2. STRUKTUR SISTEM OPERASI

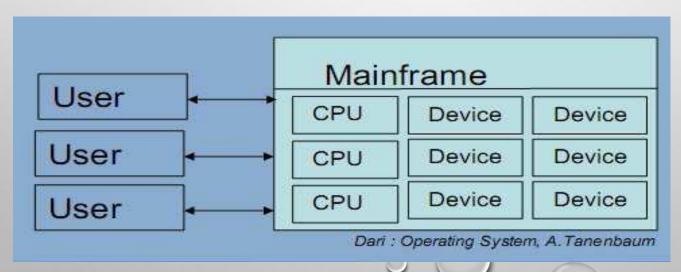
TUJUAN PEMBELAJARAN

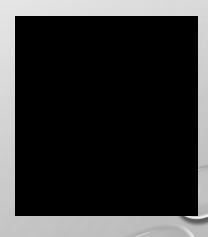
- Menjelaskan komponen pada sistem operasi
- Menjelaskan layanan sistem operasi terhadap user, proses, dan sistem lainnya.
- Membahas berbagai cara penataan sebuah sistem operasi.
- Menjelaskan bagaimana sistem operasi diinstal dan dikustomisasi dan bagaimana proses bootingnya.

Komponen Dasar Sistem Komputer

- Hardware / Peripheral
- Penyedia sumber daya untuk komputasi dasar
- Memory, CPU, I/O
- Software
- Operating system
- Mengkontrol dan mengkoordinasi penggunaan hardware antara berbagai aplikasi dan pengguna
- Application programs mendefinisikan cara penggunaan
 sumber daya sistem dan persoalan komputasi yang dialami pengguna
- Word processors, compilers, web browsers, database systems, video games
- Brainware
- orang, mesin, dan komputer lain

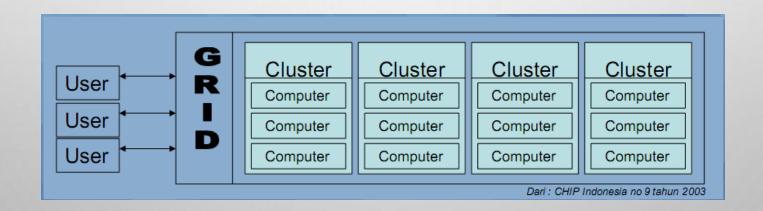
Menurut Karakteristiknya


- Single processor
- Komputer yang hanya memiliki satu prosesor
- Multiprocessor
- Komputer yang memiliki lebih dari satu prosesor
- Personal Computer
- Komputer yang digunakan oleh hanya satu orang dalam satu waktu (umumnya)
- Distributed System
- Komputasi yang dikerjakan dengan beberapa prosesor


Menurut karakteristiknya

- Clustered System
- -Gabungan dari beberapa sistem individu yang saling berbagi tempat penyimpanan data (storage / SAN) dan saling terhubung dalam jaringan local
- Real Time System
- Sebuah sistem yang mengutamakan ketepatan waktu dalam eksekusi satu buah tugas

Mainframe System


- Kumpulan dari device-device & CPU yang berfungsi sama atau berbeda yang disatukan dalam sebuah sistem yang saling berbagi (sharing)
- Mengumpulkan job-job yang mirip
- Secara otomatis berpindah dari satu job ke job yang lain

Grid Computer/Super Computer

- Kumpulan dari banyak komputer yang dikembangkan dalam sebuah computer-farm
- Pengembangan dari Mainframe dan Desktop
- Menggunakan banyak CPU untuk menghasilkan output maksimal
- Kumpulan cluster system, bisa tidak dalam 1 lokasi

Tipe alokasi job

- Batch System
- Job yang mempunyai kesamaan kebutuhan sumber daya dikumpulkan – Ketika komputer dalam keadaan siap maka CPU menjalankan masing-masing kumpulan job tersebut sebagai sebuah kelompok.
- Dieksekusi secara bergantian
- User yang mengoperasikan
- Tidak real-time

Multiprogramming:

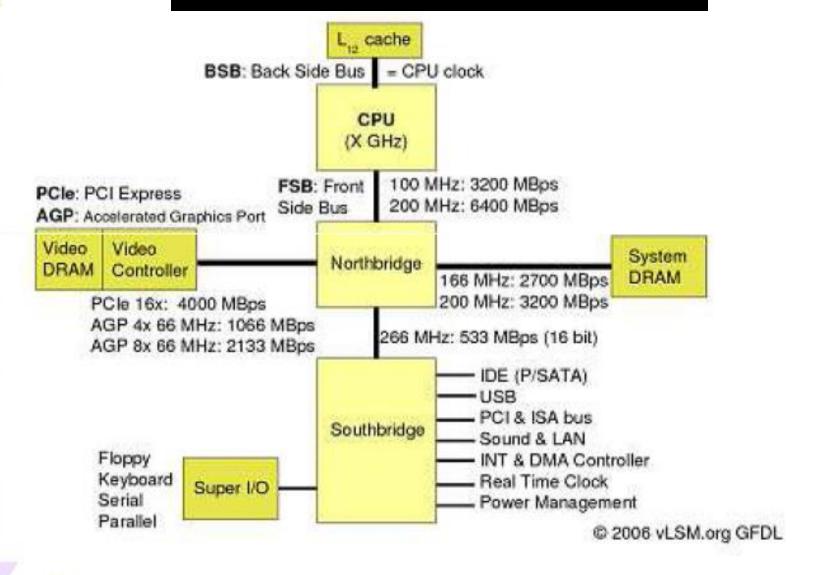
- Job/process disimpan di main memory pada waktu yang sama
- CPU dipergunakan bergantian oleh jobjob/process tersebut
- Dikerjakan oleh OS
- Berupa background proses
- Lebih cepat drpd Batch
- Dibutuhkan Kemampuan OS:
- Penyediaan I/O routine
- Pengaturan memory, untuk
 mengalokasikan memory untuk masing2 Job
- Penjadwalan CPU, untuk memilih job mana yang akan dijalankan
- Pengalokasian untuk hardware lain

Time-Sharing System/Multitasking - Interactive Computing

- CPU digunakan bergantian oleh job-job di memori dan di disk
- Waktu dibatasi
- Response time harus < 1 detik
- CPU dialokasikan hanya pada job yg ada di memory =
 CPU scheduling
- Job dipindahkan dari dan ke disk (konsep swapping dan virtual memory)
- Terjadi komunikasi antara user dan sistem operasi
- Setelah sistem operasi menyelesaikan satu perintah ia menunggu perintah berikutnya dari user

Berdasarkan Hubungan Sistem

- Single Process
- Sistem hanya memiliki satu CPU
- Multi Process:
- Sistem memiliki lebih dari satu CPU untuk memproses satu atau lebih program
- Resource digunakan bersama-sama
- Sering disebut Tightly Coupling System


Distributed System

- Melaksanakan komputasi secara terdistribusi diantara beberapa prosesor, tidak digunakan bersamaan.
- Loosely coupling system setiap prosesor mempunyai local memory / resource.
- Komunikasi terjadi melalui bus atau jalur telepon / LAN
- Keunggulan:
- Pembagian sumber daya
- Komputasi lebih cepat
- Model
- Client-Server Systems
- Peer-to-peer (P2P) System

Peer to Peer vs Client Server

- P2P tidak membedakan client dan server
- Semua node yang terhubung disebut dengan peer
- Satu node bersifat sebagai client dan sekaligus sebagai server
- Node harus terhubung dalam jaringan P2P
- Menggunakan service melalui discovery protocol

PC Modern Architecture

Komponen Sistem

- Manajemen proses
- Manajemen memori utama
- Manajemen file
- Manajemen sistem I/O
- Manajemen penyimpan sekunder
- Sistem jaringan (terdistribusi)
- Sistem proteksi
- Sistem command interpreter.

Manajemen Proses

- Proses → Program yang sedang dieksekusi
- Tanggung jawab sistem operasi pada aktifitas-aktifitas manajemen proses:
- pembuatan/penghapusan proses oleh user atau sistem
- menghentikan proses sementara dan melanjutkannya
- menyediakan mekanisme sinkronisasi dan komunikasi proses
- Proses \rightarrow resource (waktu CPU, memori, file, I/O device)

Manajemen Memori Utama

- Memori → array besar berukuran word atau byte yang mempunyai alamat tertentu
- Memori bersifat volatile (RAM)
- Tanggung jawab sistem operasi pada aktifitas-aktifitas manajemen memori:
- Menjaga dan memelihara bagian memori yang sedang digunakan dan dari yang menggunakan
- Memutuskan proses tertentu yang harus dipanggil ke memori
- Mengalokasikan dan mendealokasikan ruang memori

Manajemen File

- File \rightarrow kumpulan informasi yang saling berhubungan (user)
- Tanggung jawab sistem operasi pada aktifitas-aktifitas manajemen file:
- Membuat/menghapus file
- Membuat/menghapus direktori
- Pemetaan file ke memori sekunder
- Backup file ke media penyimpanan yang stabil

Manajemen I/O

- Tanggung jawab sistem operasi pada aktifitas-aktifitas manajemen I/O:
- Sistem buffer-caching
- Antarmuka device-driver secara umum
- Driver untuk device hardware-hardware tertentu

Manajemen Penyimpan Sekunder

- Tanggung jawab sistem operasi pada aktifitas-aktifitas manajemen penyimpan sekunder:
- Pengaturan ruang bebas
- Alokasi penyimpanan
- Penjadwalan disk

Sistem Jaringan (Terdistribusi)

- Tidak menggunakan memori atau clock bersama-sama
- Mengakses resource yang beragam
- Keuntungan:
- Meningkatkan kecepatan komputasi
- Meningkatkan ketersediaan data
- Meningkatkan kehandalan sistem

Sistem Proteksi

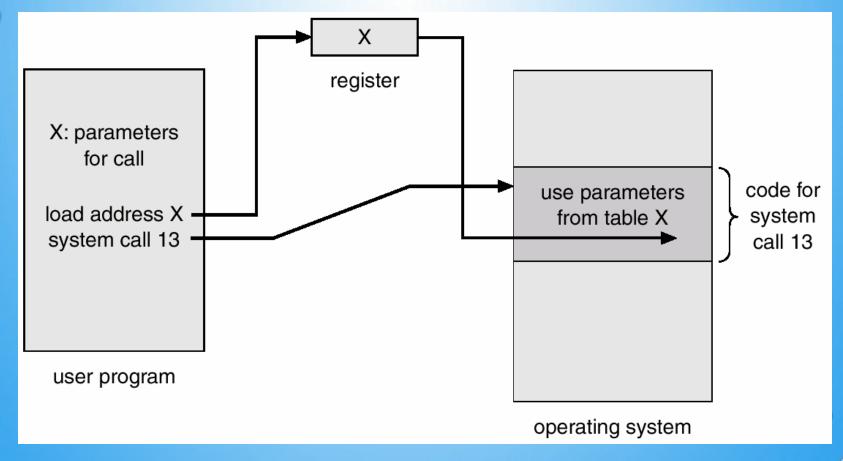
- Mekanisme untuk mengontrol akses oleh program, proses atau user pada sistem maupun resource dari user
- Mekanisme:
- Membedakan antara penggunaan yang sah dan yang tidak sah
- Menentukan kontrol yang terganggu
- Menetapkan cara pelaksanaan terproteksi

Sistem Command Interpreter

- Perintah yang dimasukkan ke sistem operasi menggunakan pernyataan kontrol digunakan untuk manajemen proses, penanganan I/O, manajemen penyimpan sekunder, manajemen memori utama, akses sistem file, proteksi, dan jaringan
- Shell → Command Line Interpreter (CLI) dan Graphical User Interface (GUI)

Layanan Sistem Operasi

- Eksekusi program
- Operasi-operasi I/O
- Manipulasi sistem file
- Komunikasi
- Pendeteksi kesalahan


Layanan Sistem Operasi (cont.)

- Tambahan layanan sistem operasi:
- Mengalokasikan resource
- Accounting
- Proteksi

System Calls

- Menyediakan antar muka program yang sedang berjalan dengan sistem operasi
- Dulunya menggunakan bahasa assembly, sekarang bahasa tingkat tinggi (C atau C++)
- Diakses via Application Programming Interface (API)
- Metode untuk melewatkan parameter antara program yang sedang berjalan:
- Melalui register
- Menyimpan parameter pada tabel memori
- Menyimpan parameter ke stack dan mengambil isi stack

Parameter Passing via Tabel

Contoh System Call

	Windows	Unix
Process	CreateProcess()	fork()
Control	ExitProcess()	exit()
	WaitForSingleObject()	wait()
File	CreateFile()	open()
Manipulation	ReadFile()	read()
	WriteFile()	write()
	CloseHandle()	close()
Device	SetConsoleMode()	ioctl()
Manipulation	ReadConsole()	read()
	WriteConsole()	write()
Information	GetCurrentProcessID()	getpid()
Maintenance	SetTimer()	alarm()
	Sleep()	sleep()
Communication	CreatePipe()	pipe()
	CreateFileMapping()	shmget()
	MapViewOfFile()	mmap()
Protection	SetFileSecurity()	chmod()
	<pre>InitlializeSecurityDescriptor()</pre>	umask()
	SetSecurityDescriptorGroup()	chown()

Jenis System Calls

- Kontrol Proses:
- end, abort
- load, execute
- create process, terminate process
- get process attributes, set process attributes
- wait for time
- wait event, signal event
- allocate and free memory

Jenis System Calls (cont.)

free memory command interpreter kernel

(a)

free memory process command interpreter kernel (b)

process D free memory process C interpreter process B kernel (c)

Sistem MSDOS: (a) pada saat startup (b) pada saat running Sistem UNIX: (c) bisa lebih dari 1 proses

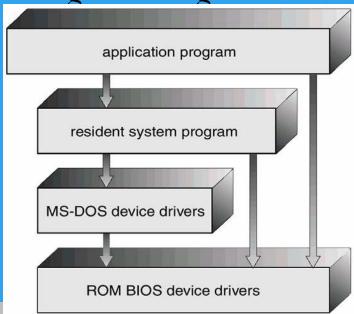
Jenis System Calls (cont.)

- Manajemen File:
- create file, delete file
- open, close file
- read, write, reposition
- get and set file attributes
- Manajemen Device:
- request device, release device
- read, write, reposition
- get device attributes, set device attributes
- logically attach or detach devices

Jenis System Calls (cont.)

- Information Maintenance:
- get time or date, set time or date
- get system data, set system data
- get and set process, file, or device attributes
- Komunikasi:
- create, delete communication connection
- send, receive messages
- transfer status information
- 2 model: message-passing dan shared-memory

System Programs


- Menyediakan lingkungan yang nyaman untuk pengembangan dan eksekusi program.
- Kategori:
- Manipulasi File
- Status Informasi
- Modifikasi File
- Bahasa pemrograman yang mendukung
- Pemanggilan dan eksekusi program
- Komunikasi
- Program-program aplikasi

Struktur Sistem Operasi

- Struktur sistem operasi:
- Simple Structure (MS-DOS, UNIX)
- Layered Approach (THE, Venus)
- Microkernel (Minix)
- Modules (Solaris)
- Hybrid (Apple Mac OS X, iOS, Android)

Sistem MS-DOS

- Kecil dan terbatas
- Tidak terbagi menjadi modul-modul
- Meski mempunyai beberapa struktur, antar muka dan tingkatan fungsionalitas tidak terpisah secara baik

Sistem UNIX

- 2 bagian UNIX: Kernel dan System Program
- Kernel terdiri dari antar muka system call dan hardware atasnya
- Kernel menyediakan sistem file, penjadwalan CPU, manajemen memori

Sistem UNIX (cont.)

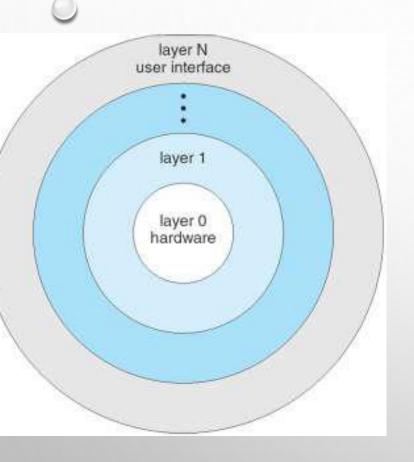
(the users)

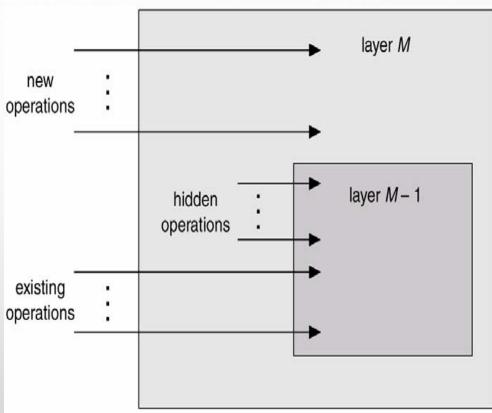
shells and commands compilers and interpreters system libraries

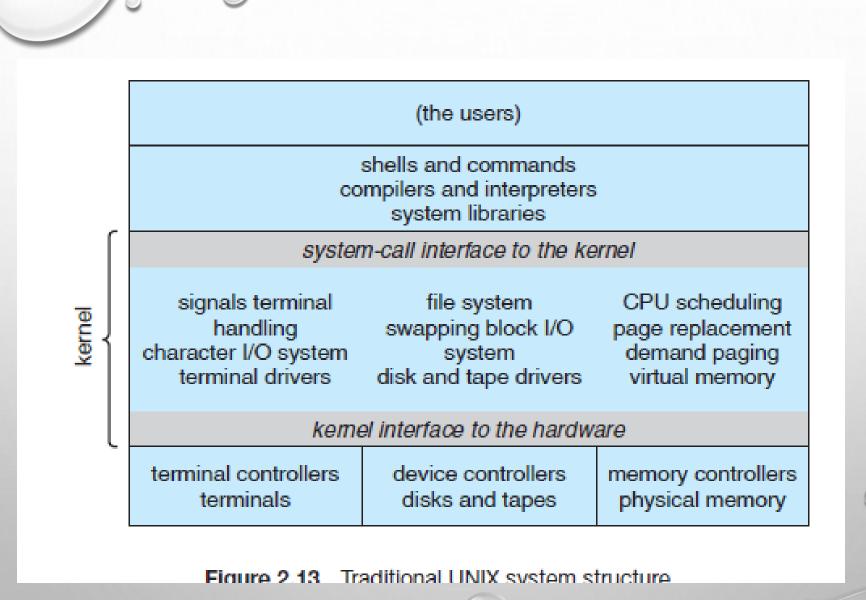
system-call interface to the kernel

signals terminal handling character I/O system terminal drivers file system swapping block I/O system disk and tape drivers

CPU scheduling page replacement demand paging virtual memory


kernel interface to the hardware


terminal controllers terminals device controllers disks and tapes memory controllers physical memory

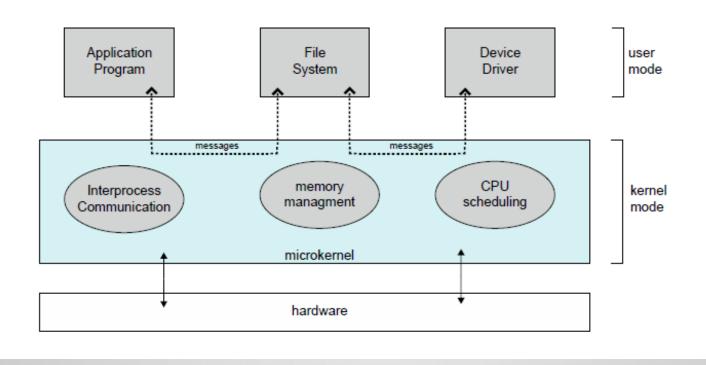

Layered Approach

- Metode top-down
- Semua fungsi ditentukan dan dibagi menjadi komponenkomponen
- Modularisasi → memecah menjadi beberapa tingkat
- Layer terendah (layer 0) hardware, layer teratas (layer N) user interface

Layered Approach (cont.)

Layered Approach (cont.)

- Contoh OS: THE, Venus
- Lapisan THE:
- Lapis-5: user program
- Lapis-4: buffering untuk I/O device
- Lapis-3 : operator-console device driver
- Lapis-2: menejemen memori
- Lapis-1: penjadwalan CPU
- Lapis-0: hardware


Layered Approach (cont.)

- Lapisan Venus:
- Lapis-6: user program
- Lapis-5 : device driver dan sceduler
- Lapis-4: virtual memory
- Lapis-3: I/O channel
- Lapis-2: penjadwalan CPU
- Lapis-1: instruksi interpreter
- Lapis-0: hardware

Microkernel

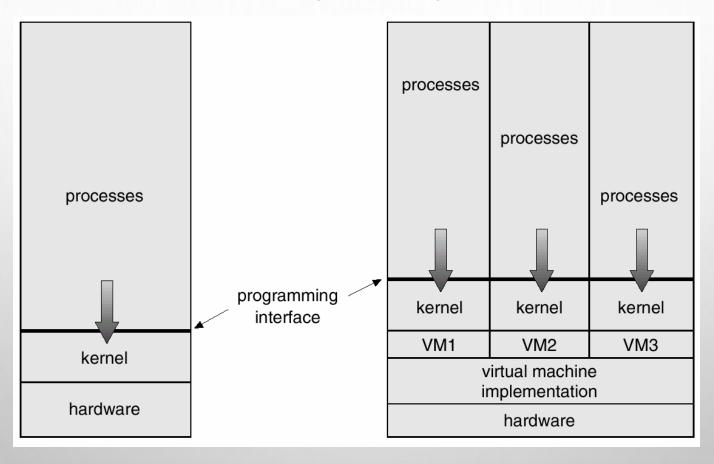
- Menghapus komponen yang tidak penting dari kernel dan mengimplementasikannya dalam sistem dan user-level program.
- Menyediakan proses dan manajemen memori yang minimal.
- Komunikasi terjadi antara modul user menggunakan message passing.
- Keuntungan (lebih secure, lebih handal, mudah untuk memperluas sebuah microkernel, mudah diubah ke arsitektur baru).
- Kekurangan (kinerja akan berkurang selagi bertambahnya fungsifungsi yang digunakan.
- Contoh: Mach dan Minix

Microkernel (cont.)

Modules

- Kernel mempunyai kumpulan komponen-komponen inti dan secara dinamis terhubung pada penambahan layanan selama waktu boot atau waktu berjalan
- Sistem operasi yang modern saat ini menggunakan loadable kernel module.
- Contoh: Linux, Solaris, Windows

Hybrid


- Sebagian besar sistem operasi modern tidak dalam satu model yang asli
- Menggabungkan beberapa struktur yang berbeda (kinerja, keamanan, kegunaan)
- Misal: Linux dan Solaris (monolithic dan juga modular), Windows (monolithic dan juga microkernel)

Mesin Virtual

- Menyediakan antar muka yang identik untuk perangkat keras yang ada
- Sistem operasi membuat ilusi untuk beberapa proses, masingmasing mengeksekusi prosessor masing-masing untuk memori (virtual) masing-masing.
- Resource (physical mode) dibagi membuat untuk mesin virtual
- CPU scheduling

 user mempunyai prosesor sendiri

Mesin Virtual (cont.)

VM Ware

application	application	application	application
	guest operating system (free BSD) virtual CPU virtual memory virtual devices	guest operating system (Windows NT) virtual CPU virtual memory virtual devices	guest operating system (Windows XP) virtual CPU virtual memory virtual devices
host operating system (Linux)			
hardware CPU memory I/O devices			

System Boot

- Prosedur menghidupkan komputer dengan memuat kernel disebut booting
- Ketika power diinisialiasi pada sistem, eksekusi dimulai pada lokasi memori yang tetap
- Sistem operasi harus tersedia untuk hardware agar dapat memulai proses booting
- Potongan kecil dari kode dinamakan bootstrap program atau bootstrap loader
- Bootstrap loader yang umum digunakan (GRUB) memungkinkan pemilihan kernel dari beberapa disk, versi, dan opsi kernel