

2 The rapid growth in data mining and data warehousing technologies reflects this growing trend.

“Wisdom is the
power that enables
us to use knowledge
for the benefit of
ourselves and
others.”
Thomas J. Watson 
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in primary and secondary education, the pressure on politicians to hold down taxes

and therefore limit pay increases for teachers.  

All of these pieces of information can be combined to formulate a representation

of knowledge—there will be significant pressure on the education system in the United

States in the first decade of the twenty-first century and this pressure will continue

for over a decade. Using this knowledge, a business opportunity may emerge. There

may be significant opportunity to develop new modes of learning that are more effec-

tive and less costly than current approaches.

The road ahead for software leads toward systems that process knowledge. We

have been processing data for 50 years and extracting information for almost three

decades. One of the most significant challenges facing the software engineering

community is to build systems that take the next step along the spectrum—systems

that extract knowledge from data and information in a way that is practical and

beneficial.

32.6 TECHNOLOGY AS A DRIVER

The people who build and use software, the software engineering process that is

applied, and the information that is produced are all affected by advances in hard-

ware and software technology. Historically, hardware has served as the technology

driver in computing. A new hardware technology provides potential. Software builders

then react to customer demands in an attempt to tap the potential. 

The road ahead for hardware technology is likely to progress along two parallel

paths. Along one path, hardware technologies will continue to evolve at a rapid pace.

With greater capacity provided by traditional hardware architectures, the demands

on software engineers will continue to grow. 

But the real changes in hardware technology may occur along another path. The

development of nontraditional hardware architectures (e.g., massively parallel

machines, optical processors, neural network machines) may cause radical changes

in the kind of software that we build and fundamental changes in our approach to

software engineering. Since these nontraditional approaches are not yet mature, it

is difficult to determine which will survive and even more difficult to predict how the

world of software will change to accommodate them.

The road ahead for software engineering is driven by software technologies.

Reuse and component-based software engineering (technologies that are not yet

mature) offer the best opportunity for order of magnitude improvements in system

quality and time to market. In fact, as time passes, the software business may begin

to look very much like the hardware business of today. There may be vendors that

build discrete devices (reusable software components), other vendors that build

system components (e.g., a set of tools for human/computer interaction) and sys-

tem integrators that provide solutions (products and custom-built systems) for the

end-user.
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independence
recreates the world
in the image of a
global village.”
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Software engineering will change—of that we can be certain. But regardless of

how radical the changes are, we can be assured that quality will never lose its impor-

tance and that effective analysis and design and competent testing will always have

a place in the development of computer-based systems.

32.7 A CONCLUDING COMMENT

It has been 20 years since the first edition of this book was written. I can still recall

sitting at my desk as a young professor, writing the manuscript (by hand) for a book

on a subject that few people cared about and even fewer really understood. I remem-

ber the rejection letters from publishers, who argued (politely, but firmly) that there

would never be a market for a book on “software engineering.” Luckily, McGraw-Hill

decided to give it a try,3 and the rest, as they say, is history.

Over the past 20 years, this book has changed dramatically—in scope, in size, in

style, and in content. Like software engineering, it has grown and (I hope) matured

over the years. 

An engineering approach to the development of computer software is now con-

ventional wisdom. Although debate continues on the "right paradigm," the degree of

automation, and the most effective methods, the underlying principles of software

engineering are now accepted throughout the industry. Why, then, are we seeing their

broad adoption only recently?

The answer, I think, lies in the difficulty of technology transition and the cultural

change that accompanies it. Even though most of us appreciate the need for an engi-

neering discipline for software, we struggle against the inertia of past practice and

face new application domains (and the developers who work in them) that appear

ready to repeat the mistakes of the past.

To ease the transition we need many things—an adaptable and sensible software

process, more effective methods, more powerful tools, better acceptance by practi-

tioners and support from managers, and no small dose of education and "advertising."

Software engineering has not had the benefit of massive advertising, but as time passes,

the concept sells itself. In a way, this book is an "advertisement" for the technology.

You may not agree with every approach described in this book. Some of the tech-

niques and opinions are controversial; others must be tuned to work well in differ-

ent software development environments. It is my sincere hope, however, that Software

Engineering: A Practitioner's Approach has delineated the problems we face, demon-

strated the strength of software engineering concepts, and provided a framework of

methods and tools.

As we begin a new millennium, software has become the most important prod-

uct and the most important industry on the world stage. Its impact and importance

3 Actually, credit should go to Peter Freeman and Eric Munson, who convinced McGraw-Hill it was

worth a shot.
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have come a long, long way. And yet, a new generation of software developers must

meet many of the same challenges that faced earlier generations. Let us hope that

the people who meet the challenge—software engineers—will have the wisdom to

develop systems that improve the human condition.
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PROBLEMS AND POINTS TO PONDER

32.1. Get a copy of this week's major business and news magazines (e.g., Newsweek,

Time, Business Week). List every article or news item that can be used to illustrate the

importance of software.

32.2. One of the hottest software application domains is Web-based systems and

applications (Chapter 29). Discuss how people, communication, and process has to

evolve to accommodate the development of “next generation” WebApps.

32.3. Write a brief description of an ideal software engineer’s development envi-

ronment circa 2010. Describe the elements of the environment (hardware, software,

and communications technologies) and their impact on quality and time to market.

32.4. Review the discussion of the evolutionary process models in Chapter 2. Do

some research and collect recent papers on the subject. Summarize the strengths and

weaknesses of evolutionary paradigms based on experiences outlined in the papers.

32.5. Attempt to develop an example that begins with the collection of raw data and

leads to acquisition of information, then knowledge, and finally, wisdom.

32.6. Select a current “hot” technology (it need not be a software technology) that

is being discussed in the popular media and describe how software enables its evo-

lution and impact.

FURTHER READINGS AND INFORMATION SOURCES

Books that discuss the road ahead for software and computing span a vast array 

of technical, scientific, economic, political, and social issues. Robertson (The New

853
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Renaissance: Computers and the Next Level of Civilization, Oxford University Press,

1998) argues that the computer revolution may be the single most significant advance

in the history of civilization. Dertrouzos and Gates (What Will Be: How the New World

of Information Will Change Our Lives, HarperBusiness, 1998) provide a thoughtful dis-

cussion of some of the directions that information technologies may take in the first

few decades of this century. Barnatt (Valueware: Technology, Humanity and Organi-

zation, Praeger Publishing, 1999) presents an intriguing discussion of an “ideas econ-

omy” and how economic value will be created as cyber-business evolves.

Negroponte's (Being Digital, Alfred A. Knopf, 1995) was a best seller in the mid-1990s

and continues to provide an interesting view of computing and its overall impact.

Kroker and Kroker (Digital Delirium, New World Perspectives, 1997) have edited a

controversial collection of essays, poems, and humor that examines the impact of

digital technologies on people and society. Brin (The Transparent Society: Will Tech-

nology Force Us to Choose Between Privacy and Freedom? Perseus Books, 1999) revis-

its the continuing debate associated with the inevitable loss of personal privacy that

accompanies the growth of information technologies. Shenk (Data Smog: Surviving

the Information Glut, HarperCollins, 1998) discusses the problems associated with an

“information-infested society” that is suffocating from the volume of information that

information technologies produce.

Miller, Michalski, and Stevens (21st Century Technologies: Promises and Perils of a

Dynamic Future, Brookings Institution Press, 1999) have edited a collection of papers

and essays on the impact of technology on social, business, and economic structures.

For those interested in technical issues, Luryi, Xu, and Zaslavsky (Future Trends in

Microelectronics, Wiley, 1999) have edited a collection of papers on probable direc-

tions for computer hardware. Hayzelden and Bigham (Software Agents for Future Com-

munication Systems, Springer-Verlag, 1999) have edited a collection that discusses

trends in the development of intelligent software agents. 

Kurzweil (The Age of Spiritual Machines, When Computers Exceed Human Intelligence,

Viking/Penguin Books, 1999) argues that, within 20 years, hardware technology will

have the capacity to fully model the human brain. Borgmann (Holding on to Reality: The

Nature of Information at the Turn of the Millennium, University of Chicago Press, 1999)

has written a intriguing history of information, tracing its role in the transformation of

culture. Devlin (InfoSense: Turning Information into Knowledge, W. H. Freeman & Co.,

1999) tries to make sense of the constant flow of information that bombards us on a

daily basis. Gleick (Faster: The Acceleration of Just About Everything, Pantheon Books,

2000) discusses the ever-accelerating rate of technological change and its impact on

every aspect of modern life. Jonscher (The Evolution of Wired Life: From the Alphabet to

the Soul-Catcher Chip—How Information Technologies Change Our World, Wiley, 2000)

argues that human thought and interaction transcend the importance of technology.

A wide variety of information sources on future trends in computing is available

on the Internet. An up-to-date list of World Wide Web references can be found at the

SEPA Web site: 

http://www.mhhe.com/engcs/compsci/pressman/resources/future.mhtml
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algorithms, 619
data structures, 619

Object life history, 581
Object management layer,

835
Object model, 553, 732

testing of, 636
Object modeling technique,

574, 608
Object-oriented (OO), 542,

544
contract, 565
estimation, 562, 564
milestones, 565
process model, 543
project management,

560
project metrics, 562
scheduling, 564
tracking projects, 565

Object-oriented
architecture, 373

Object-oriented metrics,
653–654

Lorenz and Kidd, 661
MOOD suite, 662

Object-oriented paradigm,
542

Object-oriented
programming (OOP), 625

Object-oriented projects,
560

Object-oriented software,
656
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Object point, 134
Object pool, 233
Object-relationship model,

591, 593
testing of, 634

Object/relationship pairs,
320

Object request broker
(ORB), 753

Observability, 441
OOA (object-oriented

analysis), 571, 574
vs. conventional

approaches, 573
defining classes, 583
event identification, 594
partitioning, 612
relationships, 591
state-based models, 596
state representations,

595
tasks, 572
unified approach to,

575, 610
use-cases, 594

OOA model, 632–634
dynamic view, 580
generic components,

579
static view, 580

OOD (object-oriented
design), 603

communication, 616
components of, 614
contracts, 616
vs. conventional

approaches, 605
data management, 611
design issues, 607
generic steps, 609
layers of, 604
mapping to OOA, 606
methods, 608
object design, 618
pyramid, 604
system design process,

611
OOD model, 632–634
OOT (object-oriented

testing), 631, 638
behavior models, 647
deep structure, 643
impact of OOP, 640
interclass, 645
metrics for, 664
partition testing, 644
random testing, 644
state-based partitioning,

645
strategy, 636
surface structure, 643
thread-based, 637

Operability, 441
Operations, 545, 548, 558,

620, 623, see also
Methods

metrics for, 660, 664
testing issues, 636

Orthogonal array, 466
Outsourcing, 13, 138
Outsourcing vendors, 791
Overloading, 553

Overriding, 551
Package references, 592
Packages, 590
Pareto principle, 209, 440
Partition testing, 644–645
Partitioning, 67, 286, 612

horizontal, 287, 348
vertical, 288, 349

Pathological connection,
357

Pattern of usage, 762
Patterns, 371, 375, see also

Design patterns 
People, 170, 247

communication issues,
65

roles of, 58
People/work relationships,

171
Perfective maintenance, 23
Performance, 512
Performance risk, 150
Performance testing, 498
Personal software process

(PSP), 83
PERT, 181
Petri net models, 214
Phase index, 211
Planning, 36
Poka-yoke, 214
Polymorphism, 552

metrics for, 663
Portability, 510, 513
Portability services, 827
Postcondition, 678, 682
Postmortem analysis, 73
Precondition, 678, 682
Predicate, 683
Predicate node, 446
Presentation protocol, 834
Prevention device, 215, 216
Preventive maintenance, 23
Private process data, 83
PRO/SIM, tools, 831
Problem decomposition, 67
Problem solving, 59
Procedural abstraction, 342
Procedural design, 423
Procedures, 247
Process, 20, 46, 57, 310, see

also Software process
adaptation criteria, 174
evolutionary model, 179
generic phases, 68
object-oriented, 543

Process activation table,
315, 327

Process decomposition, 70
Process evaluation, for

BPR, 803
Process identification, for

BPR, 802
Process indicators, 82
Process layer, 21
Process maturity, 24
Process metrics, 82, 101
Process model, 26

CBSE, 725
interface design, 407
object-oriented, 543
selecting, 68

Process modeling, 33, 829

Process specification
(PSPEC), 302, 312,
327–328

for BPR, 803
Process technology, 46
Processing narrative, 322,

557, 623
Producer, 206
Product, 46, 57, 67, see also

Software
Product engineering, 254-

255
Productivity, 740
Productivity metrics, 94,

126
Program components, 621
Program design language,

327, 429, 430, 622
Program graph, 445
Program structure, 385,

392, 351
terminology, 347

Programming, tools, 831
Progress, tracking of, 72
Project, 57, 71

avoiding problems, 72
constraints, 120
danger signs, 71
degree of rigor, 173
function, 119
performance, 120
reasons for failure, 65

Project coordination, 66
Project complexity, 114
Project database, 228
Project entry point, 37
Project indicators, 82
Project library, 228
Project management, 75

critical practices, 74
four Ps, 56
object-oriented, 560
tools, 829
WebE, 787, 789

Project metrics, 86–87
Project planning, 115

tools, 829
Project resources, 120–122
Project risks, 147, 149
Project scheduling, 165
Project size, 114
Project tables, 182
Project tracking, 165
Proof of correctness, 709
Protection, 607
Protocol description, 618
Protocols, 609
Prototype, 31, 289
Prototyping

BPR, 803
environments, 291
evolutionary, 289
problems with, 32
tools, 290, 831
throwaway, 289

Prototyping methods, 290
Prototyping model, 30
Prototyping paradigm, 30,

289
Pseudocode, 429
Public metrics, 84
Quality, 195, 739

conformance, 195
cost of, 196, 197
design, 195
deviations, 202
quantitative view, 513

Quality assurance, 196, 200
tools, 830

Quality concepts, 194
Quality control, 194, 196
Quality costs, 197
Quality factors, 95, 341

ISO 9126, 513
McCall, 509

Quality filter, 14
Quality function

development (QFD), 279,
289

Quality measurement, 96
Random testing, 644
Rapid application

development (RAD), 32,
34

Real time logic, 214
Recorder, 206
Recovery testing, 497
Recursive/parallel model,

560–561
Reengineering, 799

economics of, 819
process model, 805
tools, 832

Referent point, 155
Refinement, 343

for BPR, 803
Regression testing, 491
Relationships, derivation

of, 592
Reliability, 509, 512, 513

measures, 212
Repeat-until, 425
Repository, 836
Requirements, types of, 279
Requirements analysis,

258, 272
Requirements database, 261
Requirements elicitation,

256, 274, 280
steps, 257
work products, 257

Requirements engineering,
255, 256

guiding principles, 283
steps, 256

Requirements gathering, 701
interfaces, 402

Requirements
management, 261

Requirements model, 556
Requirements negotiation,

259
Requirements review, 260
Requirements specification,

259
Requirements tracing,

tools, 829, 841
Requirements validation,

260
Resource management

component, 616
Responsibilities, 583

allocation of, 585
identifying, 584
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Restructuring, 813
code, 814
data, 814

Reusability, 43, 510
Reusable components, 722,

736
categorization of, 726
identification of, 727

Reusable software
components, 290

Reuse, 551, 577, 721, 734
cost, 740
environment, 738
leverage, 742
library, 739
metrics, 741

Reverse engineering, 807,
809

of data, 811
of processing, 810
of user interfaces, 812

Review, 206–208 see also
Formal technical review

issues list, 207
leader, 206
meeting, 206
reporting, 207
summary report, 207

Rework, 197
Risk analysis, 36, 145

tools, 829
Risk assessment, 154
Risk components and

drivers, 148
Risk driver, 150
Risk estimation, 151
Risk exposure, 153
Risk identification, 148
Risk impact, 151
Risk information sheet, 159
Risk item checklist, 148
Risk management, 74, 157

strategies, 146
Risk mitigation, 156
Risk Mitigation, Monitoring,

and Management Plan,
153, 159

Risk monitoring, 157
Risk planning, 153
Risk probability, 151
Risk projection, 151
Risk referent level, 154
Risk refinement, 156
Risk table, 151
Risks, 146, 148

business related, 147
hazards, 158
management concern,

152
safety, 158
technical, 147

Round robin reviews, 206
Rumbaugh method, 574,

608
SafeHome, 277, 281, 286,

320, 322, 325, 329, 380,
411, 518, 555, 581, 587,
594, 614, 619, 622, 713,
729, 777

Sandwich testing, 493
Scalability, of WebApps,

793

Scenario-based testing, 641
Scenario script, 563
Schedule estimation, 74
Schedule performance

index, 187
Schedule risk, 150
Schedule variance, 187
Scheduling, 168, 181, 792

milestones, 170
object-oriented projects,

564
outcomes, 170
responsibilities, 169
tracking of, 185

Schemas, 690
SCM, 225, 230, 841

standards, 238
tools, 232
resources, 231
tools, 830
WebApps, 792

Scope, 57, 67, 68
Scope of control, 356
Scope of effect, 356
Screen layout, 411
Security, 97, 774
Security testing, 497
Semantic domain, 689
Semantic navigation unit

(SMU), 784
Sensitivity testing, 498
Sequence construct, 425
Server, 748–749
Services, 545, see also

Methods; Operations
Sets, 683

logical operators, 686
operators, 684
sequences, 686

SGML, 774
Shared repository layer,

835
Simplicity, 441
Size, 656
Size-oriented metrics, for

OO software, 661
Smoke testing, 492–493
Software, 6, 9

deterioration of, 8
history of, 5
importance of, 846
impact of, 4
project characteristics,

65
role of, 4
scope of change, 847

Software architecture, 346,
366, 725, see also
Architecture

Software components, 8,
42, 120, 367, see also
Components

user interface, 415
Software configuation, 14,

226
items, 226, 228, see also

Configuration objects
management, see CSM

Software crisis, 11
Software engineering, 4, 20

c/s systems, 755
environment, 122

generic view, 21
mathematics, 676
methods, deficiencies,

675
paradigm, 26, 68
road ahead, 845
tasks, 177, see also

Tasks
work tasks, 69

Software Engineering
Institute (SEI), 24, 105

Software equation, 135,
171

Software librarian, 62
Software maintenance,

804, see also Maintenance
Software maturity index,

99, 533
Software myths, 12
Software procedure, 351
Software process, 20, see

also Process
improvement, 82

models, 26, 64, 848
Software project(s)

estimation, 123
failure of, 57
gathering requirements,

11
lateness, 166
management, 55
planning, 113, see also

Project planning
scheduling, see

Scheduling
Software Project Plan, 198,

226
Software prototyping, 289,

see also Prototyping
Software quality, 199, 338,

508
metrics, 95

Software quality assurance,
24, 199, 479, see also
Quality assurance 

activities, 201
audits, 202
formal approaches to,

209
group, 200
plan, 201
SQA Plan, 201, 218

Software reengineering,
804, see also
Reengineering

Software reliability, 212,
483, see also Reliability

Software repository, 228
Software requirements, 13,

292
analysis, 29, 272, see

also Requirements
analysis

engineering, 271
Software Requirements

Specification, 293, 226,
327, 381, 495

Software reuse, 9, 43, see
also Reuse

Software reviews, 202, see
also Formal technical
review

Software risks, 146, see also
Risks

Software safety, 159
Software science, 531
Software scope, 67, 115,

118, see also Scope
Software sizing, 124
Software team, 60, 170, see

also Teams
Software testing, 437, see

also Testing
Software safety, 213
Source code, metrics, 531
Span of control, 347
Specification, 291
Specification language, 689
Specification principles, 291
Specification review, 294
Spiral model, 36, 38
Spoilage, 97
Stability, 442
Stakeholders, 275
Standards, 12
State-based models, 596
State-box specification, 705
State diagram, 613
State model, 648
State transition diagram

(STD), 302, 317, 318, 325
Statement of scope, 68, 557
States, types of, 595
Static analysis, tools, 832
Statistical modeling, 483
Statistical process control,

100
Statistical quality

assurance, 209
Statistical software process

improvement (SSPI), 84
Statistical use testing, 702,

712
Status accounting, 237
Stepwise elaboration, 409
Stepwise refinement, 343
Stress testing, 498
Structural complexity

metric, 524
Structural model view, 576
Structural modeling, 728
Structural partitioning, 348
Structure points, 725, 728,

729
cost analysis, 741

Structured analysis, 299,
300, 310

Hatley and Pirbhai
extensions, 315

mechanics, 319
real time extensions, 312
Ward and Mellor

extensions, 312
Structured analysis and

design technique (SADT),
330

Structured constructs, 424,
426

Structured design, 379
Structured English, 429
Structured programming,

339, 424, 706
Structured query language

(SQL), 749
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Structured retrofit, 815
Structures, 588
Stubs, 487
Style, see Architectural style
Subclass, 547
Subflow, 382
Subjects, definition of, 590
Subproofs, 709
Subsystem collaboration

table, 617
Subsystems, 563, 590, 612

allocation of, 613
communication, 612,

616
Superclass, 547, 551
Support, 29
Support classes, 563
Support phase, 22
Support risk, 150
Supportability, 513
Symbol table, 677
Synchronization control,

234
Syntactic domain, 689
System, 246

complexity, 524
component

engineering, 255
components, 249
constraints, 250
domains, 249
elements, 249
engineer, 249
world view, 248

System context diagram
(SCD), 262

System design, activities,
611

System engineer, 264
System engineering, 245

hierarchy, 248
System flow diagram, 264
System image, 405
System information

engineering, 28
System model, 262

restraining factors, 249
System modeling, 249, 259,

262
System perception, 405
System response time, 413
System simulation, 251
System software, tools, 830
System Specification, 120,

128, 259, 226, 265, 381
System testing, 481, 496
Task analysis, 408
Task deployment, 279
Task management

component, 614
Task modeling, steps, 409
Task network, 180, 181
Task regions, 36
Task set, 23, 37, 172
Task set selector

computation of, 175
interpretation of, 176

Task template, 614
Tasks, 57, 614

major, 177
refinement of, 178

Team leaders, 59

Team organization, 60, 63
Teams, 61

jelled, 63
organizational

paradigms, 62
toxic, 63

Technology infrastructure,
253

Templates, 779
Test cases, 442, 443, 449
Test coverage, 467
Test management, tools, 832
Test Specification, 494
Testability, 440, 510
Testing, 29, 197

alpha and beta, 496
behavioral methods,

462
big-bang, 488
black-box methods, 459
boundary value

analysis, 465
c/s architectures, 469
c/s systems, 762
completion criteria, 482
control structure, 454
data flow, 456
document and help

facilities, 469
equivalence

partitioning, 463
fundamentals, 438
graph-based, 460
GUIs, 469
integration, 488
logical conditions, 454
loops, 458
metrics for, 532
object-oriented, 631,

638
objective of, 439
organizational issues,

479
orthogonal array, 466
principles of, 439
real-time systems, 470
regression, 491
schedule, 494
specialized

environments, 468
strategic issues, 484
strategies for, 477
system-level, 496
thread based, 637
tools, 831
WebApps, 786
white-box methods, 444

Thin client, 751
3D function point, 92
Time allocation, 169
Time-boxing, 185
Time-continuous data flow,

313
Timeline charts, 182
Timing modeling, 462
Tools, 12, see also CASE

management services,
835

Top-down integration, 488
Total quality management

(TQM), 199
Traceability tables, 261

Transaction, 380
Transaction center, 380,

392
Transaction flow, 380

modeling, 462
Transaction mapping, 389,

390, 393
Transform, 310
Transform center, 379, 383
Transform flow, 379
Transform mapping,

380–381
Umbrella activities, 23, 37,

57
UML, 43, 575

notation, 581
object design, 610
system design, 610
views, 576

Understandability, 442, 607
Unified development

process, 43
Unified modeling language,

see UML
Unit testing, 481

common errors found,
486

considerations, 485
OO software, 636
procedures, 487

Upper natural process limit
(UNPL), 102

Usability, 97, 510, 512, 513
Usage scenarios, 259, 280,

615, 713, 762, see also
Use-case

Use-case, 54, 280, 289, 375,
581, 615, 636

diagram, 581
examples of, 281, 642

User interface
component, 615
consistency of, 405
design, see User

interface design
development systems,

415
layout of, 404
prototype, 408, 416
toolkit, 415

User interface design, 401,
see also Interface design

evaluation, 416
golden rules, 402
issues, 413
model, 405
principles of, 403
process model, 407
requirements gathering,

402
reviews, 417

User model, 405
User model view, 576
User satisfaction, 196
Users, 406

memory load, 404
types of, 406

Validation, 479
Validation criteria, 278,

293, 495, 481, 495
Validation testing

criteria, 495

OO software, 637
Value analysis, 279
Variant, 233
Variation between samples,

194
Variation control, 194
Verification, 479
Version control, 232

automated approaches,
233

Versioning, 840
Versions, 232
Vital few causes, 209
Walkthroughs, 206
Waterfall model, 28
Ways of navigation, 784
Wear, 7
Web-based applications,

see WebApps
Web engineer, 779, 788
Web engineering, see WebE
Web publisher, 788
WebApps, 771

architecture of, 780
categories, 772
characteristics of, 772
cost estimates, 791
design patterns, 783
quality attributes, 773
structures, 780

WebE, 769, 770
activities, 775
administrator, 789
analysis, 778
design, 779
development schedule,

792
formulation, 776
interface design, 785
management issues,

787
navigation design, 783
outsourcing, 791
politics of, 793
project management

guidelines, 790
SCM issues, 792
support specialist, 789
teams, 788
testing, 786
tools, 831

WebE process model, 775
W5HH principle, 73
Where-used/how used,

329
White-box testing, 444
Width, structure, 347
WINWIN spiral model, 38
Wirfs-Brock method, 574,

609
Work breakdown structure

(WBS), 181
Work products, 57
Work tasks, 69
XML, 774
Z notation, summary of,

691
Z specification language,

690, 692
Zero quality control, 215
Zone rules, 103


